
Age-aware Scheduling for Asynchronous Arriving
Jobs in Edge Applications

Jing Zhong∗†, Wuyang Zhang∗†, Roy D. Yates†, Andrey Garnaev‡ and Yanyong Zhang†§
†‡WINLAB, Rutgers University, USA, §University of Science and Technology of China (USTC), China

†{jzhong, wuyang, ryates, yyzhang}@winlab.rutgers.edu, ‡garnaev@yahoo.com

Abstract—Age of information has been proposed recently
to measure information freshness, especially for a class of
real-time video applications. These applications often demand
timely updates with edge cloud computing to guarantee the
user experience. However, the edge cloud is usually equipped
with limited computation and network resources and therefore,
resource contention among different video streams can contribute
to making the updates stale. Aiming to minimize a penalty
function of the weighted sum of the average age over multiple
end users, this paper presents a greedy traffic scheduling policy
for the processor to choose the next processing request with
the maximum immediate penalty reduction. In this work, we
formulate the service process when requests from multiple users
arrive at edge cloud servers asynchronously and show that
the proposed greedy scheduling algorithm is the optimal work-
conserving policy for a class of age penalty functions.

I. INTRODUCTION

The freshness of information is critical in real-time applica-
tions and systems, such as autonomous driving vehicles, virtual
reality gaming, object tracking and facial recognition. These
real-time applications share a common requirement, which is
maintaining the freshness of data. Recently, an information
freshness metric named the age of information, or simply age,
has been proposed and applied to the evaluation of various
status updating systems [1]–[5]. In [1], the real-time status
updating system is modeled as a one-way communication
between a source and destination pair over a communication
channel. Such an “enqueue and forward” model assumes the
source node receives randomly arriving information packets and
selectively forwards them to the destination. Here, the channel
capacity, and the channel busy/idle state, if it’s available to the
source, present as the impacting factors that the source node
can refer to dynamically adjust the sending frequency.

Networking delay is only part of the story when the source
node needs to further process the incoming information packets,
especially when the computation overhead dominates the
network transmission latency. Many real-time edge applica-
tions indeed demand an alternative “enqueue, process and
forward” (EPF) model. For example, autonomous driving cars
periodically, say every 20 ms, capture the front scenes with
stereo cameras, and send them to a nearby edge cloud. The
edge cloud is then required to perform heavy computer vision
calculations [6]–[8] upon those received stereo images where
the output involves the estimated depth of the surrounding
objects appeared in the images or 3D point cloud. Those

∗ Co-primary authors.

outputs will be delivered back to the autonomous driving cars
(the destination nodes) for better understanding the traffic
environment.

Timely environment updates are critical to guarantee the
safety and efficiency of the driving experience. However, the
age of those updates can grow substantially as edge clouds
perform computer vision calculations. Importantly, unlike
central clouds with nearly unlimited computing resources,
edge clouds are typically constrained by their computing
capabilities and might be over-utilized when the incoming
traffic is heavy. Thus, resource contention among different
video streams and the randomness of the processing time may
significantly contribute to making information stale.

In this work, we examine the information freshness of
an edge cloud computing system which supports real-time
processing of multiple video streams. The edge cloud is
simplified to a single processing unit that sequentially processes
stereo video frames from multiple users. We each video frame
arriving at the edge cloud server as a job, and the monitor at
the user itself is receiving the processed results as information
updates. In this case, the source is self-updating itself through
the closed-loop video frame processing at the edge cloud, and
here we assume the processing times are i.i.d. across all jobs
and all users. The age of an update is then defined as the
difference between current time and the generation time of
that particular job at the source. The objective of this work is
to obtain the optimal scheduling policy for job processing so
that the information freshness at each user is maintained.

There have been many relevant works on the scheduling of
multiple users to minimize the age of information [9]–[13].
The scheduling of updates in an unreliable broadcast network
with a base station and multiple receivers is considered in
[9]. In this system, the base station accumulates updates from
different sources but can only update at most one receiver
at a time. A similar problem is considered in [11], in which
an information update is discarded if it is not selected by
the base station for transmission. Our work is motivated by
the queueing model in [10], in which the job arrival times
are synchronized among all sources. We note that the most
relevant work to ours is [12]. It was shown by experiments
that choosing the source with maximum age reduction leads
to lower average age than several other schemes. A similar
problem in cache updating in which the service facility can
divide its capacity according to the update rate at different
sources is examined in [13].

1

Fig. 1. Example of edge cloud traffic scheduling system.

In this work, we show that a greedy scheduling policy that
chooses the user with maximum immediate penalty reduction
is the optimal work-conserving policy for a class of penalty
functions for the sum of the users’ ages. If the penalty is simply
the weighted sum of ages over all the users, we also prove
that the optimal policy is to select the stream with maximum
weighted age reduction1. We also validate our policy and
demonstrate the fairness among different users by simulations.

II. SYSTEM OVERVIEW

A. Scheduling Model

Here we assume the edge cloud server is shared by n self-
driving vehicles, and we refer to each vehicle as a user. As
illustrated in Fig. 1, each user i sequentially submits jobs to
the edge cloud with rate λi, and each job is temporarily stored
at a pre-processing buffer Bi that can hold a single user i job.
In particular, an incoming job with newer generation time will
replace an old job already stored in the buffer since the newer
job always contains fresher information. Since each job is a
video frame captured by the stereo camera, the job upload time
from each user to the edge cloud is considered to be random.
We denote mij as the j-th job from user i, and Uij as the
corresponding job upload time to the edge cloud. We assume
the upload time Uij is i.i.d. for all the jobs j corresponding
to a user i. Once a job mij is generated at time A(i)

j , it will
be delivered to the buffer at time A(i)

j + Uij . At any time t,
user i has submitted Ni(t) jobs to the buffer, and the most
recent job is generated at time A(i)

Ni(t)
, then the job stored at

the buffer Bi has an instantaneous age

δi(t) = t−A(i)
Ni(t)

. (1)

We refer to δi(t) as the buffer age as it equals the age of
an observer who views jobs arriving at buffer Bi as updates.
Under this model, the age δi(t) is reset to the upload time Uij
of the most recent job when the buffered job is replaced by a
new job.

In this work, we assume the edge computing unit to be a
single processor that can only handle one job at a time with

1This policy is identical to MAD policy in [12] except that we consider
non-preemptive system.

processing rate µ identical across all users i and jobs j. We
consider only work-conserving policies: the server is kept busy
whenever the buffers B1, B2, . . . , Bn are non-empty; if the
buffers are all empty, then the server stays idle and waits for
the next arriving job. For a work-conserving policy, once the
server finishes processing the previous job but the buffers are
not empty, the scheduler selects the next job from the buffers
as shown in Fig. 1.

Denote sk as the processing time for job k and φk ∈
{1, 2, . . . , n} as the indicator for the user corresponding to
the k-th job processed by the server. We also assume that
the processing time sk is independent of the job arrival time.
The processor starts the k-th job at time tk and completes
at time tk + sk. The processing result of job k, which is
an information update, is then immediately sent back to the
monitor at the corresponding user φk = i. Since the processing
result is much smaller than the original job size, and the
downlink bandwidth is usually sufficiently large, we assume
the download time is negligible. Here we define the age at the
monitor of user i as the difference between the present time and
user’s knowledge about the environment. Since the received
update at the monitor i contains the information generated at
time A(i)

Ni(tk), the instantaneous age at the monitor i is reset to

∆i(t)|t=tk+sk = t−A(i)
Ni(tk). (2)

After that, the age at the monitor increases linearly in time
until the monitor receives another update.

We denote π as a scheduling policy that determines the job
φk to be processed. In this model, the processor records the
time stamp of each processed job, which is the generation
time of these jobs. Thus, the processor also knows the set of
instantaneous ages at each monitor ∆i(t) at any time t. We
let Π represent the set of causal work-conserving policies in
which the scheduling decisions are made based on the history
of the states of the system up to the present time. Here we
only consider non-preemptive policies in which the processor
must complete the processing of the current update before
starting to serve another.

Fig. 2 demonstrates sample paths of both age processes δi(t)
and ∆i(t) for a particular user i. The first job is generated by
user i at time A(i)

1 = 0, and arrives at the buffer Bi at time
A

(i)
1 + Ui1. Once its processing is completed, the age at the

monitor ∆i is reset to the age of the original job itself, which
is also the buffer age δi. Both the third and fourth jobs are
skipped by the scheduler since the processor is busy serving
other users.

B. Sum Age Penalty Function

In this work, we consider the scenario in which vehicles
are moving with different velocities, and thus have different
age requirements. Let αi to be the weighting factor associated
with the user i. Here we are interested in sum age penalty
functions [10], which is a class of penalty functions defined as

Psum(t) =

n∑
i=1

αif(∆i(t)), (3)

2

Δ"($)

$

&"($)

'"('") '"* '"+

,) ,* ,+

$
'"('") '"* '"+

Process'"(Process'")

Serving others Serving others

Pending jobs
in the buffer

Server

,(

Fig. 2. Sample path of age process at the buffer δi and age at the user monitor
∆i.

where f : [0,∞)→ R is any non-decreasing penalty function
for an individual user, which represents the dissatisfaction of
the information staleness. Since the penalty should be zero
if the information is timely, we usually impose the initial
condition f(0) = 0. Some examples of penalty functions are:

1) The penalty is simply the age itself f(∆) = ∆.
2) The exponential function of the age f(∆) = ea∆ − 1

where a ≥ 0. This suits applications in which the need
for information refresh is more desired as the information
gets stale.

3) The fraction function f(∆) = (a∆)/(a∆ + b) that maps
the age to the binary interval [0, 1]. This converts the age
to a mission failure probability for many attack-defense
problems and certain control applications [14].

The time-averaged penalty function is then defined as

E[Psum(t)] = lim
T →∞

1

T

∫ T

t=0

n∑
i=1

αif(∆i(t))dt. (4)

Our objective is to minimize time-averaged sum age penalty
function over all n users by choosing the casual traffic
scheduling policy π. We note that the scheduling policy π
at any time t depend on the history of all prior states of the
system, including:

1) the instant age at the monitors ∆1(t),∆2(t), . . . ,∆n(t),
2) the generation time of j-th job A(i)

j from user i for all
j ≤ Ni(t) up to the present time t.

III. SCHEDULING POLICY

In order to describe the optimal scheduling policy, we first
define the penalty reduction after the service by the processor.
Assume that the processor becomes idle and there are at least
one job waiting in the buffers B1, B2, . . . , Bn at time tk, and
it selects the job from user i for processing. Assuming this
job is the k-th job at the processor and the service time is sk

time units, we observe in Fig. 2 that the age reduction for user
i after the processing time sk is

Di(tk + sk) = ∆i(tk)− δi(tk). (5)

We remark that the processor obeys a non-preemptive schedul-
ing policy, in which the server doesn’t preempt any job being
serviced by new incoming jobs. Thus, the age reduction at
time tk + sk depends on the difference between the age at the
user monitor and buffer age, both at time tk. At time tk, the
most recent served and delivered update for user i is denoted
by Mi(tk), which is generated at time A(i)

Mi(tk). On the other
hand, the job in the buffer at time tk is generated at time
A

(i)
Ni(tk). From Fig. 2, we also observe that the age reduction

∆i(tk + sk) after service is

Di(tk + sk) = A
(i)
Ni(tk) −A

(i)
Mi(tk). (6)

That is, the reduction in age at user i after the service is exactly
the inter-arrival time between the two most recent served jobs.
In Fig. 2, the second job mi2 is selected for processing, and the
third job mi3 arrives at the buffer during the processing period.
After the service for mi2, the reduction in age is A2−A1 since
the job mi2 relects the real-time information at time A2. We
also note that the job in the buffer is not necessarily the most
recently generated one, since each job mij takes a random
upload time Uij to arrive at the buffer. Since the scheduler
has direct access to the timestamp of the job ANi(tk) at each
buffer i, the effect of the random upload time Uij on the age
reduction is not directly reflected in (6).

Since only one job can be processed at a time, only the age
of the served user ∆i(tk+sk) is reduced, and the age processes
of all other users remain unchanged. Thus, the reduction of
the sum age penalty function in (3) at time tk + sk is

Ri(tk + sk) = αi

(
f
(
∆i(tk + sk)

)
− f

(
∆i(tk + sk)−Di(tk + sk)

))
. (7)

Although the scheduling decision is made at time tk, the
reduction occurs at time tk + sk where the processor service
time sk is random and unknown to the scheduler. Thus, the
scheduler knows the age reduction Di(tk + sk) in (6), but not
the penalty reduction Ri(tk + sk) in (7). We now consider
the following greedy scheduling policy which is independent
of the processor service time by assuming the processing can
be completed instantaneously, i.e. sk = 0, and the reduction
occurs immediately.

Definition 1. Maximum Immediate Penalty Reduction
(MIPR) Policy. When the server becomes available and the
buffers are not empty, the job from the user i with the maximum
penalty reduction Ri(t) at the present time t is served, with
ties broken arbitrarily. That is, the scheduling indicator is

φk = arg max
i

αi(f(∆i(tk))− f(∆i(tk)−Di(tk))). (8)

Intuitively. the greedy MIPR policy is optimal if the best
decision made based on the current benefit still remains as

3

1 2 3 4 5 6
1/λ

4

5

6

7

8

Av
er
ag

e
Ag

e
FCFS
random
LCFS
MAF
MWAR

Fig. 3. Average age vs. average job arrival time with different scheduling
policies.

2 4 6 8 10 12 14 16
Total User Count

5

10

15

20

Av
er
ag

e
Ag

e

FCFS
random
LCFS
MAF
MWAR

Fig. 4. Average age vs. number of users with different policies.

the best decision in the future. This property brings some
restrictions on the growth of the penalty function since the
service time sk is random.

Definition 2. A penalty function f has Base-Independent
Growth (BIG) if for any x and non-negative constant s ≥ 0,
there exists two penalty functions g1 and g2 such that

f(x+ s) = f(x)g1(s) + g2(s).

The definition of BIG states that the evolution of function f
after sk time units can be described by a multiplicative term
g1(s) and a additive term g2(s), both depending on only s.
Note that when the shift is s = 0, f(x) = f(x)g1(0) + g2(0)
holds for all x, which requires g1(0) = 1 and g2(0) = 0.

We note that f(x) = eax is an example of the BIG penalty
function since f(x+ s) = f(x)f(s). In step (13), the initial
difference f(x1) − f(x1 − d1) is amplified by f(s) = eas

as the time s increases. On the other hand, a linear function
f(x) = ax+ b is another BIG penalty where g1(s) = 1 and
g2(s) = as. In this example, f(x1 + s) − f(x1 − d1 + s) =
f(x1) − f(x1 − d1) only depends on the initial difference
instead of the time difference s.

Theorem 1. If the service times are identically distributed
across all the jobs from all users, the MIPR policy is the optimal
(1) causal, (2) work-conserving and (3) non-preemptive policy
for BIG penalty function f , specifically

Psum,MIPR(t) ≤st Psum,π(t), (9)

for any t ≥ 0 and any π ∈ Π, where ≤st is the stochastic
ordering defined in [15].

It follows from Theorem 1 that

E[Psum,MIPR] ≤ E[Psum,π]. (10)

The proof of Theorem 1 in the appendix follows the similar
sample path technique used in [10]. One key idea used in
the proof is the inductive comparison between two policies.
By greedily choosing the user that gives the maximum
penalty reduction, the instantaneous penalty after the service
completion is always smaller than that in any other policy.

Definition 3. Maximum Weighted Age Reduction (MWAR)
Policy. When the server becomes available, the job from the
user i with the maximum weighted age reduction αiDi(tk)
is served among all packets in the buffer, with ties broken
arbitrarily.

Corollary 1. If the penalty function is f(∆) = ∆, then MWAR
is the age optimal MIPR policy.

Corollary 1 follows directly from Theorem 1. In this special
case, the scheduling policy is now independent of the current
age of an individual user ∆i(tk). MWAR policy is also the
maximum-age-first (MAF) policy in [10] if the job arrivals are
synchronized among users.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness and the
fairness of the proposed maximum weighted age reduction
(MWAR) policy by considering the average age over users
1/n

∑n
i=1 αi∆i as the penalty function. Here we let all the

users to be equally weighted, αi = 1 for all i. We compare the
MWAR policy with four other policies with dynamic system
setup. The four reference policies are: (1) first-come-first-
served (FCFS): the scheduler selects the job with earliest
arrival time in the buffer; (2) last-come-first-served (LCFS):
the scheduler selects the most recent arrived job in the buffer;
(3) max age first (MAF): the scheduler compares the age of
all users and selects the job corresponding to the user with
maximum age; (4) random: the scheduler select on of the jobs
in the buffer uniformly at random.

Fig. 3 compares the average age for each policy by fixing
the processing rate µ = 1 and varying the job arrival rate λi.
The number of users is set to n = 5 and each user submits jobs
according to Poisson process with average inter-update time
1/λ. The service time is exponentially distributed and thus
the average job processing time is 1/µ = 1. As the average
job submission time 1/λ increases, all the curves increase
and the gap between any two policies becomes smaller. This
is mainly because the age becomes dominated by the idle
time between updates instead of the processing delay, and the
scheduling doesn’t provide much performance gain. Among
all five policies, MWAR policy gives the lowest average age.
And the MAF policy, which is shown to be optimal when the
job arrival times are synchronized in [10], provides slightly
larger average age. On the other hand, the other three policies
(FCFS, LCFS and random) lead to almost the same much
larger average age regardless of the job arrival rate.

4

1 2 3 4 5
1/μ

5

10

15

20

In
di
vi
du

al
 A
ve

ra
ge

 A
ge User1

User2
User3
User4
User5

Fig. 5. Average age of each user in MWAR policy.

1 2 3 4 5
1/μ

10%

15%

20%

25%

30%

35%

Us
er
 S
er
vi
ce

 F
ra
ct
io
n User1

User2
User3
User4
User5

Fig. 6. The fraction of service corresponding to each user in MWAR policy.

Fig. 4 depicts the comparison with server processing rate
µ = 1 and user job submission rate λi = 1/2 by varying the
total number of users n. As n increases, the processor becomes
busier and thus MWAR provides larger performance gain. We
also notice the average age grows almost linear as n increases.

While all the experiments in Fig. 3 sets all the user update
rates λi identical for all i. In Fig. 5 and 6, we choose different
job submission rate λi for each user i and evaluate how the
scheduling policy treats users with different λi. Fig. 5 depicts
the average age of each user ∆i by varying the processing
rate µ. The job submission rates for the n = 5 users are
λ1 = 2, λ2 = 1, λ3 = 2/3, λ4 = 1/2, λ5 = 2/5. As the
average processing time 1/µ increases, the individual average
age increases almost linearly and the gap between any pair of
users stays almost the same, which implies the MWAR policy
keeps the difference between users regardless of the available
resource of the service facility. Fig. 6 demonstrates the fraction
of served job at the processor corresponding to each user. For
example, when the average service processing time is 1/µ = 1,
around 30% of jobs served by the processor are from user 1.
When the processor is operating very fast, it can handle most
of the jobs and thus the fraction of jobs is almost proportional
to the rate of each user λi. As the processing time gets larger,
we observe the scheduler starts to treat all users fairly and
service in an equal way. Since every user experience long
waiting time when the traffic load is high, the age for each
user is almost equally large. As a result, the scheduler is busy
serving every user one by one as soon as it finishes an old
job.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a greedy traffic scheduling
policy that chooses the next processing request with maximum
immediate penalty reduction, aiming to minimize the overall

age penalty of multiple end users. The main contribution of
our the proposed scheduling policy stems from its capability
to provide minimal average age among multiple end users in
multiple dynamic traffic environments, e.g., different server
processing rates and incoming request frequencies. Importantly,
this policy efficiently supports asynchronous job arrivals.
Moving forward, we will continue to investigate how to perform
traffic scheduling in a multi-server environment and with multi-
stage jobs. We are also aware of other application scenarios
where the transmission time of each job is not negligible
because of the limited radio resources at the edge cloud. It’s of
our interest to study how to integrate scheduling policy with
realistic distributed computing platforms, e.g., Apache Storm
or Apache Spark.

REFERENCES

[1] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in Proc. IEEE Int. Symp. Inform. Theory, Jul. 2012, pp. 2666–2670.

[2] C. Kam, S. Kompella, and A. Ephremides, “Age of information under
random updates,” in Proc. IEEE Int. Symp. Inform. Theory, Jul. 2013,
pp. 66–70.

[3] Y. Sun, E. Uysal-Biyikoglu, R. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” in Proc. INFOCOM,
2016.

[4] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in Proc. IEEE Int. Symp. Inform. Theory, 2016, pp. 2574–2578.

[5] J. Zhong, E. Soljanin, and R. D. Yates, “Status updates through multicast
networks,” in Proc. Allerton Conf. on Commun., Control and Computing,
2017, pp. 463–469.

[6] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, R. Yates, and D. Raychaud-
huri, “Hetero-edge: Orchestration of real-time visionapplications on
heterogeneous edge clouds,” in Proc. INFOCOM, 2019.

[7] W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, “Towards efficient
edge cloud augmentation for virtual reality mmogs,” in Proceedings of
ACM/IEEE Symp. on Edge Computing (SEC), 2017.

[8] R. D. Yates, M. Tavan, Y. Hu, and D. Raychaudhuri, “Timely cloud
gaming.” Proc. INFOCOM, pp. 1–9, 2017.

[9] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
the Age of Information in broadcast wireless networks.” Proc. Allerton
Conf. on Commun., Control and Computing, pp. 844–851, 2016.

[10] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of
multiple information flows,” arXiv preprint arXiv:1801.02394, 2018.

[11] Y.-P. Hsu, “Age of Information - Whittle Index for Scheduling Stochastic
Arrivals.” in Proc. IEEE Int. Symp. Inform. Theory, 2018.

[12] H. B. Beytur and E. Uysal-Biyikoglu, “Minimizing Age of Information
for Multiple Flows,” 2018 IEEE International Black Sea Conference on
Communications and Networking (BlackSeaCom), pp. 1–5, Jun. 2018.

[13] J. Zhong, R. D. Yates, and E. Soljanin, “Two Freshness Metrics for
Local Cache Refresh.” in Proc. IEEE Int. Symp. Inform. Theory, 2018,
pp. 1924–1928.

[14] A. Garnaev, M. Baykal-Gursoy, and H. V. Poor, “Security games with
unknown adversarial strategies,” IEEE Trans. on Cybernetics, vol. 46,
no. 10, pp. 2291–2299, 2016.

[15] M. Shaked and J. G. Shanthikumar, Stochastic orders. Springer Science
& Business Media, 2007.

APPENDIX A
PROOF OF THEOREM 1.

We denote P as the MIPR policy and Psum,π(t) as the
penalty function of policy π at time t. We will compare P and
any other work-conserving policy π ∈ Π on a sample path of
Psum(t).

For any sample path in policy P and π, we set the initial
ages ∆i,P (t = 0) = ∆i,π(t = 0) for users i = 1, 2, . . . , n.
The initial penalties are Psum,P (t = 0) = Psum,π(t = 0). The
system evolution is described by the following cases:

5

1) If no update completes in [t′, t′ + s] , the age process of
every user ∆i(t) = ∆i(t

′) + (t− t′) for t ∈ [t′, t′ + s] .
2) If there is an update completion at time t, the age of the

served user ∆i(t) is reduced.
Now we define the following class of penalty functions.

Definition 4. Function f is a Present-Determines-Future
(PDF) function if f satisfies the following conditions:

1) If a pair of n-tuple sequences {x1i}, {x2i} and non-
negative n-tuple constants {αi} satisfy

∑n
i=1 αif(x1i) ≤∑n

i=1 αif(x2i), then for any s ≥ 0,
n∑
i=1

αif(x1i + s) ≤
n∑
i=1

αif(x2i + s). (11)

2) If x1, x2 and non-negative constants β ≥ 0, d1 ≥ 0, d2 ≥
0 satisfy

f(x1)− f(x1 − d1) ≥ β
(
f(x2)− f(x2 − d2)

)
,

then for any s ≥ 0,

f(x1 + s)− f(x1 − d1 + s)

≥ β
(
f(x2 + s)− f(x2 − d2 + s)

)
.

Lemma 1. If a penalty function f is BIG, then f is PDF.

Proof. We need to show BIG f satisfies both conditions of
PDF. For condition 1),

n∑
i=1

αif(x1i + s) = g1(s)

n∑
i=1

αif(x1i) +

n∑
i=1

αig2(s)

≤ g1(s)

n∑
i=1

αif(x2i) +

n∑
i=1

αig2(s)

=

n∑
i=1

αif(x2i + s). (12)

Similarly, condition 2) is met as follows

f(x1 + s)− f(x1 − d1 + s)

=
(
f(x1)g1(s) + g2(s)

)
−
(
f(x1 − d1)g1(s) + g2(s)

)
=
(
f(x1)− f(x1 − d1)

)
g1(s)

≥β
(
f(x2)− f(x2 − d2)

)
g1(s) (13)

=β
(
f(x2 + s)− f(x2 − d2 + s)

)
. (14)

Now we can start the proof of Theorem 1 by the following
lemma about the first case with no update completion.

Lemma 2. For PDF f , if Psum,P (t) ≤ Psum,π(t) and there
is no update completion between t and t+ s, then

Psum,P (t+ s) ≤ Psum,π(t+ s). (15)

The proof follows directly from the condition 1) in the
definition of PDF by setting x1i = ∆iP (t) and x2i = ∆iπ(t)
for i = 1, 2, . . . , n. Note that Lemma 2 guarantees that given

the sum age penalty in policy P is smaller than that in policy
π at some time t, the same ordering holds for any time beyond
t if there is no update completion.

Now we move to the second case with an update completion
at time tk+sk. Whether under policy P or policy π, an update
is serviced from time tk to tk + sk. The penalty of policy P is
Psum,P before the completion and becomes P ′

sum,P after the
completion. Similarly, the penalty of policy π is Psum,π before
the completion and becomes P ′

sum,π after the completion. All
policies have the same update arrival process and service
process. We first prove the following lemma about inductive
comparison between two sample paths.

Lemma 3. For PDF function f , if Psum,P ≤ Psum,π, then
P ′

sum,P ≤ P ′
sum,π .

Proof. When job k is to go into service at time tk, the MIPR
policy P chooses the user φk = arg maxiRi(tk). At the
service completion time tk + sk,

P ′
sum,P (tk + sk) = Psum,P (tk + sk)−max

i
Ri(tk). (16)

By the MIPR policy, choosing user i yields larger immediate
penalty reduction than choosing user j, Ri(tk) ≥ Rj(tk) and

f(∆i(tk))− f(∆i(tk)−Di(tk))

≥αj
αi

[
f(∆j(tk))− f(∆j(tk)−Dj(tk))

]
(17)

Since the age reductions Di and Dj are independent of the
service time sk, by the definition of a PDF function we have

f(∆i(tk + sk))− f(∆i(tk + sk)−Di(tk + sk))

= f(∆i(tk + sk))− f(∆i(tk + sk)−Di(tk))

≥ αj
αi

[
f(∆j(tk+sk))−f(∆j(tk+sk)−Dj(tk))

]
=
αj
αi

[
f(∆j(tk+sk))−f(∆j(tk+sk)−Dj(tk+sk))

]
.

(18)

Hence, the penalty reduction at time tk + sk is Ri(tk + sk) ≥
Rj(tk + sk). Thus,

arg max
i
Ri(tk) = arg max

i
Ri(tk + sk). (19)

The penalty of any policy π after the service completion is

P ′
sum,π(tk + sk) = Psum,π(tk + sk)−Ri(tk + sk)

≥ Psum,π(tk + sk)−max
i
Ri(tk + sk)

≥ Psum,P (tk + sk)−max
i
Ri(tk + sk)

= P ′
sum,P (tk + sk). (20)

Now given that the penalty function evolves under the
condition of either Lemma 2 and 3, by induction over time,
we have Psum,P (t) ≤ Psum,π(t), for all t ≥ 0. And thus

E[Psum,P (t)] ≤ E[Psum,π(t)]. (21)

for any casual work-conserving policy π.

6

