
GetMobile O CTO B E R 2014 | Volume 18, Issue 444

[MOBILE PLATFORMS]

First Experiences
with GOOGLE GLASS
in Mobile Research
There has been a long line of wearable research in the
mobile computing community. However, a new, easily
accessible platform often functions as a research enabler

Google Glass and similar offerings from other vendors have
this catalyst effect on mobile and wearable research?

Ph
ot

og
ra

ph
y,

(th
is

 p
ag

e)
 b

ig
st

oc
kp

ho
to

.c
om

45O CTO B E R 2014 | Volume 18, Issue 4 GetMobile

[MOBILE PLATFORMS]

G
oogle Glass, the epitome of wearable
displays, seems poised to become
the most widely available wearable

interaction device for the mass consumer
market. Thanks to its compact design,
rich sensor equipment, and growing
API support, Glass also represents an
exciting platform for researchers in the
mobile field. While wearable computing
research has a long tradition [1, 2], such
research was conducted with custom
hardware arrangements. The availability
of a convenient, easy to use hardware
platform often leads to heightened research
productivity.

There are also other devices of head-
mounted wearable devices available. For
example, the Epson Moverio BT-200
[3] provides a full Android experience,
with a transparent display that hovers
approximately four feet in front of users.
While Google Glass primarily aims to
be a notification device with the screen
appearing in the corner of the right eye,
Epson glasses can create a 3D display.
The Recon Jet device [4] offers navigation,
weather, social media, SMS, call info,
web connectivity, and more. With GPS
functionality and onboard sensors that
measure speed, distance and elevation
gain, this device targets athletes. Epiphany
Eyewear [5] provides only one function:
record video. GlassUp [6] is able to read
texts and emails, tweets, Facebook updates
and other social networks. These devices
also deserve full consideration but we will
focus our following discussions on Google
Glass, which arguably offers one of the
richest APIs for development.

In this article we report on our first
experiences with Google Glass from a
mobile systems researcher’s perspective. It
does not intend to report on any specific
research activity, but simply aims to
provide an overview of the capabilities
and limitations that researchers are likely
to encounter. We begin with an overview
of the hardware and discuss what APIs
Google Glass offers developers, before we
report on performance characteristics and
experiences.

A BASIC OVERVIEW
OF THE HARDWARE
Currently Google Glass is distributed to
developers in the form of an Explorer
version. The detailed custom user interface
and hardware specifications are listed in
Table 1 and are further described below.

User Interface
The biggest differences to smartphones
are arguably the custom designed user
interfaces for Glass. In addition to audio
output, Glass provides its well-known
display inside the person’s field-of-view as
well as touch, voice, and gesture input.
 Display: The main display of Google

Glass has a resolution of 640x360,
equivalent to a 25-inch high definition
screen from eight feet away. It is a Liquid
Crystal on Silicon (LCoS) field sequential
color, LED-illuminated display. As Google
Glass is designed to be a no-distracting
notification device, its screen is not on all
the time. Instead, it is only held on for a few
seconds before it automatically turned off
until users reactivate it.
 Touchpad: The capacitive touchpad is

located on the right side of Google Glass.
Users can tap on the touchpad to wake
Glass up. Users can also control the device
by swiping the touchpad to navigate a
timeline-like interface on the screen, as well
as choose options on each timeline card.
 Voice Input: This is the second, hands-

free, method of input. User can trigger
predefined action through keywords. Users
can also dictate emails or messages. Note

that voice dictation function is performed
on remote server, so this function is not
working off-line.
 Head Gestures: Glass can also be

activated by tilting the head backward
(‘looking up’). It can also detect when the
user puts on the device.

Sensors
 Ambient light sensor: This sensor serves

a similar purpose as on smartphones;
it enables automatic control of display
backlight from a dark environment to
direct sunlight. Its data (in SI lux units) can
be read through Android API.
 Inertial and compass sensor: According

to a Google Glass teardown [7], it has
an InvenSense MPU-9150 sensor [8],
which includes a 3-axis gyroscope, 3-axis
accelerometer, and 3-axis magnetometer
(digital compass). The gyroscope has a
user-programmable full-scale range of
±250, ±500, ±1000 and ±2000o /sec. The
accelerometer has a programmable full-
scale range of ±2g, ±4g, ±8g and ±16g. The
magnetometer has output data resolution
of 13 bit (0.3μT per LSB) and the full-scale
measurement range is ±1200μT. The sensor
is used for providing built-in functions such
as the compass and detection of the ’Lookup’
head gesture that activates the display. It is
also available for Glass app use and could
therefore support many more functions. A
notable difference to smartphone sensors
is that this sensor moves together with
a person’s head. It could therefore track
information about head movement and in

Viet Nguyen and Marco Gruteser WINLAB/Rutgers University

Editors: Marco Gruteser, Sharad Agarwal

TABLE 1:

Camera 5 MP for photos and 720p for videos

Audio Bone Conduction Transducer

Processor Texas Instruments OMAP 4430 SoC 1.2Ghz Dual (ARMv7)

Connectivity 802.11 b/g and Bluetooth 4.0 (with BLE support). Able to connect
to Internet by Wi-Fi, or by tethering through smartphone.

Storage 12 GB of usable memory, synced with Google cloud storage.
16GB Flash total

Battery Single-cell Lithium Polymer battery, roughly 570 mAh. [7]

GetMobile O CTO B E R 2014 | Volume 18, Issue 446

[MOBILE PLATFORMS]

which direction a person is looking.
 Proximity sensor: This is the sensor used

to measure the distance to user face and eye
(in centimeters). It can detect when a user
puts Google Glass on his head, and when a
user “winks”.

PROTOTYPE DEVELOPMENT
WITH GLASS
At the time of writing, Google Glass is
running on Android 4.4 (API 19). Therefore,
researchers with experience in prototyping
Android smartphone apps would have an
easy transition to Google Glass prototyping.
There are two API options for developers
to develop Glassware. The first one, Mirror
API, allows you to build web-based services
that interact with Google Glass. These
services can be programmed in Go, Java,
PHP, .NET, Python or Ruby. Google Glass
is synced with Mirror API, and the web
service can send notifications or receive user
options through Mirror API. For example,
a New York Times Glassware would
periodically send brief news to Mirror API,
and Mirror API will automatically deliver
these content to user’s Google Glass. When
the user wants to read news in detail, his
option will be recognized by Mirror API,
and it in turns sends a request to the web
service for the full content. This is the
advantage of a web service using Mirror
API: it only needs to deliver content (in
JSON format), then leaves all Google Glass
built-in functionalities to Mirror API.

The second API, Glass Development Kit
(GDK), enables richer Glassware complete
with interactive features and access to some of
the hardware features. It is an Android SDK
add-on that contains APIs for Glass-specific
features: voice control, gesture detector
(such as head on, “wink” detection, etc.), or
timeline cards. Also, Google designed the
Glass platform to make the existing Android
SDK work immediately on Glass. This lets
developers code in a familiar environment,
but for a uniquely novel device. GDK is used
when you need real-time user interaction,
offline functionality, and access to hardware.

Although experience researchers would
have no difficulty in getting used to the
Google Glass development environment,
they should take into account the unique
user interface of Google Glass by adopting
these new design pattern building blocks:
 Timeline: The timeline is the main

user interface that is exposed to users. It
presents live and static cards, performs
voice-commands, which is a common way
to launch Glassware. Timeline is arranged
into three parts: at the center there is Glass
clock, then on the right there are static cards
delivered by Mirror API, while on the left
there are currently running live cards.
 Static cards (Figure 1a): These are the

main components for displaying texts,
images, and video content. They are
produced by Mirror API and added to the
timeline. Their main usage is to provide
periodic notifications to users as a specific
event happens, such as when users arrive
at a specific location.
 Live cards (Figure 1b): Different from

static cards, live cards can update frequently
to provide real-time information to users.
Example applications include timer, compass,
etc. Live cards also have access to low-level
sensors, such as the accelerometer, gyroscope,
and magnetometer. In addition, they run
inside the timeline, so users can navigate to
other cards when the live card is running.
 Menu options: These options can be called

from each card. They carry out actions asso-
ciated with the card, such as sharing a video,
replying to an SMS, deleting an image, etc.
Google Glass is still in an experimental phase,
and APIs have been gradually updated for
other functionalities. At the time of writing
this paper, the APIs offer ways to control
camera, get voice input, access GPS data
and inertial sensors, including gyroscope,
accelerometer, and magnetometer. In
addition, it is also possible to communicate
with another Android smartphone through
a Bluetooth connection. One missing feature
in the API is an accessing proximity sensor,
which directly controls the “wink” gesture.
Google Glass has an experimental feature
that allows users to use the “wink” gesture

to quickly capture a photo, but Google has
not offered an API for developers to use the
“wink” gesture as another input method.

PERFORMANCE
Here we provide a basic performance
characterization in terms of battery lifetime,
computational power, and network through-
put and compare it to Android phones. Note
that these stress tests are clearly not repre-
sentative of typical or recommended use of
Glass. Since researchers are always pushing
the boundaries, we hope, however, that they
provide insight on what research projects
Glass can support.
 Battery lifetime: We run Google

Glass with continuous video recording,
continuous display use, and continuous
sensor use and measure how long its battery
lasts in each test. The results are shown
in Table 2. In the new API version XE16,
sensor data logging is optimized, therefore
the time duration is better than the previous
version XE12. The number in parentheses
shows how the new battery lifetime
compares to the previous API version.
 Computational limits: We use the

LinPack benchmark for comparing
performance of Google Glass and several
other Android devices, based on MFLOPS
(Mega floating-point operations per second).
For each device, we run the experiment 20
times for single-thread and multi-thread
case, and record the average value and
deviation. The result is shown in Figure 2
(the higher the average value is, the better
performance the device has). As can be seen,
Google Glass’ computation performance
isn’t as high as that of normal smartphones,
which is expected for a notification device
rather than a computing platform. Therefore,
the device is not designed to process heavy
load applications, such as image processing

FIGURE 1. (a) Static card: New York Times. (b) Live card: Stop watch

(a) (b)

47O CTO B E R 2014 | Volume 18, Issue 4 GetMobile

[MOBILE PLATFORMS]

or computer vision. The recommended
way to perform these tasks is uploading
images or videos to some cloudlet or cloud,
having some dedicated computers or servers
running the algorithms and then returning
the results to Google Glass.

Network throughput: We use the iPerf
for Android network benchmark tool [9]
for comparing Wi-Fi network throughput
of Google Glass and Nexus 5. In these tests,
the Android devices act as the server and a
laptop acts as the client. The Wi-Fi version
of Google Glass is 802.11 b/g, while the
Nexus 5 supports Wi-Fi 802.11 a/b/g/n/ac.
Table 3 shows the results for two tests: TCP
bandwidth and UDP packet loss ratio. These
results are likely due to the more advanced
Wi-Fi versions in the Nexus 5.

FIRST EXPERIENCES AND
PARTING THOUGHTS
Glass looks well-suited to study many
challenges in Human Computer Interaction,
Augmented Reality, and Positioning
Systems among others. It provides an

interface device that can be operated hands-
free and adds sensors that look useful for
various forms of head and gaze tracking.

We found transitioning from Android
smartphone to Glass software development
straightforward. One should keep in mind
that battery and computational resources
are more limited and many tasks such as
image processing, speech recognition are
best offloaded to the cloud. Second, for
immediate interactivity, such as accessing
and processing sensor data in real-time, the
GDK should be used instead of the Mirror
API. We also noticed that Google Glass
could get quite warm under continuous
load (such as video recording and sensor
logging). We therefore found it useful to

conduct much of our development and
testing using screen casts and external
input, without actually wearing the device.

While Google Glass is a relatively new
HMD device, a few researchers have already
conducted research with this platform. For
example, in Pedersen and Trueman’s article,
“sergey brin is batman” [10], the authors
argue that Google Glass has instigated the
adoption of a new paradigm in Human
and Computer Interaction. A 2013 article
by Simoens, Verbelen, and Dhoedt [11]
introduces Mercator, a distributed system
that builds 3D maps of the world from
crowd-sourcing data provided by depth-
cameras mounted on HMDs like Google
Glass. In the Augmented Reality domain,
many applications, such as Word Lens [12]
or Layar [13], are moving from smartphones
to Google Glass, making them more useful
and context-aware. Besides, Roesner, Kohno,
and Molnar’s recent ACM article [14] shows
that although Augmented Reality work
using Wearable devices like Google Glass
is still young, it is the right time to carefully
consider issues such as security and privacy.
This article also proposes several novel
applications, such as encrypting content in
the real world or managing passwords.

Will Glass fuel wearable research just
as smartphones have led to a wealth of
mobile research? We suspect that this will
largely depend on the commercial success
of Glass. Glass does provide, however, an
easily programmable platform for wearable
research.

FIGURE 2. Computation benchmark

TABLE 2: Battery lifetime test

Scenario Duration (in mins)

Continuous Camera Use 60

Continuous Display Use 65

Continuous Sensor Use 240 (310)

TABLE 3: Network throughput test

Device TCP bandwidth (in Mbps) UDP packet loss rate

Google Glass 24.9 0.07%

Nexus 5 45.1 1.58%

[9] “iPerf for Android.” https://play.google.com/store/
apps/details?id=com.magicandroidapps.iperf.

[10] I. Pedersen and D. Trueman, ““sergey brin is
batman”: Google’s project glass and the instiga-
tion of computer adoption in popular culture,” in
CHI ’13 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’13, (New York, NY,
USA), pp. 2089–2098, ACM, 2013.

[11] P. Simoens, T. Verbelen, and B. Dhoedt,
“Vision: Mapping the world in 3d through
first-person vision devices with mercator,” in
Proceeding of the Fourth ACM Workshop on
Mobile Cloud Computing and Services, MCS ’13,
(New York, NY, USA), pp. 3–8, ACM, 2013.

[12] “Word Lens for Google Glass.” http://
questvisual.com/us/.

[13] “Layar for Google Glass.” https://www.layar.
com/glass/.

[14] F. Roesner, T. Kohno, and D. Molnar, “Security
and privacy for augmented reality systems,”
Commun. ACM, vol. 57, pp. 88–96, Apr. 2014.

[1] S. Mann, “Wearable computing: a first step
toward personal imaging,” Computer, vol. 30, pp.
25–32, Feb 1997.

[2] T. Starner, S. Mann, B. Rhodes, J. Levine,
J. Healey, D. Kirsch, R. W. Picard, and A.
Pentland, “Augmented reality through wearable
computing,” Presence: Teleoperators and Virtual
Environments, vol. 6, no. 4, pp. 386–398, 1997.

[3] “Epson Moverio BT-200.” http://www.epson.
com/cgi- bin/Store/jsp/Landing/moverio- bt-
200- smart- glasses.do.

[4] “Recon Jet.” http://www.reconinstruments.com/
products/jet/.

[5] “Epiphany Eyewear.” http://www.
epiphanyeyewear.com/.

[6] “GlassUp.” http://www.glassup.net/.
[7] “Google Glass teardown.” http://www.catwig.

com/google- glass- teardown/.
[8] “Invensense MPU-9150 Product Specification.”

http://www.invensense.com/mems/gyro/
documents/PS- MPU- 9150A- 00v4_3.pdf.

REFERENCES

