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Abstract—This paper considers the problem of secret com-
munication over a multiple access channel with generalized
feedback. Two trusted users send independent confidential mes-
sages to an intended receiver, in the presence of a passive
eavesdropper. In this setting, an active cooperation between two
trusted users is enabled through using channel feedback in
order to improve the communication efficiency. Based on rate-
splitting and decode-and-forward strategies, achievablesecrecy
rate regions are derived for both discrete memoryless and
Gaussian channels. Results show that channel feedback improves
the achievable secrecy rates.

I. I NTRODUCTION

The broadcast nature of wireless medium poses both ben-
efits and penalties for secret communication. The openness
of wireless medium provides opportunities for cooperation
between trusted users, which improves the communication effi-
ciency. On the other hand, it makes the transmission extremely
susceptible to eavesdropping. Anyone within communication
range can listen and possibly extract information.

Those two opposite aspects are reflected in the system
model as shown in Fig. 1, where we consider a multiple
access channel in which two mutually trusted users commu-
nicate confidential messages to an intended receiver, in the
presence of a passive eavesdropper. Channel feedback enables
cooperation between two trusted users and consequently a
higher communication efficiency. We refer to this channel as
the multiple access channel with generalized feedback and
confidential messages(MAC-GF-CM). The level of ignorance
of the eavesdropper with respect to the confidential messages
is measured by the equivocation rate. This approach was
first introduced by Wyner for the wiretap channel [1], in
which a single source-destination communication is eaves-
dropped upon via a degraded channel. Wyner’s formulation
was generalized by Csiszár and Körner who determined the
capacity region of the broadcast channel with confidential
messages [2]. The Gaussian wiretap channel was considered
in [3]. More recently, multi-terminal communication with
confidential messages has been studied further. This work is
related to prior works on the multiple access channel with
confidential messages [4], [5], the Gaussian multiple access
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Fig. 1. The two-transmitter multiple access channel with generalized
feedback and confidential messages.

wiretap channel [6], the interference channel with confidential
messages [7], and the relay-eavesdropper channel [8], [9].

The multiple access channel with generalized feedback
(MAC-GF) without secrecy consideration was studied in [10]–
[15]. The terminology “generalized feedback” refers to the
wide range of possible situations, including the MAC without
feedback, the MAC with output feedback, the MAC-GF with
independent noise, the MAC with conferencing encoders, the
relay channel and many others. A special case of the Gaussian
fading MAC-GF is the so-calleduser cooperation diversity
model proposed in [16].

In this work, we study secret communication over a multiple
access channel with generalized feedback. Based on rate-
splitting and decode-and-forward strategies, achievablesecrecy
rate regions are derived for both discrete memoryless and
Gaussian MAC-GF-CMs. Several special cases of the derived
achievable secrecy rate region include the rate regions of the
two-user Gaussian multiple access wiretap channel [6], the
relay-eavesdropper channel [8], [9], and the MISO wiretap
model [17].

The remainder of the paper is organized as follows. Sec-
tion II describes the system model. Section III states our main
results on achievable rate regions for the discrete memoryless
MAC-GF-CM. Some implications of the results are given in
Section IV. Section V states our results for a Gaussian MAC-
GF-CM with two numerical examples.

II. SYSTEM MODEL

A two-user multiple access channel with generalized feed-
back and confidential messages consists of two transmitters, an
intended receiver, and an eavesdropper, as depicted in Fig.1.
The channel is denoted by (X1 × X2, p(y1, y2, y, z|x1, x2),



Y1 × Y2 × Y × Z), whereX1 and X2 are input alphabets;
Y and Z are output alphabets at the intended receiver and
the eavesdropper, respectively;Y1 and Y2 are the feedback
channel output alphabets; andp(y1, y2, y, z|x1, x2) is the
transition probability matrix. The channel is memoryless and
time-invariant in the sense that

p(y1i, y2i, yi, zi|xi
1,x

i
2,y

i−1
1 ,yi−1

2 ) = p(y1i, y2i, yi, zi|x1i, x2i)

wherexi
t = [xt1, xt2, . . . , xti] for t = 1, 2. The superscript

will be dropped wheni = n in order to simplify notations.
Encoder 1 and encoder 2 send independent messagesW1 ∈

W1 = {1, . . . , M1} and W2 ∈ W2 = {1, . . . , M2} to the
intended receiver inn channel uses, in a cooperative way by
using the feedback signals(y1,y2). For t = 1, 2, a stochastic
encoderft for user t is specified by a matrix of conditional
probabilities f(xti|wt,y

i−1
t ), where xti ∈ Xt, wt ∈ Wt,

yi−1
t ∈ Yi−1

t and
∑

xti
f(xti|wt,y

i−1
t ) = 1, for i = 1, . . . , n,

wheref(xti|wt,y
i−1
t ) is the probability that encodert outputs

xti when messagewt is being sent andyi−1
t has been observed

at encodert.
The decoder uses the output sequenceyn to compute

its estimate(ŵ1, ŵ2) of (w1, w2). The decoding function is
specified by a mappingφ : Yn → W1 ×W2.

An (M1, M2, n, Pe) code for the MAC with generalized
feedback and confidential messages consists of two sets ofn
encoding functionsfti, t = 1, 2, i = 1, . . . , n and a decoding
function φ so that its average probability of error is

Pe =
∑

(w1,w2)

1

M1M2
Pr {φ(y) 6= (w1, w2)|(w1, w2)sent} .

(1)
The level of ignorance of the eavesdropper with respect to

the confidential messages is measured by the equivocation rate
H(W1, W2|Z)/n.

A rate pair (R1, R2) is achievable for the MAC with
generalized feedback and confidential messages if, for any
ǫ > 0, there exists an (M1, M2, n, Pe) code so that

M1 ≥ 2nR1 , M2 ≥ 2nR2 , Pe ≤ ǫ (2)

and R1 + R2 − H(W1, W2|Z)/n ≤ ǫ (3)

for all sufficiently largen. The secrecy capacity region is the
closure of the set of all achievable rate pairs(R1, R2).

We note that the perfect secrecy condition (3) implies

R1 −
1

n
H(W1|Z) ≤ ǫ and R2 −

1

n
H(W2|Z) ≤ ǫ. (4)

and therefore thejoint perfect secrecy requirement is stronger
than theindividual perfect secrecy requirement.

This can be shown as follows:

H(W1|Z) = H(W1, W2|Z) − H(W2|W1,Z)

≥ H(W1) + H(W2) − nǫ − H(W2|W1,Z)

≥ H(W1) − nǫ

= n(R1 − ǫ).

Similarly, we can show that (3) impliesH(W2|Z) ≥ n(R2−ǫ).

III. D ISCRETEMEMORYLESSCHANNELS

We first state our results for discrete memoryless channels.
Theorem 1:(Partial Decode-and-Forward)
For a discrete memoryless MAC with generalized feedback

and confidential messages, the secrecy rate regionR(πI ) is
achievable, whereR(πI) is the closure of the convex hull of
all (R1, R2) satisfying































































R1 = R10 + R12, R2 = R20 + R21 :

R10 + R̃10 ≤ I(X1; Y |X2, V1, U),

R20 + R̃20 ≤ I(X2; Y |X1, V2, U),

R10 + R20 + R̃10 + R̃20 ≤ I(X1, X2; Y |V1, V2, U),

R12 + R̃12 ≤ I(V1; Y2|X2, U),

R21 + R̃21 ≤ I(V2; Y1|X1, U),
R10 + R20 + R12 + R21

≤ I(X1, X2; Y ) − I(X1, X2; Z).
R10, R20, R12, R21 ≥ 0,

(R̃10, R̃20, R̃12, R̃21) ∈ C(R̃10, R̃20, R̃12, R̃21)
(5)

where

C(R̃10, R̃20, R̃12, R̃21) =






















(R̃10, R̃20, R̃12, R̃21 ≥ 0) :

R̃10 ≤ I(X1; Z|X2, V1, U),

R̃20 ≤ I(X2; Z|X1, V2, U),

R̃10 + R̃20 ≤ I(X1, X2; Z|V1, V2, U),

R̃10 + R̃20 + R̃21 + R̃12 = I(X1, X2; Z).

(6)

and πI denotes the class of joint probability mass functions
p(u, v1, v2, x1, x2, y1, y2, y, z) that factor as

p(u)p(v1, x1|u)p(v2, x2|u)p(y1, y2, y, z|x1, x2).

Theorem 1 illustrates a rate-splitting strategy. The ratesR1

and R2 are split asR1 = R10 + R12 and R2 = R20 + R21,
whereR12 andR21 are the rates of information sent by both
transmitters cooperatively to the intended receiver, while R10

andR20 are the rates of non-cooperative information sent by
user 1 and user 2 individually to the receiver. The random
variableU represents cooperative resolution information sent
by both transmitters.V1 represents information (at rateR12)
that user 1 sends to user 2 to enable cooperation.V2 represents
information (at rateR21) that user 2 sends to user 1 to enable
cooperation.

R̃10, R̃20, R̃12 and R̃21 represent the rates sacrificed in
order to confuse the eavesdropper completely. The sum rate
loss is I(X1, X2; Z). When we setZ = ∅ (in the case of
no eavesdropper),̃R10 = R̃20 = R̃12 = R̃21 = 0, and hence,
our result becomes the rate region of the MAC with general
feedback as given in [14].

The achievability scheme is based on the combination of
superposition block Markov encoding [13], backward decod-
ing [15] and random binning [1], [18]. We outline the proof
in the Appendix.

Remark 1: The rate region may be enlarged by using the
channel prefixing technique in [2, Lemma 4]. However, we do



not follow this approach in this paper to avoid its complicated
notation and the intractability of its evaluation.

If we require thatR1 = R12 and R2 = R21, that is,
all information is sent cooperatively and each user can fully
decode the other user’s message, we have the following result.

Theorem 2:(Full Decode-and-Forward)
The secrecy rate regionR(πII) is achievable, whereR(πII)

is the closure of the convex hull of all(R1, R2) satisfying






























(R1, R2 ≥ 0) :
R1 ≤ I(X1; Y2|X2, U),
R2 ≤ I(X2; Y1|X1, U),
R1 + R2 ≤ min{I(X1; Y2|X2, U)

+I(X2; Y1|X1, U), I(X1, X2; Y )}
−I(X1, X2; Z).

(7)

whereπII denotes the class of joint probability mass functions
p(u, x1, x2, y1, y2, y, z) that factor as

p(u)p(x1|u)p(x2|u)p(y1, y2, y, z|x1, x2).

IV. SOME IMPLICATIONS OF THERESULTS

Next, we discuss some implications of our main result. We
consider several special cases of Theorems 1 and 2, which are
consistent with the recent results in [6], [8], [9], [17].

A. Multiple Access Wiretap Channel

An achievable rate region for the Gaussian multiple access
wiretap channel is given in [6], which is the special case when
neither user can obtain feedback, i.e.,Y1 = ∅ andY2 = ∅. We
setV1 = V2 = U = ∅ in Theorem 1 and have the achievable
regionR(πMAC−WT ), which is the closure of the convex hull
of all (R1, R2) satisfying















(R1, R2 ≥ 0) :
R1 ≤ I(X1; Y |X2) − I(X1; Z),
R2 ≤ I(X2; Y |X1) − I(X2; Z),
R1 + R2 ≤ I(X1, X2; Y ) − I(X1, X2; Z),

(8)

whereπMAC−WT is the class of all distributions that factor
asp(x1, x2, y, z) = p(x1)p(x2)p(y, z|x1, x2).

B. Relay-Eavesdropper Channel

An achievable rate region for the relay-eavesdropper chan-
nel is given in [8], [9], which is the case when only user 1
has confidential messages to send and user 2 is a relay to help
with the decode-and-forward strategy; thereforeR2 = 0 and
Y1 = ∅. We setV2 = ∅ andU = X2 in Theorem 2 and the
achievable rate satisfies

R1 ≤ [min{I(X1; Y2|X2), I(X1, X2; Y )} − I(X1, X2; Z)]+,
(9)

for all distributions that factor asp(x1, x2, y2, y, z) =
p(x1, x2)p(y2, y, z|x1, x2). This result is consistent with [8,
Theorem 2].
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Fig. 2. A Gaussian MAC-GF with confidential messages

C. MISO Wiretap Channel

When each transmitter can obtain perfect channel feedback,
i.e., Y2 = V1 and Y1 = V2, we have a virtual MISO wiretap
channel. We setV1 = X1 and V2 = X2 in Theorem 1. The
achievable secrecy rate of the MISO channel is given by

R = R1 + R2 ≤ [I(X1, X2; Y ) − I(X1, X2; Z)]+, (10)

for all distributions that factor asp(x1, x2, y, z) =
p(x1, x2)p(y, z|x1, x2). This result is consistent with [17].

V. GAUSSIAN CHANNELS

In this section, we consider a Gaussian MAC-GF-CM,
as depicted in Fig. 2. Each mutually trusted user receives
an attenuated and noisy version of the partner’s signal and
uses that signal, in conjunction with its own message, to
construct the transmit signal. The intended receiver and a
passive eavesdropper each get a noisy version of the sum of the
attenuated signals of both users. The signal model is therefore

Y1 =
√

h21X2 + N21

Y2 =
√

h12X1 + N12

Y =
√

h1X1 +
√

h2X2 + N1

Z =
√

g1X1 +
√

g2X2 + N2. (11)

wherehi, gi for i = 1, 2 are main and eavesdropper channel
gains respectively;h12 and h21 are feedback channel gains,
as shown in Fig. 2. We assume the following: the transmitted
signalXt has an average power constraint

1

n

n
∑

i=1

E[X2
ti] ≤ Pt, t = 1, 2; (12)

and the noise termsN1, N2, N12, andN21 are independent
white zero-mean unit-variance complex Gaussian, i.e.,N1 ∼
N (0, 1), N2 ∼ N (0, 1), N12 ∼ N (0, 1), andN21 ∼ N (0, 1).

Let V1, V2, X1, andX2 be jointly Gaussian with

V1 =
√

PU1U +
√

P12U
′

1

V2 =
√

PU2U +
√

P21U
′

2

X1 = V1 +
√

P10U
′′

1

X2 = V2 +
√

P20U
′′

2 (13)
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Fig. 3. Regular Rate regions and secrecy rate regionsRI

G
for h1 = 0.6,

h2 = 0.6, g1 = 0.2, g2 = 0.1, P1 = 1, P2 = 1 under different cooperation
conditions h12 = h21 ∈ [0, 0.6, 1.0], whereh12 = h21 = 0 means no
cooperation.

whereU , U ′

1, U ′

2, U ′′

1 , andU ′′

2 are independent zero mean unit
variance Gaussian. The termsPU1, P12, P10, PU2, P21 and
P20 denote the corresponding power allocation, where

P1 = PU1 + P12 + P10 and P2 = PU2 + P21 + P20. (14)

Following the achievability proof for the discrete memory-
less channel, we have the following result for the Gaussian
multiple access channel with feedback.

Theorem 3:(Partial Decode-and-Forward)
An achievable secrecy rate regionRI

G is the closure of the
convex hull of all rate pairs(R1, R2) with











































































R1 = R10 + R12, R2 = R20 + R21 :

R10 + R̃10 ≤ C(h1P10),

R20 + R̃20 ≤ C(h2P20),

R10 + R20 + R̃10 + R̃20 ≤ C(h1P10 + h2P20),

R12 + R̃12 ≤ C( h12P12

1+h12P10

),

R21 + R̃21 ≤ C( h21P21

1+h21P20

),

R10 + R20 + R12 + R21 ≤
C

(

h1P1 + h2P2 + 2
√

h1h2PU1PU2

)

−C
(

g1P1 + g2P2 + 2
√

g1g2PU1PU2

)

.
R10, R20, R12, R21 ≥ 0,

(R̃10, R̃20, R̃12, R̃21) ∈ C(R̃10, R̃20, R̃12, R̃21)

(15)

where

C(R̃10, R̃20, R̃12, R̃21) =






























(R̃10, R̃20, R̃12, R̃21 ≥ 0) :

R̃10 ≤ C(g1P10),

R̃20 ≤ C(g2P20),

R̃10 + R̃20 ≤ C(g1P10 + g2P20),

R̃10 + R̃20 + R̃21 + R̃12 =
C

(

g1P1 + g2P2 + 2
√

g1g2PU1PU2

)

,

(16)

andC(x) , (1/2) log(1 + x).

As a numerical example, we show in Fig. 3 the “regular”
rate region (without the secrecy constraint) and the secrecy
rate regionRI

G for h1 = 0.6, h2 = 0.6, g1 = 0.2, g2 = 0.1,
P1 = 1 and P2 = 1 under different cooperation conditions
h12 = h21 ∈ [0, 0.6, 1.0]. When h12 = h21 = 0, there is
no cooperation between the two encoders, which corresponds
to the multiple access wiretap channel. Both the regular rate
region and the secrecy rate region are significantly enlarged
when the channel gains between the two users (h21 andh12)
become larger, which shows the benefits due to cooperation.
Comparing with the regular rate region, the secrecy rate region
suffers rate loss due to the secrecy constraint and furthermore,
the secrecy rate region is increasingly dominated by the sum
rate constraint, as depicted in Fig. 3.

Next, we give the secrecy rate region when each user can
fully decode the message sent by the other user.

Theorem 4:(Full Decode-and-Forward)
An achievable secrecy rate regionRII

G is the closure of the
convex hull of all rate pairs(R1, R2) with































(R1, R2 ≥ 0) :
R1 ≤ C(h12P12),
R2 ≤ C(h21P21),
R1 + R2 ≤ min{C(h12P12) + C(h21P21),

C
(

h1P1 + h2P2 + 2
√

h1h2PU1PU2

)

}
−C

(

g1P1 + g2P2 + 2
√

g1g2PU1PU2

)

.

(17)

We summarize the secrecy sum rates of partial and full
decode-and-forward strategies in the following theorem.

Theorem 5:(Sum Rate) The maximal achievable sum rate
in RI

G is

RI = min
{

C
(

h1P1 + h2P2 + 2
√

h1h2PU1PU2

)

,

C

(

h12P12

1 + h12P10

)

+ C

(

h21P21

1 + h21P20

)

+ C (h1P10 + h2P20)
}

− C
(

g1P1 + g2P2 + 2
√

g1g2PU1PU2

)

; (18)

the maximum achievable sum rate inRII
G is

RII = min
{

C
(

h1P1 + h2P2 + 2
√

h1h2PU1PU2

)

,

C(h12P12) + C(h21P21)
}

− C
(

g1P1 + g2P2 + 2
√

g1g2PU1PU2

)

. (19)

Furthermore,RI = RII whenh12 ≥ h1 andh21 ≥ h2.
The proof of Theorem 5 is provided in the Appendix.
In Fig. 4, we illustrate secrecy rate regionsRI

G and RII
G

for h1 = 0.6, h2 = 0.6, g1 = 0.2, g2 = 0.1, P1 = 1 and
P2 = 1 under different cooperation conditionsh12 = h21 ∈
[0.2, 0.55, 1.0]. Comparing withRI

G, RII
G suffers a significant

rate loss whenh12 and h21 are small (h12 = h21 = 0.2) as
expected. Whenh12 andh21 increase, the rate loss is reduced.
When h12 and h21 are large enough,RII

G andRI
G coincide.

This observation is partially verified by Theorem 5.
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Fig. 4. Secrecy rate regionsRI

G
and RII

G
for h1 = 0.6, h2 = 0.6,

g1 = 0.2, g2 = 0.1, P1 = 1, P2 = 1 under different cooperation conditions:
h12 = h21 ∈ [0.2, 0.55, 1.0].

APPENDIX

Proof: (Theorem 1) The transmission is performed forB + 1
blocks of lengthn1, where bothB andn1 are sufficiently large
andn = (B + 1)n1.

The random code generation is described as follows.
We fix p(u), p(v1, x1|u) andp(v2, x2|u2) and split the rate

pair (R1, R2) asR1 = R12 + R10 andR2 = R21 + R20. Let

R̃12 + R̃10 + R̃21 + R̃20 = I(X1, X2; Z) − ǫ1 (20)

whereǫ1 > 0 andǫ1 → 0 asn1 → ∞. Let R′

1 = R12 + R̃12,
R′′

1 = R10 + R̃10, R′

2 = R21 + R̃21 andR′′

2 = R20 + R̃20.
Code Construction:

• Generate2n1(R
′

1
+R′

2
) codewordsun1(w0) by choosing

the ui(w0) independently according top(u) for i =
1, 2, . . . , n1, wherew0 = 1, 2, . . . , 2n1(R

′

1
+R′

2
).

• For eachw0, generate2n1R′

1 codewordsvn1

1 (w0,w
′

1)
by choosing thev1i(w0,w

′

1) independently accord-
ing to p(v1|u) for i = 1, 2, . . . , n1, where w′

1 =
1, 2, . . . , 2n1R′

1 .
• For each tuple(w0,w

′

1), generate2n1R′′

1 codewords
xn1

1 (w0,w
′

1,w
′′

1 ) by choosing the x1i(w0,w
′

1,w
′′

1 )
independently according top(x1|u, v1) for i =
1, 2, . . . , n1, wherew′′

1 = 1, 2, . . . , 2n1R′′

1 .

The codebooks for user 2 are generated in the same way,
except that there are2n1R′

2 and2n1R′′

2 codewords in each of
thevn1

2 andxn1

2 codebooks, respectively. The same codebooks
will be used for allB + 1 blocks during the encoding.
Encoding: Messagew1 has n1(R1B + R10) bits and is
split into two parts:w′

1 with n1R12B bits and w′′

1 with
n1R10(B + 1) bits, respectively. Messagew2 is similarly
divided intow′

2 andw′′

2 . Each of the four messagesw′

1, w′′

1 , w′

2

andw′′

2 is further divided intoB sub-blocks of equal lengths
for each message. They are denoted byw′

1,b, w′′

1,b, w′

2,b and
w′′

2,b, respectively, forb = 1, 2, . . . , B + 1. Let

w′

1,b = (w′

1,b, w̃
′

1,b), andw′′

1,b = (w′′

1,b, w̃
′′

1,b), (21)

wherew̃′

1,b andw̃′′

1,b are uniformly and independently chosen

at random from{1, 2, . . . , 2n1R̃12} and{1, 2, . . . , 2n1R̃10} re-
spectively. We also choosew′

1,0 = (1, 1) andw′

1,B+1 = (1, 1).
The w′

2,b and w′′

2,b for b = 1, . . . , B + 1 are formed in the
same way.

Suppose that encoder 1 has obtainedw′

2,b−1 and encoder
2 has obtainedw′

1,b−1 before blockb. By forming w0,b =
(w′

1,b−1,w
′

2,b−1), encoder 1 transmitsxn
1 (w0,b,w

′

1,b,w
′′

1,b);
encoder 2 transmitsxn

2 (w0,b,w
′

2,b,w
′′

2,b) in block b.
Decoding: All decodings are based on the typical set decod-
ing. After the transmission of blockb is completed, user 1 has
seenyn1

1,b. It tries to decodew′

2,b. User 2 operates in the same
way.

The intended receiver waits until allB + 1 blocks of
transmission are completed and performs backward decoding.
Given yn1

B+1, it tries to decode(wB+1,w
′′

1,B+1,w
′′

2,B+1).
Assuming that the decoding for blockB + 1 is correct, the
decoder next considersyn1

B to decode(wB,w′′

1,B,w′′

2,B). The
decoder continues until it decodes all blocks.
Error Analysis : Following similar steps to the error anal-
ysis for the MAC-GF in [14], we found that the intended
receiver can decode allw′

b,w
′′

b and thereforew1, w2 with error
probability less than anyǫ > 0 if

R21 + R̃21 = R′

2 ≤ I(V2; Y1|X1, U),

R12 + R̃12 = R′

1 ≤ I(V1; Y2|X2, U),

R10 + R̃10 = R′′

1 ≤ I(X1; Y |X2, V1, U),

R20 + R̃20 = R′′

2 ≤ I(X2; Y |X1, V2, U),

R10 + R20 + R̃10 + R̃20 ≤ I(X1, X2; Y |V1, V2, U),

and

R10 + R20 + R12 + R21 ≤ I(X1, X2; Y ) − I(X1, X2; Z),

for sufficiently largen1, where we also used (20).
Equivocation: Now we consider the equivocation,

H(W1, W2|Z)

= H(W1, W2,Z) − H(Z)

= H(W1, W2,Z,X1,X2) − H(X1,X2|W1, W2,Z) − H(Z)

= H(X1,X2) + H(W1, W2,Z|X1,X2) − H(Z)

− H(X1,X2|W1, W2,Z)

≥ H(X1,X2) + H(Z|X1,X2) − H(Z)

− H(X1,X2|W1, W2,Z)

= H(X1,X2) − I(X1,X2;Z) − H(X1,X2|W1, W2,Z),
(22)

and we can bound each term in the above.
The first term in (22) is given by

H(X1,X2)

= n1B(R10 + R20 + R12 + R21) + n1(R10 + R20)

+ n1B(R̃10 + R̃20 + R̃12 + R̃21) + n1(R̃10 + R̃20)

≥ n1B(R1 + R2) + n1B [I(X1, X2; Z) − ǫ1] . (23)



Since the channel is memoryless, the second term in (22)
can be bounded by

I(X1,X2;Z) ≤ n1(B + 1) [I(X1, X2; Z) − δ1] (24)

whereδ1 → 0 asn1 → ∞.
We next show that the third term can be bounded by

H(X1,X2|W1, W2,Z) ≤ n1(B + 1)δ2. (25)

In order to calculateH(X1,X2|W1, W2,Z), we consider the
following situation: the transmitters send fixed messagesW1 =
w1, W2 = w2. Now, the eavesdropper also performs backward
decoding to decode all(w0,b,w

′′

1,b and w′′

2,b). We can show
that the error probability is less than anyǫ > 0 if

R̃10 ≤ I(X1; Z|X2, V1, U), (26)

R̃20 ≤ I(X2; Z|X1, V2, U), (27)

and R̃10 + R̃20 ≤ I(X1, X2; Z|V1, V2, U), (28)

for sufficiently large n1. In other words, given message
(w1, w2), the eavesdropper can decode(X1,X2) under condi-
tions (26), (27) and (28). Therefore, Fano’s inequality implies
that

H(X1,X2|W1 = w1, W2 = w2,Z) ≤ n1(B + 1)δ2. (29)

Hence,

H(X1,X2|W1, W2,Z)

=
∑

w1

∑

w2

p(W1 = w1)p(W2 = w2)

H(X1,X2|W1 = w1, W2 = w2,Z)

≤ n1(B + 1)δ2.

By using (23), (24) and (25), we can rewrite (22) as

H(W1, W2|Z)

≥ n1B(R1 + R2) + n1B [I(X1, X2; Z) − ǫ1]

− n1(B + 1) [I(X1, X2; Z) − δ1] − n1(B + 1)δ2

≥ n1B(R1 + R2) − n1I(X1, X2; Z) − n(B + 1)ǫ.

The equivocation rate is therefore

1

n
H(W1, W2|Z) =

1

n1(B + 1)
H(W1, W2|Z)

≥ (1 − 1

B + 1
)(R1 + R2) −

1

B + 1
I(X1, X2; Z) − ǫ.

For sufficiently largeB, we have

1

n
H(W1, W2|Z) ≥ R1 + R2 − ǫ, (30)

which is the perfect secrecy requirement defined by (3).

Proof: (Theorem 5) The sum rates (18) and (19) can be
derived based on Theorems 3 and 4, respectively. Hence, we
need only to show thatP10 = P20 = 0 in (18) is optimal to
maximizeRI , whenh12 ≥ h1 andh21 ≥ h2.

It is easy to show thatRI can be written as

RI =
1

2
min{log(T1), log(T2) + log(T3)},

where

T1 =
1 + h1P1 + h2P2 + 2

√
h1h2PU1PU2

1 + g1P1 + g2P2 + 2
√

g1g2PU1PU2
,

T2 =
[1 + h12(P10 + P12)][1 + h21(P20 + P21)]

1 + g1P1 + g2P2 + 2
√

g1g2PU1PU2
,

and T3 =
1 + h1P10 + h2P20

(1 + P10h12)(1 + P20h21)
.

Note thatP10 + P12 = P1 −PU1 andP20 + P21 = P2 −PU2.
Hence, givenP1, P2, PU1 andPU2, T1 andT2 are not related
to P10 andP20.

When h12 ≥ h1 and h21 ≥ h2, T3 ≤ 1 for any power
allocation pair (P10, P20). Furthermore,T3 = 1 can be
achieved only whenP10 = P20 = 0. Therefore, we have the
desired result.
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