
Hetero-Edge: Orchestration of Real-time Vision
Applications on Heterogeneous Edge Clouds

Abstract—Running computer vision algorithms on images or
videos collected by mobile devices represent a new class of
latency-sensitive applications that expect to benefit from edge
cloud computing. These applications often demand real-time
responses (e.g., <100ms), which can not be satisfied by traditional
cloud computing. However, the edge cloud architecture is inher-
ently distributed and heterogeneous, requiring new approaches
to resource allocation and orchestration. This paper presents
the design and evaluation of a latency-aware edge computing
platform, aiming to minimize the end-to-end latency for edge
applications.

The proposed platform is built on Apache Storm, and consists
of multiple edge servers with heterogeneous computation (includ-
ing both GPUs and CPUs) and networking resources. Central to
our platform is an orchestration framework that breaks down an
edge application into Storm tasks as defined by a directed acyclic
graph (DAG) and then maps these tasks onto heterogeneous edge
servers for efficient execution. An experimental proof-of-concept
testbed is used to demonstrate that the proposed platform can
indeed achieve low end-to-end latency: considering a real-time
3D scene reconstruction application, it is shown that the testbed
can support up to 30 concurrent streams with an average per-
frame latency of 32ms, and can achieve 40% latency reduction
relative to the baseline Storm scheduling approach.

I. INTRODUCTION

In the last decade, hosting major computing jobs on central
clouds has proven effective since central clouds generally have
abundant computing/storage resources [1]. Recently, as mobile
devices and Internet of Things (IoT) sensors keep increasing,
an unprecedented amount of data have been generated, and a
new class of applications is quickly looming on the surface.
These applications involve performing intensive computations
on sensor data (typically image/video) in real time, aiming to
realize much faster interactions with the surrounding physical
world and thus providing truly immersive user experiences.

With this trend, central clouds may no longer be the
appropriate platform for supporting these applications, in view
of performance limitations caused by network bandwidth
and latency constraints. For example, a mobile AI assistant
application needs responses within tens of milliseconds. An
autonomous driving system, as another example, may generate
gigabytes of data every second by its stereo camera or LIDAR,
and needs responses within a few milliseconds. Yet, for a
client instance in New Jersey which connects to Amazon EC2
cloud servers located in West Virginia, Oregon and California,
the round-trip latency alone is 17, 104 and 112ms, with
achievable bandwidths of 50, 18 and 16Mbps, respectively. In
order to support these emerging edge applications, edge cloud
computing has been proposed as a viable solution [2], [3],
[4], which moves the computing towards the network edge to

reduce the response latency while also avoiding edge-to-core
network bandwidth constraints.

Several aspects of edge computing have been studied in the
recent years. For example, the study in [5] proposes systems
that enable rapid virtual machine (VM) handoff or live mi-
gration across edge clouds. Edge computing also raises many
interests from the analytic perspective as it introduces a new
communication and computing paradigm [6]. In order to min-
imize service delay in edge computing, works in [7], [8], [9]
introduced optimization frameworks to minimize transmission
delay and/or processing delay for mobile users. Applications
proposed in [4], [10] offloaded intensive computing tasks to
edge clouds to achieve low latency image processing.

Despite the earlier and ongoing work on various aspects
of edge computing, the problem of how to efficiently deploy
these new edge applications within an edge cloud has not been
systematically studied. Simply duplicating the successful cloud
computing design will not work for the edge applications.
This is mainly due to the highly heterogeneous nature of
edge clouds. Unlike central clouds, edge clouds are often
comprised of heterogeneous computation nodes with widely
diverse network bandwidths. For example, the studies in [11],
[12], assume the computation nodes and their interconnects
are relatively homogeneous in central clouds, while the edge
servers considered in [5], [13] exhibit widely varying capabil-
ities. Thus, an important new challenge associated with edge
clouds is that of efficiently orchestrating these heterogeneous
resources in order to meet application latency constraints.

To address this problem, we set out to build and test such an
edge computing orchestration platform. Our design is driven
by the requirement of deploying and accelerating this new
class of edge applications – e.g., processing large volumes
of data such as video data generated by mobile/IoT sensors
(including 3D cameras) in real time. We first build an edge
cloud testbed that consists of four different CPU settings,
four different GPU settings and five different link bandwidth
settings. On these nodes, we run Apache Storm [14] as the
baseline distributed edge computing framework. Apache Storm
provides real-time support, but has an implicit assumption that
the underlying computing/networking resources are homoge-
neous. Also, it does not provide proactive support for GPUs.
In this work, we address these shortcomings. Note that our
platform design is not specific to Apache Storm. In fact, it can
easily interface with other distributed computing frameworks
such as Apache Flink.

The design of Hetero-Edge mainly focuses on distributed
resource orchestration for edge computing. Specifically, we



intend to answer the following important questions. Firstly,
if an edge cloud consists of both GPUs and CPUs, when
do we serve requests on GPUs and when do we use CPUs?
How do we partition our jobs so that we can most efficiently
utilize the available resources? Secondly, after partitioning the
job to several pipelined and parallel tasks, how can we map
them to appropriate computing nodes (including both GPUs
and CPUs) to minimize their overall latency? Thirdly, how
can we effectively prevent a parallel task from completing
significantly slower than its peers and becoming a strag-
gler [15]? Since edge clouds are highly diverse, the likelihood
of having stragglers is much higher than in a homogeneous
setting. By carefully studying these questions, we devise the
resource orchestration schemes in Hetero-Edge, featuring: (1)
matching a task’s resource demand with the underlying node’s
resource availability, (2) matching a task’s workload level with
the underlying node’s resource availability, and (3) suitably
splitting work on processors with vastly different processing
power (GPUs vs CPU).

We have implemented an example edge application on our
Hetero-Edge testbed, i.e., real-time 3D scene reconstruction
from two stereo video streams [16]. We use this example
application to drive our evaluation effort. We emulate a re-
alistic setting where user streams dynamically join and leave
the system and track the detailed system performance for two
hours. We show that with seven edge servers, we are able to
support all the streams that arrive within the two hours with an
average per-frame latency of 32 milliseconds. We also show
that our schemes can effectively prevent straggler tasks and can
shorten a frame’s latency by 40% compared to the state-of-the-
art Storm schedulers when we have heterogeneous resources.
We summarize our contributions as follows:

• We have designed and implemented a distributed edge com-
puting platform Hetero-Edge that extends the capabilities of
a stream processing framework, Apache Storm, for use in
heterogeneous distributed edge environments with a focus
on latency reduction. We will make our code open source
and share it through GitHub.
• We have devised a dynamic task topology generation

scheme, a latency-aware task scheduler and a proportional
workload partitioning scheme, which, when combined, can
proactively minimize the overall latency in heterogeneous
distributed edge environments.
• We have implemented 3D scene reconstruction as a driving

application example and have shown how to optimize this
category of applications on our edge platform to achieve
low latency. Note that we only use this application as an
example to drive the discussion and evaluation. Other real-
time edge vision applications will be readily supported in
the same way without changing our system in any way.
• We have learned valuable lessons in deploying real-time

edge applications on heterogeneous edge servers. Such
lessons will help us realize the wide adoption of edge
computing.

Fig. 1: An example 3D reconstruction application. (a) is the mini self-
driving cars with the stereo cameras, (b) is the raw input from the left
stereo camera, (c) is the resultant disparity map by which we can infer
the depth of each pixel, and (d) is the reprojection result which shows
the depth of objects in the real world.

II. SYSTEM MODEL

In this section, we discuss the emerging real-time edge
vision applications, summarize the system assumptions for
edge clouds, and present the architecture of Apache Storm.

A. Characteristics of Real-Time Edge Vision Applications

In this study, we focus on supporting a new class of applica-
tions, which we refer to as real-time edge vision applications.
These applications usually take image/video data that are
captured by mobile or IoT devices as input, perform complex
processing on each frame and have stringent latency require-
ments. For examples, consider real-time 3D scene reconstruc-
tion [16], virtual reality [9], augmented reality [17], vision-
based autonomous driving [18], etc. Though diverse, these
applications share quite a few common characteristics, such
as low latency requirement and high computation/networking
demand. Importantly, they are usually parallel and pipelined
by nature.

In the rest of this paper, we will use 3D scene reconstruc-
tion [16] as the example use case to drive the discussion
and evaluation. We believe that the ability to perform low
latency 3D scene reconstruction not only can help build mobile
augmented reality or virtual reality to enhance immersive user
experience, but also can enable an array of applications with
tight feedback loops. For instance, 3D scene reconstruction for
autonomous vehicles is used to detect the relative positions of
the obstacles and trigger collision-avoidance reactions [19]. It
typically consists of the following steps: (1) offline camera
calibration, (2) stereo image rectification, (3) disparity calcu-
lation, and (4) 3D re-projection. The essence is to infer the
disparity of each pixel from multiple 2D images and then
use this extra dimension data to reconstruct the object jointly.
Disparity measures the difference in retinal position between
two points that correspond to the same point on the real object.
By definition, a more remote point tends to have a smaller
disparity value than a nearer one. This step mainly decides



the quality of the reconstruction effect and usually involves
heavy computation overhead.

Figure 1 illustrates a 3D reconstruction example that we
have implemented in our laboratory.

B. System Assumptions for Edge Clouds

The definition of edge clouds varies from study to study,
ranging from a smart traffic light that has some computing
capability [2] to a small-scale data center [3]. In this study, we
assume an edge cloud consists of multiple edge servers within
radio access networks, e.g., eNodeBs, that are available for
hosting computing tasks [20]. Different from traditional central
clouds that are generally equipped with homogeneous and
well-provisioned resources, edge clouds are opportunistic and
heterogeneous by nature. An edge cloud is usually composed
of nodes with varying computing capabilities (CPUs with
different cores, GPUs, etc.), storage capacities (hard drives,
memories, etc.), and network capacities.

We further assume there is no resource contention among
different application processes on the same node. This assump-
tion can be achieved by deploying edge applications in light
containers such as Kubernetes [21] or NVIDIA docker [22]
that supports GPU-level isolation.

In this work, we have implemented a Hetero-Edge testbed
consisting of 7 edge servers. An edge server has one of the
following CPU configurations: (1)Xeon E5-2630, 2.40GHz, 32
cores, (2)Xeon E5-2698, 2.30GHz, 64 cores, (3)Xeon W5590,
3.33GHz, 16 cores and (4)i7-3770, 3.40GHz, 64 cores. Their
GPU configurations are the following: (1) no GPU, (2) Tesla
K40 GPU, (3)Tesla K80 GPU and (4)Tesla C2050 GPU.
Each computation node can have the following link bandwidth
configurations: .5Gbps, 1Gbps, 2Gbps, 5Gbps, and 10Gbps.

C. Background on Apache Storm

In Hetero-Edge, we choose to adopt Apache Storm [23],
a popular distributed real-time data stream processing frame-
work, to support the distributed processing. Apache Storm has
been deployed in various scenarios such as algorithmic trading,
real-time video processing, distributed remote procedure call,
etc. We choose Apache Storm because it offers the following
advantages: (1) designed for pursuing ultra-low latency, (2)
easily scale to dynamically available resources, (3) no need
to store any intermediate results (the main bottleneck of
those distributed computing frameworks with the MapReduce
design, e.g., Hadoop [24])

Here, we briefly overview its architecture and go over the
core components that are relevant to our study. Apache Storm
consists of a single master node and a pool of slave nodes.
The master node is in charge of distributing tasks to the
slave nodes while a slave node manages worker processes.
Each worker process further manages executor threads, each
of which executes a task in a given task graph.

In the logical layer, Apache Storm is composed of three core
components: Spout, Bolt and Topology. A spout is usually the
source of a data stream, a bolt is an intermediate processing
function, and the topology (represented by a Directed Acyclic

Fig. 2: Apache Storm Architecture and Example Topology. The rightmost
figure shows an example topology that consists of a user-specified DAG.
A user needs to submit this topology to the master node in a Storm
cluster. Then, the master node distributes the tasks of the topology to
the pool of its slave nodes who take the job of executing those tasks. The
detailed system design of a slave node is shown in the leftmost figure.

Graph (DAG)) steers the data flow according to the job logic.
We present the overview of Apache Storm in Figure 2.

When deploying an application on edge clouds with Apache
Storm, we need to consider the following main issues:

1) Task topology construction. In this step, we construct
one or more suitable task topologies for the application,
considering both data parallelism and task parallelism.
We take into consideration the resource diversity when
generating the task topology – we choose to have different
task topologies for the same application under different
resources. See Section III-B.

2) Task scheduling. When a topology is constructed, we
assign each task bolt in the topology to a computation
node based on certain scheduling principles. The default
Storm task scheduler does not consider resource diversity
and simply assigns nodes in a round-robin fashion. Such
a schedule leads to long latency in heterogeneous edge
cloud. In this study, we devise a latency-aware task
scheduler that can considerably outperform the Storm
default scheduler and the state of the art resource-aware
scheduler. See Section III-C.

3) Stream grouping. When a frame arrives at the system,
this step considers how the output stream of a bolt (e.g.,
bolt 1 in Figure 2) is partitioned among the next step data
parallel bolts (e.g., bolts 2, 3 and 4 in Figure 2). If the
resource variation of these bolts is not considered, one
of the data parallel bolts can become much slower than
others, thus slowing down the entire processing. In this
study, we devise a proportional partitioning scheme that
can alleviate this problem. See Section III-D.

III. DETAILED HETERO-EDGE DESIGN

In this section, we present the detailed design of Hetero-
Edge. Hetero-Edge has many design details, and we specifi-
cally focus on those that can shorten the end-to-end application
latency. Below, we use the 3D scene reconstruction application
to drive our discussion. However, our design is not limited to
this particular use case but is applicable to all the real-time
edge vision applications that we describe in Section II-A.
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Fig. 3: (a) Latency breakdown of the 3D reconstruction application
under different configurations; (b) Latency of different degree of data
parallelism in the para-DAG with the resolution of 640x480. The 16-way
para-DAG gives the lowest latency.

A. Preparation: Bottleneck Analysis

Before presenting our design, we first break down the
application into several functions – for the 3D reconstruction
application, we have rectification, disparity calculation, and re-
projection. We profile the processing latency of these functions
with different image resolutions on Xeon E5-2360, and present
the measured latency values in Figure 3(a). We find that the
disparity calculation function is the predominant bottleneck,
which becomes even more pronounced as the image resolution
goes up.

We next execute the disparity calculation function on Tesla
K40 GPU and find its latency drops significantly. For example,
94% latency with the resolution of 640x480 drops.

In our subsequent steps, we will use the above latency
information to make scheduling decisions. Usually, it is a good
practice to perform such a bottleneck analysis before trying
to deploy an application. Fortunately, there are various tools
we can use for this step. For example, we can use NVIDIA
OPENACC [25] to identify the execution bottleneck as well
as function dependency of an application.

B. Task Topology Construction

Given the above function breakdown and the identi-
fied system bottleneck, we consider the following two
practical topologies when with different available comput-
ing/networking resources and will evaluate these choices in
Section IV-B.
Serial Topology (serial-DAG): In a serial-DAG, we can either
implement all functions to a single bolt for the benefit of
introducing little inter-communication overheads or assign an
individual function to different bolts for the merit of generating
a pipelined flow to decrease task queuing time for an available
processor, as shown in Figure 4(a). Importantly, a serial-
DAG is often more practical when we execute the bottleneck
function on GPUs than on CPUs. In this case, the non-
bottleneck functions can be scheduled either on the hosting
CPU or even on a remote CPU.
Parallel Topology (para-DAG): Since the disparity step pre-
dominates the entire CPU processing latency, we next consider
a topology that enables data parallelism to accelerate the
computation, which we call a para-DAG (which is usually
demanded when GPU is unavailable). With an n-way para-
DAG, we partition the data set into n partitions and feed each

(a) (b)
Fig. 4: We consider two task topologies: (1) serial-DAG whose bottleneck
bolt (i.e., the disparity bolt) is usually scheduled on GPUs, and (2) para-
DAG whose bolts are scheduled on CPUs.

partition into a data-parallel bolt that runs the same disparity
calculation function. We illustrate this topology in Figure 4(b).

Different partitioning strategies, e.g., range partition, hash
partition or composite partition, can be adopted according
to different algorithm designs of bottleneck functions. In
this specific application, considering the disparity calculation
function processes each row of the image independently, we
partition the image in a row-major fashion. Say the original
image has M ×N pixels, and we partition the image into n
ways. Then each partition has M×N

n pixels. Also, in order
to guarantee each partition has enough pixels to generate
the disparity map, we need to include the boundary rows
in both partitions. As a result, additional pixels need to be
included in each partition. In this case, the total number of
pixels a partition thus becomes (M×N

n + M × d
2 ) where d

is the searching block size defined in the block matching
algorithm that calculates disparity. The resulting para-DAG
topology is shown in Figure 4(b). Due to data partitioning, we
need to introduce two more processing steps to the topology:
partitioning and merging.

Considering each partition will combine more boundary
rows that introduce additional computation/networking over-
heads (which is a usual case among any image partition
algorithms), we further examine the topology to decide the
suitable partitioning degree n. We choose the 640x480 image
resolution at 1fps, and measure the overall latency as well
as the latency for each component for different n values. The
measured results are shown in Figure 3(b). We find that the
16-way para-DAG gives the lowest latency, 83ms in our case.
Note we need to explore particular best value n for different
applications.

In reality, if we need to support many more applications
in the edge clouds, we can use tools such as those in [25]
for automatic DAG partition and parallelization. Finally, we
remark that data partitioning does not only apply to the para-
DAG, but it should also be considered in generating the GPU
code for the serial-DAG.

C. Task Scheduling

After generating the two topologies for the application, we
next enter the task scheduling phase and try to schedule both
topologies on the available edge server nodes. That is, we need
to assign each bolt in a topology onto a suitable edge server.
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Apache Storm provides two task schedulers: the round-robin
scheduler and the resource-aware scheduler. The round-robin
scheduler is the default Storm scheduler. It allocates bolts
to computing nodes in a round-robin fashion, oblivious of
the bolt resource demand and the available node resource.
It may allocate, for example, a computation intensive task
on a node that is short of CPU cycles, leading to long
execution latency. To address the problem with the round-
robin scheduler, the resource-aware scheduler [26] selects a
node with the most available CPU resource and fills it up
before assigning any task to any other node. Here, users
estimate the available CPU resource on each node as well as
the requested CPU resource for each bolt at the compile time.
Without a reliable estimation mechanism, it can either lead
to resource waste (by overestimating the requested CPU) or
result in resource contention (by overestimating the available
CPU). Furthermore, neither round-robin nor resource-aware
scheduler considers GPU scheduling.

Our proposed task scheduler has the following three main
components: (1) a mechanism to estimate the performance and
resource requirement of a task/bolt (we use these two terms
interchangeably), (2) a tool to track the available resources
within an edge cloud, and (3) a latency-aware task scheduling
algorithm. Below we describe these components one by one.

1) Estimating a Bolt’s Performance and Resource Demand:
Before devising our task scheduling scheme, we first need to
develop a mechanism to estimate a bolt’s performance (i.e.,
processing latency) and resource demand (i.e., memory usage,
network usage, GPU/CPU usage). Among these four items,
a bolt’s memory usage and network usage remain constant
no matter where the bolt is executed, which we can cap-
ture through ThreadMXBean.getThreadAllocatedBytes(), and
count the byte array length of output stream in Storm.

The other two items – a bolt’s processing latency and
processor usage (we consider both GPUs and CPUs here) – are
not only determined by which server the bolt is executed on but
also the load on the server. As such, in the profiling phase, we
run each bolt on every edge server (including both CPUs and
GPUs) at different processor utilization. We increase the pro-
cessor utilization level from 0% to 100% with an increased in-
terval of 10%. For each bolt-processor-utilization combination,
we measure the latency (by recording the elapsed time through
JAVA Timer API) and processor time (which is the amount

of GPU/CPU time dedicated to this bolt process and can be
captured through ThreadMXBean.getThreadCpuTime(), while
GPU utilization can be read from nvidia-smi).

We can then feed the measured values into n-order poly-
nomial curves (n=3 in this work because it provides the
lowest predictive mean squared error) to derive an estimation
model for each bolt. This model takes a particular processor’s
resource level and utilization as input, and gives an estimation
of the bolt’s processing latency and consumed processor
utilization. Figure 5 plots the latency estimation models for the
four bolts of the 3D reconstruction application on the Xeon
E5-2630 processor.

Finally, note that the estimation model in VideoStorm [11]
does not consider the processor load, but we believe processor
load is an important parameter to consider when estimating a
bolt’s latency and resource demand.

2) Real-time Edge Resource Monitoring: We periodically
collect the available resources for each edge server. For this
purpose, the following actions are performed: (1) collecting
the port bandwidth of a node using the iPerf/scp utility; (2)
collecting CPU frequency and utilization of a node using the
lscpu utility; and (3) collecting the current memory usage of
a JVM worker from the Storm’s daemon. (4) collecting GPU
utilization of a node using the nvidia-smi utility.

3) Proposed Heuristic: Latency-Aware Task Scheduling
(LaTS): As mentioned earlier, we construct two task topolo-
gies for each application: a serial-DAG and a para-DAG. In the
task scheduling phase, we need to consider both topologies.

A serial-DAG only makes sense if we schedule the bot-
tleneck bolt on a GPU; otherwise, the latency will be too
long. The other non-bottleneck bolts will be scheduled on
CPUs because the functions associated with these bolts usually
receive much lower speedup by switching to GPU.

Below, we first describe our CPU scheduling strategy – how
we schedule a list of bolts to CPUs – and we then briefly
describe our GPU scheduling strategy which essentially uses
the same technique as CPU scheduling. The CPU scheduling
part is needed when we schedule non-bottleneck bolts for a
serial-DAG as well as when we schedule all the bolts for a
para-DAG. Given a pool of bolts to be scheduled on the CPUs
(we refer to them as CPU bolts below), we rank them in the
descending order of the required CPU time – we estimate their
required CPU time on the same processor. Then we schedule
the bolt from the bolt list one by one.

For a given bolt and an edge node, we perform the following
two types of latency estimation. First, we measure the node’s
CPU utilization and use the latency estimation model as shown
in Figure 5 to estimate the processing latency. Next, we
measure the node’s available bandwidth and use the bolt’s
output streaming size to estimate the network transmission
latency. The total latency for this bolt-node combination is
then the sum of these two types of latency values. In this way,
we can estimate the total latency of this bolt on every edge
node in the system.

We assign the bolt to the node that gives the minimal
latency. After the assignment, we also need to decrease the



available resources on that node by removing the amount
of resources consumed by this bolt (processor utilization,
memory and bandwidth). We repeat the above process until
we finish scheduling all the CPU bolts.

We next describe how we schedule the bottleneck bolt in a
serial-DAG to the appropriate GPU. The idea is very similar to
the above CPU scheduling. We choose the GPU that gives the
shortest overall latency (we estimate both processing latency
and networking latency here) to host the bottleneck bolt.

We refer to the above task scheduling algorithm as LaTS.
Ideally, when a new user stream connects to the edge cloud,
we need to run the algorithm on both topologies and choose
the assignment that has the lowest latency. Note that when the
edge cloud becomes larger or when many uses are connected
to the edge cloud, it may be too costly to exactly follow this
procedure. In this case, we need to develop faster heuristics
to perform task scheduling. We describe and evaluate such
heuristics in Sections IV-B and IV-C (check Figure 11).

D. Stream Grouping

Apache storm provides the flexibility of specifying how to
steer a bolt’s output stream to the connecting bolt(s). This
decision becomes particularly important when the connecting
bolts run in the data parallel mode – they run the same task
function but on their own partition of the data set. For example,
in our para-DAG shown in Figure 4(b), we can specify which
disparity bolts we choose to use and how to partition the
stream among the chosen disparity bolts. This decision can
vary from frame to frame.

A good stream grouping algorithm can take into considera-
tion the resource variation among the bolts and then partition
the data according to ensure these data-parallel bolts finish
at about the same time. If one such bolt is scheduled on a
node with fewer resources and incurs a much longer latency
than its peers, then it becomes a straggler[15] and slows down
the entire processing. In general, their succeeding bolt has to
wait for all the data-parallel bolts to finish before it can start
processing. We note that our LaTS task scheduling algorithm
is already effective in avoiding stragglers because it tries to
place each bolt on the node that yields the shortest latency.
However, when the edge servers have vastly different resource
levels, stragglers cannot be avoided by the task scheduling
phase alone. Clever stream grouping techniques thus become
critically important in avoiding stragglers.

Proportional Partition Stream Grouping (Pro-Par): The de-
fault stream grouping algorithm in Apache Storm partitions the
data set equally among the bolts and cannot avoid stragglers if
the bolts have varying computing capabilities. In Hetero-Edge,
we propose to adopt a proportionally partitioning method,
Pro-Par in short. In Pro-Par, we periodically estimate the
computing capacity of those nodes that host the data parallel
bolts and then partition the stream in such a fashion that a
node’s partition is proportional to its computing capacity.

By default, we equally partition the stream among all
the data parallel bolts and measure their processing latency
periodically. When the gap between the fastest bolt and the
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slowest bolt exceeds a certain threshold, we trigger Pro-Par.
Specifically, let us suppose each disparity bolt’s latency is
{t1, ..., tm} where m is the degree of data parallelism.

We adopt the min-max normalization method to remap the
m different latency values to the range (0,1). We estimate the
computing capability of each node ci as 1

m×ti
, and the overall

computing capability C provided by m nodes is
∑m

i=1 ci.
Then we partition the stream proportionally to each node’s
computing capacity and transmit the resulting partition to each
bolt.

IV. MEASUREMENTS AND EXPERIMENTS
We have implemented the proposed techniques (described

in Section III) on the Hetero-Edge testbed. In this section,
we present our evaluation effort in detail. Our evaluation has
the following three components: (1) evaluating the proposed
schemes using an edge cloud that does not have GPUs, (2)
evaluating the proposed schemes using an edge cloud with
GPUs, (3) putting everything together and taking a close look
at the Hetero-Edge run-time dynamics.

A. Evaluation of Hetero-Edge with only CPU and Network
Heterogeneity

LaTS Better Handling Resource Heterogeneity: We com-
pare three task schedulers – i.e., round-robin, resource-aware,
and LaTS – in terms of the ability to handle CPU and network
diversity. The image resolution is 1440x1080. We consider
a very low frame rate, 1fps, so that we can focus on the
latency alone. Here, we consider seven edge servers (Xeon E5-
2630, 2.4GHz) with different CPU and network resources. Five
nodes have 10Gpbs network links and no other processes. Two
nodes have 1Gbps links and their CPUs are already partially
occupied (available CPU utilization 10%-40%). We find that
LaTS performs the best: 40.0% shorter than round-robin,
and 41% shorter than resource-aware as shown in Figure
6. In addition, we use the yellow bars to show the latency
distributions of the 16 disparity bolts that are in data parallel
mode. We find that LaTS leads to lower average latency for
the 16 disparity bolts and a much lower gap between the
fastest and slowest bolts, which is the key to minimizing the
overall latency. Note that we have also tried other edge cloud
configurations and have observed similar trends. As a result,
we believe that LaTS can better address CPU and network
diversity among edge servers and lead to a shorter end-to-end
latency. It also does a better job preventing stragglers.



Fig. 7: Comparing the latency of LaTS, round-robin and resource-aware
at high system load by increasing the single stream’s frame rate.

Fig. 8: Comparing the latency of LaTS, round-robin and resource-aware
at high system load by increasing the number of concurrent streams.

LaTS Better Handling High System Load: Next, we look
at how these three schemes handle a higher load.

In the first set of experiments, we have 4 Xeon E5-2630
(2.4GHz) edge nodes, two with 10Gbps links and 100% CPU
available, one with 1Gbps links and 100% CPU available, and
one with 10Gbps links and 20% CPU available. We have a
single stream and increase the stream’s frame rate, from 10
to 150fps, with an increase of 10fps. The image resolution
is 640x480. The results are shown in Figure 7. We find that
LaTS continuously outperforms the other two schedulers by
more than 25%.

In the second set of experiments, we fully load Hetero-
Edge with the setting as the resource heterogeneity experiment
in Figure 6. We fix each stream’s frame rate as 30fps and
increase the number of concurrent streams, from 1 to 10, with
an increase of 1 stream. The results are shown in Figure 8. We
find that LaTS can support up to 9 concurrent streams without
the latency significantly going up. On average, its latency is
66% lower compared to round-robin and 61% to resource-
aware.
Pro-Par Better Handling Stragglers: Next we evaluate the
effectiveness of Pro-Par in mitigating the stragglers. In this set
of experiments, we target a case wherein the straggler bolts
continue to slow down because their nodes have insufficient
resources (which is already the best effort by LaTS). The equal
partition stream grouping leads to two straggler bolts (5, 9 in
Figure 9) that require 41% more time compared to other bolts.
With our proportional partition stream grouping, it balances
the workload based on the computing capability of each bolt
and therefore effectively avoids stragglers. Its slowest bolt is
36% faster than the equal partition steam grouping scheme.

B. Evaluation of Hetero-Edge with GPU, CPU and Network
Heterogeneity

In this subsection, we consider edge clouds that have
heterogeneous CPUs, networks and GPUs. Since Storm does
not consider GPU by default, we only focus on our own

Fig. 9: Comparing the latency distribution of data parallel bolts with
Pro-Par and equal partition stream grouping.

Fig. 10: Comparing the latency of CPU Parallel, GPU Single and GPU
Hybrid when we have utilized both GPUs and CPUs.

schemes in this subsection. We compare the latency results of
the following three scheduling strategies: (1) CPU Parallel:
para-DAG bolts running on CPUs, (2) GPU Single: serial-
DAG bolts running on the same node (with the bottleneck bolt
running on the GPU while non-bottleneck bolts running on the
host CPU) and (3) GPU Hybrid: the bottleneck bolt of a serial-
DAG running on one node’s GPU while non-bottleneck bolts
run on other nodes’ CPUs. Please note that these three schemes
are special cases of our LaTS scheme. By understanding which
of these three strategies is faster and when to use which, we
can greatly speed up LaTS as we do not need to search every
possible combination.

We increase the number of streams from 1 to 10, with
the frame rate for each stream to be 30fps. Figure 10
shows the comparison results. As expected, CPU Parallel
gives much longer latency than the two GPU solutions. GPU
Hybrid performs better than GPU Single when the concurrent
stream number is more than 8 due to the over-utilization
of the host CPUs. When the stream number is less than 8,
two GPU schemes perform similarly as a result of the low
communication overhead.

C. Supporting real-time edge vision applications through
Hetero-Edge

After evaluating each technique in different settings, we fi-
nally put together everything and evaluate whether our Hetero-
Edge platform can effectively support the intended real-time
edge vision applications (3D construction in our example).
Suppose we provide 3D reconstruction services to nearby
mobile users with our edge cloud (that involves all the nodes in
our testbed, including both GPUs and CPUs). Each interested
user connects to our edge cloud and starts a stream; after a
certain number of frames, the user ends the stream. In our
experiments, we use the following synthetic workload: each
user stream has a frame rate of 30fps and a video resolution
of 640x480; each user initiates a session of 1 minutes and



Fig. 11: When a new stream arrives at the system, we follow this flow to
find out which scheme we are going to use to schedule this stream: GPU
Single, GPU Hybrid or CPU Parallel. This flow is faster than exactly
going through the LaTS scheduler.

leaves the system; the user session arrival process follows a
Poisson distribution with an average arrival rate of 20.

Suggested by the results reported in Figure 10, our edge
server adopts the policy described in Figure 11. Following this
policy, when the GPUs and their host CPUs are rather empty,
we choose GPU Single to schedule streams. Slowly, the CPUs
on those nodes that have GPUs will become busy, and we
can switch to GPU Hybrid to schedule the arriving streams.
Finally, when all the GPUs get busy, we resort to CPU Parallel
to serve the subsequent streams. We run our service for 2
hours, and report important run time parameters in Figure 12.
From top to bottom, we have (1) the number of connected
streams, (2) the number of GPU Single, GPU Hybrid, and
CPU Parallel streams, (3) GPU utilization, (4) CPU utilization
of those nodes that have GPUs, (5) CPU utilization of those
nodes that do not have GPUs, and (6) the histogram of the
end-to-end per frame latency.

We would like to highlight the following observations from
the results. Firstly, the average per-frame latency is 32ms,
which we believe is satisfying for many real-time edge vision
applications. Secondly, our platform can effectively schedule
streams across highly heterogeneous computation nodes – on
average, we have the most GPU Single streams and the least
CPU parallel streams. Thirdly, we find that the GPUs have
lower utilization than their host CPUs because these CPUs
spend more time processing the non-bottleneck bolts than GPU
processing the bottleneck bolts. As a result, when host GPUs
become fully utilized, GPU Hybrid becomes useful.

Lessons Learned: By offering the edge service for 2 hours, we
have learned a few lessons regarding application deployment
on edge servers. The most valuable lesson we have learned
is that it is important to include GPUs in an edge cloud. It
can help significantly reduce the per-frame latency. However,
we need to pay extra attention to GPU scheduling as well
as coordinating GPUs and CPUs to finish one job efficiently.
Finally, optimizing CPU scheduling is also very important,
such as carefully matching the task demand with resource
availability and matching the workload level with resource
availability.

Fig. 12: Important run time parameters for our 3D reconstruction edge
cloud in a 2-hour duration.

V. RELATED WORK
In this section, we briefly discuss related work in execution

acceleration by edge cloud computing, popular distributed
and parallel computing platforms, and relevant task allocation
algorithms.

A. Execution Acceleration via Edge Cloud Computing

Many works in the rising Edge Computing field have been
proposed to tackle challenges in systems, models, and appli-
cations as it introduces a new computing and communication
paradigm. Yang et al. [27] propose to dynamically partition
data stream between mobile and cloud server to minimize
processing latency by a centralized genetic algorithm. Chau-
fournier et al. [28] use multi-path TCP to accelerate edge
cloud service migration to reduce the network latency when
mobile users move away. Pang et al. [29] consider a latency-
motivated cooperative task computing framework for selection
of edge clouds to provision edge services. Bahreini et al.
[30] design an online heuristic algorithm that efficiently places
application tasks in edge clouds to minimize execution time.
Zhang et al. [9] propose an edge-based VR gaming architec-
ture where edge clouds perform heavy frame rendering tasks
to reduce end-to-end latency significantly . FemtoCloud [31],
P 3-Mobile [32] explore idle mobile devices to configure a
compute cluster and provisions cloud services at the edge.
Users can leverage this mobile cluster to perform parallel
programming to accelerate computation speed. These works
focus on optimizing the communication pattern in the systems
to achieve lower latency, but they fail to provide a practical
execution platform and a resource orchestration mechanism
which are aware of resource heterogeneity at the edge.

B. Task Allocation Algorithms

Efficiently assigning tasks of an application to proper pro-
cessors is critical to achieve high performance in a hetero-
geneous computing environment [33]. Task allocation, as an
NP-complete problem, has been extensively studied and many



heuristics solutions have been proposed according to diverse
optimization goals [34]. In terms of Storm platform specific
task allocation schemes, several major schedulers have been
proposed. T-storm [35] and the work in [36] proposed a
traffic-aware task allocation that tries to minimize inter-node
and inter-process traffic. R-storm [26] introduced a resource-
aware task allocation that intends to increase overall through-
put by maximizing resource utilization. Although the above
schedulers showed performance improvement over the default
Round-Robin mechanism, they failed short in achieving lower
latency in the context of edge computing which required
proactive available resource estimation and task profiling. The
state of art of stragglers mitigation is to introduce speculative
execution that waits to observe the progress of the tasks of a
job and launches duplicates of those tasks that are slower [15].
This approach, however, is usually applied in cloud computing
where computing resource is much more abundant to utilize.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we develop a latency-aware edge resource
orchestration platform based on Apache Storm. The platform
aims to support real-time responses to edge applications
that are computation intensive. The main contribution of our
platform stems from a set of latency-aware task scheduling
schemes. By deploying the proposed platform on a group of
edge servers with heterogeneous CPU, GPU and networking
resources, we show that we are able to support real-time
edge vision applications, rending the per frame latency around
32ms. Our study shows that edge cloud computing is indeed
a promising platform to support emerging edge applications.
Moving forward, we will continue to investigate how to
further drive down the latency, e.g., distributing the bottleneck
bolt across multiple GPUs. We will also investigate how to
efficiently integrate our edge cloud computing platform with
traditional central clouds to support applications that need
to utilize both modes. Another future work topic is that of
understanding the impact of access network bandwidth on
edge resource assignment and scheduling.
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