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Abstract— Network operators require a high level of per-
formance and reliability for the cellular radio access network
(RAN) to deliver high quality of service for mobile users.
However, these network do experience some rare and hard-
to-predict anomaly events, for example, hardware failures
and high radio interference, which can significantly degrade
performance and end-user experience. In this work, we propose
SORA, a self-organizing cellular radio access network system
enhanced with deep learning. SORA involves four core com-
ponents: self-KPIs monitoring, self-anomaly prediction, self-
root cause analysis, and self-healing. In particular, we design
and implement the anomaly prediction and root cause analysis
components with deep learning methods and evaluate the
system performance with 6 months of real-world data from
a top-tier US cellular network operator. We demonstrate that
the proposed methods can achieve 86.9% accuracy in predicting
anomalies and 99.5% accuracy for root cause analysis of
network faults.

I. INTRODUCTION
The performance and reliability of the cellular radio access

network (RAN) heavily impacts the quality of service of
mobile users. However, the RAN can occasionally suffer
from anomaly events or faults, e.g., excessive antenna up-
tilt/downtilt, too late handover, and inter-cell interference,
in addition to random hardware and software failures, that
may significantly degrade performance and user experience.
These degradation events can be hard to identify and predict
through manual analysis by field engineers.

To maintain the performance of RAN, hundreds of key
performance indicators (KPIs) from thousands of cellular
base stations must be continuously monitored. Once any
anomaly KPIs appear, network engineers may spend signifi-
cant time and effort to manually perform root cause analysis
(RCA), i.e., inferring the possible causes for the degraded
performance, after which the problem can be remedied. This
effort requires expert domain knowledge and can take hours
or even days to diagnose the problem.

By the estimates in [1], network management costs ac-
count for 10-30% of operator revenue, which can total in the
tens of billions for major telcos. Motivated by minimizing
these high OpEx costs, in this paper we consider how
network operators can reduce or eliminate manual network
configuration and maintenance through automated monitor-
ing, diagnosis and even self-healing of the LTE RAN. The
benefits of automation are clear from the perspectives of bet-
ter end-user experience (fewer dropped calls, improved call

Fig. 1. Example real-world KPIs and error codes. The first sub-figure shows
LTE x2 handover failure rate and the last three sub-figures presents three
error codes that specify particular error cases. Importantly, we highlight the
rare anomaly points.

setup success rates, higher end-user throughput, alleviated
congestion, higher subscriber satisfaction and loyalty) and
operational efficiencies (accelerated rollout times, automated
network upgrades, energy and cost savings, and reduced
labor fees for network maintenance and diagnosis) [2], [3].

In order to reach this goal, several aspects of self-
organizing networks have been studied in recent years.
For example, The work in [4] employs decision trees for
analyzing call drops and achieves an accuracy of 92.1% in
diagnosing the root causes of drops. AT&T [5] proposed
G-RCA, a root cause analysis system that ensures service
quality management in IP networks. The work in [6] dis-
cussed a self-organizing map (SOM) approach to perform
unsupervised training to automatically identify LTE faults.
Network anomaly detection proposed in [7] proactively pro-
files IP traffic patterns to automate network management.

Despite the earlier and ongoing work on various aspects
of network anomaly detection and root cause analysis, the
problem of how to efficiently construct a closed-loop self-
organizing system, especially exploiting deep learning, has
not been systematically studied. Moreover, little previous
work studies how to perform network anomaly prediction
before any anomaly events actually occur, which results in
revenue loss for network operators.

In this work, we propose an automated system "SORA"
that intends to fully enable a self-organizing cellular radio ac-
cess network. SORA, as a self closed-loop system, includes



Fig. 2. The network structure of convLSTM

four core components: (1) the real-time KPIs monitoring
function that reports thousands of cell KPIs to a local
database or aggregated values to a data center in a timely
fashion; (2) the self anomaly KPIs/event prediction function
that forecasts anomalies in advance; (3) self root cause
analysis that diagnose the root reason of a particular anomaly
case; and (4) the self-healing function that automatically
recovers from any specific fault.

In this paper, the design and implementation of SORA
mainly focuses on: (1) How can we accurately predict
anomaly KPIs that may further lead to faulty operation before
they appear? (2) How to automatically identify the root
causes of faults from thousands cell KPIs and error codes?
We leave the implementation of the self-healing function in
our near future work but discuss the design plan in Section
II. Also, we collaborate with a major vendor of LTE base
station equipment and make use of field data from a top-tier
US cellular operator to perform the system design and the
performance evaluation. Due to the challenges of obtaining
the labeled real-world data needed for supervised learning,
we use NS3 simulation to drive the evaluation for our RCA
investigation.

We summarize our contributions in this work as follows.

• We have proposed a self-organizing cellular radio access
network system with deep learning and have imple-
mented two core components: prediction for anomaly
cell KPIs/events and root cause analysis.

• We performed anomaly cell KPIs/events prediction with
CNN+convLSTM and achieved an 86.9% precision
trained and tested against 6 months of aggregated, real-
world operator data.

• We performed root cause analysis with both supervised
classification (auto-encoder+decision tree) and unsuper-
vised clustering (auto-encoder+agglomerative cluster-
ing), achieving 99.5% accuracy.

II. SYSTEM DESIGN

In this section, we first propose a self-organizing cellular
RAN system SORA with deep learning and then discuss the
design of two core components: anomaly prediction and root
cause analysis.

Here, we introduce the four-step closed-loop of SORA:
(1) Real-time KPIs monitoring. Each individual cell re-
ports thousand KPIs, for example, ’Average UE Throughput
in DL/UL’, ’Packet Drop Rate’, ’Total UL Interference
Power’, ’Average DL/UL CQI’, etc, in addition to error
codes indicating reasons for call drops or other control-plane
faults. In particular, we divide all those KPIs into 7 groups
that exhibit the system status from the distinct aspects:
Accessibility, Retainability, Integrity, Availablity, Mobility,
Connection Drop Rate, and Cell Throughput. Those KPIs can
be either streamed over the network to a remote data center
or stored in local edge clouds and monitored by the network
in real-time. Example real-world KPIs and error codes are
presented in Figure 1. (2) Anomaly KPIs/events prediction.
Any anomaly KPIs indicate that a cell is somehow operating
outside of ideal limits. Some important KPI anomalies may
indicate some critical fault has occurred, causing significant
performance degradation. In order to prevent the system from
falling into those states, SORA needs to predict, based on the
current status of the collected KPIs, the variation tendency
of the critical KPIs. SORA acquires a few numbers of the
critical KPIs from the input of a network expert. When
the prediction model, presented in Section II-A, detects any
value of those critical KPIs exceeding a predefined threshold
(we consider the case that the value goes beyond 3 times
standard deviation from the historical values in this work),
SORA will mark the anomaly point and then pass this input
to the next step, automated root cause analysis. Otherwise,
SORA returns to the first step and keeps the loop running.
(3) Root cause analysis. In this step, SORA attempts to
diagnose the root causes that result in the anomaly KPIs
detected in the previous step. Example root causes are
excessive antenna uptilt/downtilt, excessive power reduction,
coverage hole, too late handover, etc. Accurately identifying
the root cause is the key to the self-organizing system. See
II-B. (4) System self-healing. Finally, SORA can self cover
from the fault detected from the last step by changing the
associated parameters. As shown in [8], deep reinforcement
learning can be a candidate tool that greatly helps for this
step. It enforces the model to learn optimal actions based on
the observed environment. We leave the implementation of
this step to our future work.

Moreover, the system will need to cover the service
of many LTE eNodeB base station site, which for some
operators can number in the tens of thousands. Therefore, a
big data platform is required for the storage and computation
to handle the real-time, closed-loop system. In this work,
we base our big data platform on scalable software such
as Apache HDFS, HBase and Spark [9]. However, the full
details of our implementation are outside the scope of this
paper.



A. Anomaly KPIs/Events Prediction

Objective and System Challenges. Our objective is to
predict, based on the currently-reported cell KPIs, the poten-
tial anomaly KPIs/events in the future. This is a challenging
problem because of the following reasons.

1) It may be difficult to know in advance which of the
thousands of KPIs (from the same or nearby cells) are
relevant and correlated with the anomaly KPIs.

2) Some KPIs from neighboring cells may be related, like
in the case of high inter-cell interference, but may
not trigger an anomaly event at these neighbor cells.
Therefore, the analysis needs to extract both temporal
and spatial characteristics from the data collected in a
multi-cell environment.

3) The anomaly event labels rarely account for less than
0.1 percent over all the reported KPIs. Thus, a predictive
model may learn to ignore anomaly points and to
classify any point as a normal case because it will
still achieve a high predictive result without needing
to capture the anomaly pattern. Therefore, we have to
take care that the model gives greater emphasis to these
rare but critical anomaly points.

To address the first two challenges, we need to exploit a
neural network model that is able to simultaneously extract
temporal and spatial features for anomaly prediction. Con-
volution neural network (CNN) [10] is good at extracting
spatial features and accordingly selecting those significant
ones from a large volume of features. Therefore, CNN will
be useful for extracting the features (KPIs and error codes)
that highly associate with a predictive target, while it is not
well-suited to explore the time dependency within time-series
data. Meanwhile, recurrent neural networks (RNNs) [11]
have been proposed to extract temporal relations between
time-series input and to search periodic patterns by selec-
tively remembering the "important" time slots. In particular,
a Long Short-Term Memory (LSTM) [12] network is popular
RNN variant, which resolves the exploding/vanishing gradi-
ent problem of standard RNNs. Still, while CNN and LSTM
individually have many merits, they do not completely cover
our requirements.

ConvLSTM to for spatiotemporal feature extraction.
Our anomaly prediction work is makes use of the convLSTM
model, proposed in [13], which combines the benefits of
both CNN and LSTM to handle the spatiotemporal pre-
diction problems. It retains the fundamental structure with
LSTM, while converts all vector products to convolutional
operations. This variation efficiently enables the model to
extract spatial features from multiple LTE KPIs at every
time slot. Here, we summarize how convLSTM works. It
first takes X(t), which is a vector containing all the KPIs
in the last k time slots concatenated together. In the dataset
used in our evaluation in Section III-A, data is aggregated
into 1 hour time slots. A smaller granularity of time slot
would likely provide better predictions but also introduce
higher load to store and compute data. The value of k is a
tuning parameter in the network and we set it to 5 in our
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Fig. 3. (a) NS3 eNB topology configuration; (b) power radiation of
normal/anomaly eNBs.

case as it provides the highest prediction accuracy. Next,
multiple convLSTM layers, as shown in Figure 2, will learn
the important features that contribute most to the predictive
target at each time slot from all input features as well as
remember the long-term temporal features. We present the
detail of a single convLSTM layer in Figure 2 and summarize
how to calculate the input at each layer in Equation 1. The
network is trained to perform regression: the output layer is
a single neuron with a linear activation function and outputs
the predicted real value of the anomaly KPI of interest. Note
the operator "∗" is the convolution operation that is the key
in this model and "◦" denotes the Hadamard production.
We further evaluate the performance of convLSTM and also
compare it with CNN and LSTM in Section III-A.

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf

C∗
t = tanh(Whc∗ ∗Ht−1 +Wxc∗ ∗Xt + bf )

Ct = ft ◦ Ct−1 + C∗
t

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

Yt =Why ∗Ht + bhy

(1)

To address the third challenge of extremely unbalanced
label classes, where the anomaly labels in the historical data
rarely make up 0.1 percent, we consider two strategies to
achieve a higher prediction accuracy. (1) Dataset under-
sampling. Under-sampling is an efficient data preprocessing
method when the dataset is extremely unbalanced. Since the
desired objective is to accurately predict those anomaly KPIs,
we can easily discard the redundant dataset that is far from
the time when the anomaly points appear. After removing
those inconsequential points, the model can concentrate on
the points surrounding the anomaly points and explore the
pattern of how KPIs will distribute before an anomaly appear.
(2) Penalized classification. Penalizing fault classification
will introduce an extra cost to the model when it falsely
classifies an anomaly point as a normal one. These penalties
force the model to give greater emphasis to the minority
class. Here, we adjust the weights for the anomaly class
and the normal class as shown in Equation 2. The overall
loss value during the training, therefore, will significantly
decrease when the model correctly predicts an anomaly point



but less so when it successfully identifies a normal point.
We will evaluate the predictive performance by changing the
weight ratio in Section III-A.

training_loss = α ∗ normal_class+ β ∗ anomaly_class
(2)

B. Root Cause Analysis

System Challenges. After detecting anomaly points, we
need to determine the root cause. Here, the system challenge
for machine learning is that those root cause labels are not
always available because detailed logs of historical network
faults are often unavailable to label the corresponding KPI
data (the ground truth). This challenge mainly stems from
the fact that network engineers did not deliberately attach
the resulting fault to the associated logs and also it is too
expensive to collect the logs by purposely introducing the
cell faults. Thus we cannot easily train a supervised learning
model with the real-world data of cell faults. To address this
problem, we first generate a synthetic dataset of cell faults
with NS-3 [14], a popular discrete-event network simulator
for Internet systems, and apply supervised classification
over the dataset. Next, we employ unsupervised clustering
afterward on the generated dataset by removing the fault
labels with which we are able to quantify how the model
performs. With a reasonably accurate simulation model, we
can finally apply it to a real-world dataset.

Generating cell faults with NS3. To get the label data
for supervised learning, we use NS-3 simulation to generate
the cell KPIs along with fault labels. We first configure the
normal LTE environment by taking the associated parameters
from the work [6] (see Table II-B). Then we randomly
select 20% out of total N cells and randomly assign one
of the following faults to each cell: excessive uptilt/downtilt
(EU/DU), coverage hole (CH), too late handover (TLHO),
inter-cell interference (II), excessive cell power reduction
(ERP) and cell overload (CO). To introduce a particular cell
fault, we modify the parameters as shown in Table II, also
following [6]. An example LTE network topology and cell
radiation are shown in Figure 3. Finally, we run 64 groups
20-minute simulation to collect 40 KPIs and fault labels from
all N cells.

Feature selection with auto-encoder. Feature selection
is a critical preprocessing step that selects a subset from the
high-dimension input to decrease the overfitting probability
and to reduce the training/inference time. Auto-encoder [15]
is an unsupervised data coding approach that can extract both
linear and nonlinear relations from high-dimensional input. It
shares the similar feed-forward network structure with CNN
and consists of two symmetrical components: encoder and
decoder. The encoder takes the high-dimensional data and
outputs the low-dimensional one, while the decoder will learn
to fully recover the initial input from the compressed output
with little loss. After training the auto-encoder with the NS-3
dataset generated in the previous step, we take the encoder as
a feature selection tool to efficiently yield a low-dimensional
input.

Fig. 4. Unsupervised learning with agglomerative clustering.

Supervised classification with decision tree. With the
compressed output from the last step, we use a decision tree
to perform supervised cell fault classification. A decision
tree consists of a binary tree structure of decision nodes that
compare the input value with its threshold and accordingly
steer it to the right/left child node. To construct the tree and
decide each threshold, the decision tree takes a recursively
top-down approach to minimize the entropy of all the nodes.
In our system, a decision tree takes the selected features from
the auto-encoder and classifies them as one of the possible
cell faults or a normal case.

Unsupervised learning with agglomerative clustering.
We employ an unsupervised learning approach that takes
the compressed data from the auto-encoder but runs the
training process without any cell fault labels. Agglomerative
clustering [16] is a bottom-up algorithm as shown in Figure
4. It starts by regarding each feature input as an independent
cluster and repeats to merge two nearest clusters (measured
by Euclidean distance or Pearson correlation distance) iter-
atively until the total remaining cluster number equals to a
predefined number. The limitation of this algorithm is that we
cannot naturally map each cluster to a particular fault class
and thus a network expert may further need to empirically
infer the physical representation of each cluster, e.g., inter-
cell interference, based on the distributions of significant
KPIs, as discussed in [6]. More details are given in III-
A. Nevertheless, this cluster-to-fault class mapping is not
always necessary since the last step, "self-healing", in SORA
is to take a particular cluster even without a specific class
mapping and to make, with deep reinforcement learning, a
proper operation to get the LTE system back to a normal
status.

III. PERFORMANCE EVALUATION
In this section, we first compare the accuracy of anomaly

KPIs/events prediction with 4 different deep learning models
and conclude that CNN + convLSTM delivers the best
performance with 86.9% accuracy. Then we show that our
supervised and unsupervised learning approaches can per-
form root cause analysis in the radio access network with an
accuracy of 99.87% and 99.5%, respectively.

A. Anomaly Prediction

We use the last 5 1-hour slots of aggregated KPIs to predict
the value in the next hour and take "X2 handover failure rate"
as an example predictive target to drive our evaluation. We



implemented 4 deep learning models with Keras/Tensorflow:
LSTM, CNN, convLSTM and CNN + convLSTM.

Performance metrics. To evaluate the prediction accu-
racy, we consider a confusion matrix including 4 metrics:
true positive (TP), false negative (FN), false positive (FP) and
true negative (TN). In particular, TP counts the number that
we predict anomaly values correctly, while FN is the number
that we fail to predict anomaly values. FP means that we give
a false alarm over a normal case. Finally, TN says that we
predict a normal case correctly. The objective is to maximize
TP and to minimize FP. Moreover, we consider the mean
squared error (MSE) between the predictive values and the
ground truth upon both the anomaly points (ANOM_MSE)
and the overall dataset (OVERALL_MSE).

Table III summarizes the evaluation results of 4 dif-
ferent deep learning models. We find CNN + convLSTM
presents the best performance by successfully detecting the
maximal number of anomaly points and also giving the
lowest ANOM_MSE and OVERALL_MSE. Importantly, we
find the last two methods involving convLSTM significantly
outperform than LSTM and CNN. This fact indicates that
considering either spatial features with CNN or temporal
features with LSTM alone will worsen the performance,
comparing to the case of involving both of them. We con-
clude that this method efficiently extracts key features from
high-dimensional KPIs with CNN at the beginning and then
forwards the intermediate results to convLSTM that analyzes
spatiotemporal features.

Moreover, as we discussed in Section II-A, deliberately
adding a higher weight to the anomaly class during the
training can enforce the model to explore which KPIs varia-
tion pattern will lead to anomaly points. We test 3 different
class weights between non-anomaly class and anomaly class:
0.01/1, 0.001/1, 0.0001/1 and present the evaluation result
in Table IV. We notice that assigning an insufficiently high
weight, e.g., 0.01/1 to the anomaly class only has a 69.5%
recall. However, if we excessively increase the weight to
a large value, say 0.0001/1, the model will blindly classify
any input as an anomaly which meanwhile introduces a large
volume of false alarms. Finally, we adjust the weight to an
intermediate value, e.g., 0.001/1. In this case, the model
outputs an 86.9% and cuts down the false alarms number

TABLE I
CELL CONFIGURATIONS.

Parameters Values
Topology Setting 3-sector hexagonal grid, 3 sites
Carrier Frequency 2.12 GHz

Bandwidth 10 MHz
Channel Model UMI, shadow fading, no fast fading

Tx Power 46 dBm

Antenna 3D parabolic, 70◦ azim,
10◦ vertical beamwidth, 9◦ downtilt

Handover Algorithm A3 RSRP (default Hyst = 3dB, TTT=256ms)
Scheduler proportional fair

Mobility Model steady state random waypoint,
UE speed: (1,20)m/s

Traffic Model constant bit rate 800 kbps DL + UL flows

TABLE II
CELL FAULT CONFIGURATIONS

Fault Cases Descriptions Configurations
EU Excessive Antenna Uptilt Downtilt=[0,1]◦

ED Excessive Antenna Downtilt Downtilt=[16,15,14]◦

ERP Excessive Power Reduction ∆PTX=[7,8,9,10] dB
CH Coverage Hole ∆hole=[49,50,52,53] dB

TLHO Too Late Handover HOM=[6,7,8] dBm

II Inter-cell Interference
PTXmax=33dBm
downtilt=15◦
EB=10◦

No Fault eNB in Normal State No Change

(a) (b)

Fig. 5. (a) the root cause classification accuracy by changing the decision
tree depth; (b) the classification results distribution for each fault case.

(FP) into half compared to the second setting (see Table III).
We conclude that an application using this algorithm needs
to explore the trade-off between the anomaly prediction
accuracy and the tolerance of false alarms to reach an optimal
point.

B. Root Cause Analysis

We now demonstrate how effective the proposed ap-
proaches (both supervised classification and unsupervised
clustering) can be for root cause analysis. Note that we use
the labeled data generated by NS3 to drive the evaluation
for both approaches. The performance metric is accuracy
that measures the gap between the predicted class and the
actual labeled class. First, we review the supervised classi-
fication with decision tree without auto-encoder. A decision
tree usually presents a higher classification accuracy with
a more complicated model from a deeper tree. Meanwhile,
a deeper tree introduces higher computation overheads and
increases the chance of over-fitting. Thus, we look for a
balance between the classification accuracy and the tree
depth. Here, we shift the tree depth from 3 to 49 and the
overall classification accuracy of all 5 fault cases converges
to 99.87% after increasing the depth to 26 as shown in Figure
5 (a). In addition, Figure 5 (b) shows that the distribution of
correct/false classification of 5 fault cases. We notice the

TABLE III
ANOMALY PREDICTION WITH DIFFERENT DEEP LEARNING MODELS

Model TP ANOM_MSE OVERALL_MSE
LSTM [12] 1 0.0185 0.0041
CNN [10] 3 0.032 0.0083

ConvLSTM 15 0.0117 0.0032
CNN+ConvLSTM 18 0.00096 0.0022



TABLE IV
CONVLSTM WITH DIFFERENT CLASS WEIGHTS

Class Weight TP TN FP FN Recall
0.01/1 16 5854 391 7 69.5%

0.001/1 20 4442 1802 3 86.9%
0.0001/1 23 3022 3223 0 100.0%

decision tree presents equal performance among different
cell faults without showing any bias. Next, We add an
auto-encoder in front of the decision because it can greatly
reduce the input dimension and will be necessary to handle
thousands of input KPIs in real-time root cause analysis. In
this setting, we find that the highest accuracy goes down
to 98%. because the information loss as the auto-encoder
compresses input KPIs.

Next, we evaluate unsupervised clustering with agglom-
erative clustering. We assume that the labeled fault class
is unknown in this approach but only use it for the eval-
uation purpose. We consider 7 critical cell KPIs: RSRQ
(Reference Signal Received Quality), SINR (Signal-to-noise-
plus-interference Ratio), Distance (Distance between UE
and its connected eNB), Retainability, HOSR (Handover
Success Rate), RSRP (Reference Signal Received Power),
Cell Throughput and 6 faults as shown in Table II. We find
that agglomerative clustering shows a 99.5% accuracy. Thus,
our approach can accurately classify errors by each category.
Importantly, in a real-world setting, without the labeled data,
each cluster will not be associated with a specific fault class
and a network expert needs to infer the resulting class based
on the KPIs distributions of each cluster, methodology for
which is presented in [6].

IV. CONCLUSION AND FUTURE WORK
In this paper, we propose SORA, a self-organizing cellular

radio access network system with deep learning. SORA
involves four core components: self-KPIs monitoring func-
tions, self-anomaly prediction functions, self-root cause anal-
ysis and self-healing. The main contribution of this work are
the design and implementation of the anomaly prediction and
root cause analysis components with deep learning methods
and the evaluation of the system performance with real-
world data from a top-tier US cellular network operator. We
demonstrate that the proposed methods can achieve 86.9%
accuracy for anomaly prediction and 99.5% accuracy for root
cause analysis. Moving forward, we will continue to design
and implement the last component, "self-healing functions"
with deep reinforcement learning and make the LTE network
as an integrated, close-loop, self-organizing system. We will
also investigate the root cause analysis with supervised
learning with real-world fault labels. Another future work
topic is that of better understanding how sampling granularity
will effect the anomaly prediction accuracy.
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