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Abstract—Many techniques for multicast authentication employ
the principle of delayed key disclosure. These methods introduce
delay in authentication, employ receiver-side buffers, and are sus-
ceptible to denial-of-service (DoS) attacks. Delayed key disclosure
schemes have a binary concept of authentication and do not incor-
porate any notion of partial trust. This paper introduces staggered
timed efficient stream loss-tolerant authentication (TESLA), a
method for achieving multigrade authentication in multicast
scenarios that reduces the delay needed to filter forged multicast
packets and, consequently, mitigates the effects of DoS attacks.
Staggered TESLA involves modifications to the popular multicast
authentication scheme, TESLA, by incorporating the notion of
multilevel trust through the use of multiple, staggered authenti-
cation keys in creating message authentication codes (MACs) for
a multicast packet. We provide guidelines for determining the
appropriate buffer size, and show that the use of multiple MACs
and, hence, multiple grades of authentication, allows the receiver
to flush forged packets quicker than in conventional TESLA. As
a result, staggered TESLA provides an advantage against DoS
attacks compared to conventional TESLA. We then examine two
new strategies for reducing the time needed for complete authen-
tication. In the first strategy, the multicast source uses assurance
of the trustworthiness of entities in a neighborhood of the source,
in conjunction with the multigrade authentication provided by
staggered TESLA. The second strategy achieves reduced delay by
introducing additional key distributors in the network.

Index Terms—Denial-of-service (DoS) attacks, forge-capable
area, message authentication code (MAC), multigrade source au-
thentication, queueing theory, timed efficient stream loss-tolerant
authentication (TESLA), trust.

I. INTRODUCTION

MULTICAST will play a significant role in the next gen-
eration of networks as many services, such as pay-per-

view media broadcasts and the delivery of network control mes-
sages, will rely upon group communication [1]. One security
service that has been difficult to provide for multicast is au-
thentication. Existing solutions are either resource intensive, or
introduce a significant delay in authentication. A consequence
of the delay overhead associated with many multicast authen-
tication schemes is that they rely on receiver-side buffers and
are therefore susceptible to denial-of-service (DoS) attacks tar-
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geted at filling a receiver’s buffer with false packets. Therefore,
authentication strategies that allow for less delay and more effi-
cient utilization of buffer resources are desirable.

One explanation for the inefficiency associated with multi-
cast authentication stems from the underlying conceptual for-
mulation of authentication. Authentication is about trust, and in
the context of traditional network security services, trust is a bi-
nary concept. A binary formulation of trust is a deviation from
our natural, social understanding of trust, where the confidence
we place in others is not a black-and-white concept, but rather
broken down into many shades of gray.

In this paper, our objective is to present strategies that reduce
the delay associated with multicast authentication, make more
efficient usage of receiver-side buffers, make delayed key dis-
closure authentication more resilient to buffer overflow denial of
service attacks, and allow for multiple levels of trust in authen-
tication. Throughout this paper, we will focus our discussion
on the popular multicast authentication scheme timed efficient
stream loss-tolerant authentication (TESLA), though our tech-
niques can apply to other authentication methods based upon the
delayed key disclosure principle. Similar to other schemes based
upon delayed key disclosure, TESLA is susceptible to DoS at-
tacks and is not well suited for delay-sensitive applications.

At the heart of our approach is a modification to TESLA,
which we call staggered TESLA, that employs several message
authentication codes (MACs) that correspond to authentication
keys that are staggered in time. staggered MACs provide no-
tions of partial authentication and allow for forged packets to be
more readily removed from the buffer, thereby improving usage
of the receiver’s buffer. A benefit of partial authentication is that
one may define security policies that allow for partially authen-
ticated packets to pass through the buffer and, thus, packets will
remain in the buffer for a shorter duration. In many scenarios,
accepting partially authenticated packets is unacceptable and,
therefore, we present two further techniques that may be used to
reduce the delay needed for full authentication. The first strategy
requires that the source has a guarantee that there are no ad-
versaries within a certain network distance of the source. By
having a guarantee of proximity protection, partially authenti-
cated packets may be accepted as fully authentic. The second
strategy for reducing full authentication delay that we present
involves replicating the key distribution functionality within the
network, and having a set of distributed key distributors trans-
mits the key seeds. A benefit of all of these strategies is that they
mitigate the threat of a buffer overflow DoS attack since an ad-
versary must conduct a DoS attack at a higher attack rate.
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The rest of the paper is organized as follows. In Section II,
we review the related works in multicast source authentication,
and give a brief overview of the conventional TESLA scheme.
We explore partial trust and use it in Section III, where we de-
scribe the staggered TESLA scheme. The security requirements
needed to reduce full authentication delay will be discussed in
Section IV. We derive theoretical guidelines for buffer require-
ments and discuss the tradeoffs involved in staggered TESLA
in Section V. We support the theoretical analysis by conducting
simulations and present the results of the simulations in Sec-
tion VI. Finally, Section VII concludes the paper.

II. BACKGROUND LITERATURE AND TESLA

A. Related Work

Source authentication enables receivers to verify that the
received data originated from the claimed source and was not
modified. Source authentication in point-to-point communica-
tions can be solved by asymmetric cryptography. Asymmetric
cryptography, however, consumes significant communica-
tion and computational resources that cannot be supplied by
resource-limited devices. Source authentication can also be
accomplished through symmetric cryptography by appending
MACs to each packet. The problem of authenticating multicast
is more complex than the unicast case when there are untrusted
receivers in the multicast group. Simply applying MACs does
not provide source authentication in multicast. Adversarial
group members, who share the same secret key as benign group
members, can easily create packets with MACs using this
shared key. Since all users share the same key, the receivers
cannot resolve the source of the packets.

Although digital signatures [2] can be applied to multicast au-
thentication, they have prohibitive computational and commu-
nication overhead. Gennaro [3] and Wong [4] proposed schemes
to mitigate communication overhead by amortizing a single sig-
nature across several packets. Rohatgi [5] introduced an im-
proved approach that employs -time signature schemes and
has less delay. Another signature amortization scheme is based
on an information dispersal algorithm that can tolerate a cer-
tain amount of packet loss [6], [7]. Recent efforts on signature
amortization for multicast authentication have involved distilla-
tion codes and have focused on resistance to DoS attacks [8].
Another work along these lines was presented by Lysyanskaya
et al. [9] in which a multicast authentication scheme based on a
combination of digital signatures, hashes, and error-correction
codes is presented.

Multicast-source authentication based on symmetric cryptog-
raphy has attracted intense research. Canetti presented a solu-
tion to multicast source authentication based on verifying dif-
ferent MACs using different keys for each message [10]. Un-
like the method proposed in this paper, the multiple MACs in
[10] are calculated using independent keys that are not tempo-
rally linked. Further, their protocol is based on the assumption
that no coalition of bad receivers can forge packets for a spe-
cific receiver, but fails in the presence of a coalition of more than

users. Perrig constructed a signature scheme using one-way
functions without trapdoors for broadcast authentication [11].
Xu and Sandhu [12] proposed two hop-by-hop authentication

schemes suitable for Internet multicasting that use the multicast
tree and are immune to DoS attacks. A consequence of their
hop-by-hop assumption is that intermediate routers are required
to be trusted and secure.

Another popular approach uses delayed key disclosure. De-
layed key disclosure was first introduced by Cheung [13] to
achieve authentication for link-state routing, and was used in the
Guy Fawkes protocol to provide nonrepudiation in unicast com-
munication in [14]. Chained stream authentication [15], [16]
and FLAMeS [17] used similar ideas for source authentication
in multicast. In delayed key disclosure, the sender keeps the key
secret for some intervals of time after sending the data. The re-
ceivers buffer the packets since they do not have the authenti-
cation key. A short time later, the sender discloses the key and
the receivers are able to perform authentication. Using the de-
layed key disclosure introduces two new issues. The first issue
is the buffer requirements at the receiver. Because the receiver
needs to buffer the received packets before it can authenticate
them, an adversary can launch a DoS attack and fill up the re-
ceiver’s buffer with bogus traffic. The receiver will have to drop
packets due to a lack of buffer space. Second, many applications
are sensitive to delay, and reducing delay is critical for achieving
a desirable quality of service. As we shall discuss later in this
paper, reducing delay in delayed key disclosure schemes can be
accomplished by either employing partial authentication or suit-
able assumptions about the application’s security policy or the
source’s network neighborhood.

B. TESLA Overview

Among the many existing schemes employing the delayed
disclosure principle, the TESLA [18]–[21] scheme is one of
the most popular. We shall use the TESLA scheme as the basis
for our discussions. TESLA is based on initial loose time syn-
chronization between the sender and the receivers. TESLA di-
vides time into intervals of equal duration, and each time slot

is assigned a corresponding key . For each packet gener-
ated during time interval , the sender appends a MAC that is
created using the authentication key . Each receiver buffers
the packets without being able to authenticate them, until the
sender discloses the key by broadcasting the corresponding
key-seed . Once is disclosed, anyone with can calculate

and can pretend to be the sender by forging MACs. Thus, the
use of for creating MACs is limited to time interval , and
future time intervals use future keys. Further, is not disclosed
until time slots later, where is governed by an estimate of the
maximum network delay for all recipients.

The keys are derived from using a publicly available
one-way function , while the are related to each other via
a reverse-time chain of one-way functions. To create the chain
of keyseeds, the sender chooses a terminal seed , and gen-
erates using a one-way function . The remaining seeds

are derived via

. The sender uses the seedchain in the opposite direction
(starting with seed ) to derive the TESLA keys by applying the

one-way function via .
When a user receives a packet, he or she first checks

whether the packet is fresh (i.e., it was sent in a timeslot whose
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TESLA-key has not been disclosed) or dated. The receiver
discards all dated packets and buffers only the fresh ones.
Once the user receives a TESLA seed , he or she checks

to be sure of ’s authenticity. He or she
derives by , and authenticates the packets
that were sent in timeslot . The conditions needed for the
verification of the safe keys are collectively referred to as the
security condition for TESLA. The use of chained key seeds
also provides resilience to packet loss. If intermediate key seeds
are not received, then a future key seed may be authenticated by
applying the one-way function multiple times. The one-way
function chain additionally allows for the determination of the
packet’s time of creation.

Several modifications are proposed in [19], where receiver
buffering is traded off at the expense of source buffering as
well as a scheme, called concurrent TESLA, that is suitable for
different receiver delays. The multiple MACs used in concur-
rent TESLA correspond to multiple instantiations of the basic
TESLA protocol, where each instantiation employs a different
disclosure delay. This differs from the use of multiple MACs
that we propose in staggered TESLA, where our multiple MACs
correspond to a single instance of TESLA using a single, as-
sumed disclosure delay.

C. Examination of Trust in TESLA

We now examine the notion of trust in TESLA, and how it
can be modified to achieve partial trust. In TESLA, the seed
for the authentication key is released at a later time interval

, where is a value greater than the maximum number of
time intervals needed for a message to travel from the source
to all of the receivers. As a result, the total time that a packet
will occupy the receiver’s buffer is approximately intervals.
Let us now consider the objective of the adversary. The adver-
sary seeks to replace the content of the packets and makes them
pass the authentication check at the receiver. Thus, the adver-
sary needs to know the key in order to successfully forge
packets sent during interval . Since the seed for key is re-
leased during time interval , the receivers do not accept any
packets that claim to have been created during interval after
the start of time interval . Thus, adversaries are unable to
forge MACs for interval .

Now, let us consider what would happen if we send out the
seed earlier than in conventional TESLA. If is sent at time
interval instead of , where , then the receivers
can authenticate packets sent in interval when they receive the
first packet sent in interval . Consequently, the receivers can
perform authentication sooner than they would have in conven-
tional TESLA, and can thus remove the packets from the buffer
earlier than in conventional TESLA. On the other hand, because
the seeds are released earlier, some adversaries can take advan-
tage of this and forge packets with valid MACs. Thus, authenti-
cated packets cannot be classified as “fully trusted” and may be
viewed as partially authenticated.

Our work is based upon this concept of partial authentication,
and we therefore need to identify which entities are capable of
forging packets with valid MACs at a specific time. Consider
Fig. 1, where corresponds to the sender, depicts the receiver,
and and are two adversaries at different network delay

Fig. 1. Network diagram depicting relative network distances for the source S
and receiver R for a single packet transmission. In TESLA, the network has a
maximum network delay of d. For a single packet containing a key seed, ad-
versary A is within a radius of d � t from the source, while adversary A is
beyond a radius d � t.

distances relative to the source and the receiver. is within a
distance of from the source, while is a distance greater
than from . The distance in the figure represents the rela-
tive network time delay between entities for the transmission of
a single-key seed packet. These network delay positions might
change from packet to packet or interval to interval based upon
network conditions. For simplicity, we assume that both adver-
saries do not require any time to process and forge packets. Ad-
ditionally, we assume that the link between an adversary and
the receiver is a very-high-speed link (perhaps dedicated for
the purpose of performing a DoS) and, thus, for discussion, we
consider the adversary-receiver links as 0-delay links. If the key
is released in interval , then all adversaries within a
radius of the source, such as , will receive the key before
the start of interval . Since the adversaries have 0-forge
time and 0-delay links to the receiver, the receiver will receive
packets forged by before the beginning of time interval .
The receiver will perceive that these packets obey the security
condition, and put them into the buffer. Adversaries outside the
circle of radius , such as will receive the key after
the start of interval . Hence, they cannot forge packets with
valid MACs. Therefore, exactly those adversaries that lie within
a radius of delay from the source can successfully forge
packets, and belong to the forge-capable area for that key seed.
Hence, if we release the key seed at interval , any packet
from interval that passes the authentication check can only be
declared as partially trusted since there is a network area capable
of forging that packet.

III. STAGGERED TESLA: MULTIGRADE

MULTICAST AUTHENTICATION

We now use the idea of releasing key seeds earlier than in
conventional TESLA to achieve multigrade multicast authenti-
cation. We begin the same way as TESLA by splitting the time
into equal length intervals and assigning a seed to time in-
terval . The authentication key for interval is derived
from using a publicly available one-way function . Our
motivating observation is that many TESLA authentication keys
will not be known by an adversary at an arbitrary location at an
arbitrary time since it takes time for released keys to arrive at an
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Fig. 2. Format of the jth packet sent during interval i � 1, i, and i + 1 in
staggered TESLA. There are d MACs attached to each packet, compared with
only one MAC attached to each packet in TESLA.

adversary. Thus, when forging packets from interval , which
corresponds to key being used to create MACs, adversaries
might also not know or . Therefore, if we use more
than just to construct MACs during time interval , such as
using and , many potential adversaries will not be
able to forge the MACs constructed using or , much
less than the MAC that used . The idea of using MACs from
successive TESLA keys leads to a scheme, which we call stag-
gered TESLA.

A. Format of the Packet

In TESLA, a MAC computed by the authentication key cor-
responding to the current interval is attached to each packet. Let

denote the th message sent in interval , to be the au-
thentication key used in interval , and to be the key disclo-
sure delay in units of intervals. The source will disclose the key
seed in interval . The receiver may use the seed to deter-
mine what time interval a packet was sent. The format of the th
packet sent in interval is .

In staggered TESLA, we attach additional MACs made from
previous TESLA keys to each packet. Because the seed
is released in interval , attaching a MAC computed using key

is useless. Hence, the maximum number of MACs that
can be attached in each packet is , and instead of just attaching
one MAC computed by to each packet, we attach up to

MACs computed using , respectively.
As shown in Fig. 2, the th packet sent in interval is

(1)

Since staggered TESLA uses consecutive and chained key
seeds, it inherits the same resilience to packet loss as conven-
tional TESLA.

We now discuss two issues related to the staggered TESLA
packet. First, we note that a simple and clever attack, which we
shall call the shift attack, may be employed on the above packet
format. In the shift attack, the adversary may take advantage
of the fact that there is more than one MAC attached to each
packet, and make use of the MACs from previous packets and
shift them to forge later packets. For example, an adversary can

Fig. 3. Events in staggered TESLA and the chained buffer at the receiver. Par-
tially authenticated packets graduate to lower layers of the buffer as the key
seeds arrive at the receiver.

store packet from interval , as in (1), and use it to forge the
packets for interval by sending

(2)

All of the MACs will be valid MACs except for the one using
the fake , which the adversary could not forge. This at-
tack, however, can easily be addressed by incorporating interval
numbers and sequence numbers, as is typically done to prevent
replay attacks [22] in the implementation when computing the
MACs. Consequently, rather than complicate the notation in the
remainder of the paper, we stick with the above representation
and note that the additional resources needed for appropriate in-
dexing are minimal.

Second, the additional overhead for staggered TESLA is min-
imal for many typical multicast scenarios. In particular, since
MACs are based on symmetric cryptography, they are compu-
tationally efficient. Further, MACs produce short-message di-
gests and, therefore, the additional computation and commu-
nication requirements introduced by the extra MACs will not
cause significant performance degradation. Consider a typical
medium-quality video multicast, where the average frame size
is 1300 B [23]. In this case, the addition of a few 20-B data
fields, corresponding to a SHA-1 MAC, is minimal relative to
the actual application data. We further note that one may employ
fewer than MACs, depending on the application’s security re-
quirements as well as the bandwidth restrictions of the under-
lying network to reduce overhead.

B. Multigrade Source Authentication

In staggered TESLA, the receiver-side buffer is a sequence
of queues, as conceptually depicted in Fig. 3. When the receiver
receives a packet, it puts the packet into the top level of the
queue, and graduates the packet to lower layers as additional
key seeds arrive and the corresponding MACs are verified. If
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Fig. 4. Adversaries at different locations pose different levels of threats. The
receiver can remove false packets from more distant adversaries, such as A ,
sooner than those from closer adversaries, such as A . The forge-capable
area shrinks as the packets pass authentication at each layer.

any verification fails, the packet is dropped from the queue,
while if it passes, the packet becomes more trusted and grad-
uates to the next layer of the buffer. This process repeats until
the final key seed involved arrives and complete authentication
is achieved. The chained buffer structure is easily implemented
by tracking all packets waiting for a key, and updating which
key each packet is waiting for following a partial authentication.
Hence, the chained buffer we propose does not require any ad-
ditional overhead compared with the traditional receiver buffer
in TESLA.

In staggered TESLA, if an adversary forges a packet for
interval , some of the MACs besides the normal TESLA MAC

are likely to be wrong. Thus, the receiver
will most likely be able to discard the forged packet before
it would need to check . Further, as a packet
successively graduates from a higher layer to a lower layer
in the buffer, the likelihood that the packet is trustworthy
increases. Thus, the receiver does not have to wait for the seed

in order to start authenticating packets. Instead, the receiver
can use whatever seeds he or she has received to begin the
authentication process and can promptly remove bogus packets.
As a result, false packets are removed from the buffer quicker
than in conventional TESLA. In contrast, with conventional
TESLA, a forged packet will have to remain in the buffer for
the complete disclosure delay before its falseness is revealed.

An individual packet that has had only some of its MACs
verified is not fully authenticated and, instead, is only partially
trustworthy. A packet’s trustworthiness is directly related to
which MACs have been verified and the amount of MACs
employed in staggered TESLA. Further, there is a direct re-
lationship between a packet’s position in the buffer and the
size of the forge-capable area. Fig. 4 shows the location of
the sender and how the forge-capable area changes as key
seeds are released. The distance in the figure denotes the
relative time delay between the hosts, and for simplicity of

discussion, we consider that the network delay characteris-
tics are fixed. Consider a packet that is sent during interval ,
which has MACs appended to it. These MACs are computed
using keys , respectively. Let
us label these MACs as the first, second, , and th MAC.
During time interval , the seed is released. The
receiver is able to authenticate the first attached MAC after it
receives the seed . Since we assume the adversary-re-
ceiver link has delay 0, the forge-capable area for the first MAC
is the circle of delay radius from the source. Adversary

, which is outside the circle, cannot forge packets with a
valid first MAC. Thus, if there were an adversary at location

, the receiver would be able to remove all bogus packets
sent by from the buffer at this time. However, adversaries
within the radius circle (i.e., to ), are able to forge
the first MACs for any th interval packet. Thus, the receiver
cannot decide whether those packets are forged packets or not
at this time.

At time interval , seed is released. Now the re-
ceiver can perform authentication on the second MACs and,
similarly, the forge-capable area shrinks to a region with radius

. Now, both adversary and are outside the forge-ca-
pable area and both of them are unable to forge packets with
valid second MACs. The receiver can now remove all packets
sent by adversary . Similarly, the forge-capable area shrinks
as the packets pass authentication at each layer of the buffer.
There is progressively less area from which an adversary could
successfully forge packets. Finally, during time interval ,
the seed is released, the forge-capable area has radius 0, and
no adversary can forge packets with valid th MACs. The re-
ceiver can fully authenticate the packet.

A packet gains trustworthiness as its forge-capable area
shrinks. It is desirable to represent a packet’s trustworthiness
by a numerical value between 0 and 1. Such a quantification
for partial authentication can allow for new security policies
to be developed whereby partially authenticated packets are
accepted if they have a threshold trust level. For example, a mul-
timedia application might have strict QoS delay requirements
and a security policy may be specified whereby, if the service
quality provided to the user is not acceptable, the application
would release additional packets whose is above a threshold
set by the application designer.

The trust representation should be consistent across dif-
ferent staggered TESLA sessions involving different interval
sizes and different amounts of MACs. Hence, trust should be de-
fined based on which MACs were used and which MACs were
verified. Gambetta [24] defined trust to be the subjective prob-
ability that an agent can perform a particular action before that
action can be monitored and before it affects a decision. There
will be or fewer MACs employed for each packet in staggered
TESLA, and a subset of these MACs will be verified. For stag-
gered TESLA, trust then corresponds to quantifying the likeli-
hood that there are no adversaries that could have forged a par-
ticular subset of the MACs.

If we have 3 knowledge of the distribution for the delay
between the source and a potential adversary, then we could take
advantage of such information to define trust. Suppose that the
adversarial delay has distribution . Then, for a staggered
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TESLA scheme having disclosure delay, which uses MACs,
and where the first MACs have been verified, we may define
trust as

for (3)

In the absence of any a priori distribution, two natural distribu-
tions that we may use are to choose to be uniformly distributed
over , or to assume that the network delay corresponds to
propagation in two dimensions and places the adversaries uni-
formly within a circle of radius . This second choice is suitable
for modeling delay in ad hoc networks, where a relationship
between geographic location and network hop counts has been
shown [25]. This leads to a distribution

for
for

(4)

In the case of the first distribution, our trust becomes
. On the other hand, in the second case, the trust becomes

. This definition of trust corresponds naturally
our visualization of the forge-capable area as a circular region.
In both cases , which corresponds to the trust level
associated with full authentication via the conventional TESLA
MAC. We note that when measuring trust, we do not need to
know the position of the adversary, but only which MACs have
been verified.

To further illustrate the relationship between trust, network
size, and interval length, let us look at an example. Consider
a network with a 400-ms delay between the sender and the re-
ceiver, and an 800-ms delay for the key release. If the interval
size is 200 ms, then the key disclosure delay is four intervals.
There are a total of five levels of trust. However, if the interval
size is 100 ms, the key disclosure delay will be eight intervals,
and there will be nine levels of trust. There are tradeoffs be-
tween the selection of interval size and the number of levels of
trust. If the interval size is large, there are fewer intervals and
seeds needed. Hence, less communication overhead is needed to
transmit those seeds. But at the same time, there are fewer levels
of trust. On the other hand, there will be more levels of trust for
smaller interval sizes. But this requires a longer key chain and
larger communication overhead to distribute key seeds. Appli-
cations can select the interval size according to the network con-
dition and security requirements.

The potential damage that can be caused due to the authenti-
cation buffer is related to the adversary’s location—the closer
an adversary is to the source in terms of network proximity,
the longer his or her forged packets will remain in the buffer.
A coalition of adversaries may attempt a collusion attack [26],
[27], where the coalition shares key information with each other
in order to facilitate an attack. We note, however, that in a col-
lusion attack, the adversary that is closest to the source is the
most important member of the coalition as he or she is the one
who will acquire the key seed first. Hence, even if there is a
high-speed connection between adversaries, the strength of a

Fig. 5. If there are guarantees that there are no adversaries located within the
dashed circle of the source, packets can be fully authenticated one interval earlier
in staggered TESLA than in conventional TESLA.

collusion attack involving adversaries is no greater than
times the strength of the closest adversary. Therefore, for the
remainder of the paper, we shall only consider the case of a
single adversary. The impact of the adversary’s location on the
receiver’s buffer characteristics will be further discussed in Sec-
tion VI-C. The end result is that staggered TESLA allows the
buffer to be more efficiently utilized and provides an advantage
against DoS buffer overflow attacks. We will explore this be-
havior further in Sections V and VI.

IV. REDUCED-DELAY MULTICAST AUTHENTICATION SCHEMES

In the previous section, we discussed how partially authenti-
cated packets can be released without waiting for the full authen-
tication delay. We now examine two strategies that reduce the
average delay needed for full authentication. The first scheme
requires the assumption that the source has a guarantee of the
trustworthiness of nearby network entities, while the second ap-
proach involves the introduction of additional key distributors,
which are synchronized with the source.

A. Staggered TESLA With Proximity Protection

Adversaries at different locations pose different threat levels.
The notion of forge-capable areas suggests that complete
authentication is possible if we combine partial authentication
with complementary forms of information assurance. One
possibility, which we refer to as proximity protection, involves
a guarantee that adversaries are not located nearby the source in
network space. Proximity protection allows us to reduce the full
authentication delay since, a few time intervals after the receipt
of a staggered TESLA packet, partial authentication will have
reduced the forge-capable area to a small enough region that
proximity protection will provide the remaining guarantee.

Consider, in Fig. 5, a source with proximity protection around
his neighborhood so that it is guaranteed that there are no ad-
versaries within the dashed circle. During interval ,
where key is released, the forge-capable area shrinks to the
region within radius 1, which is included in the dashed circle.
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No adversaries can forge the MACs computed using suc-
cessfully since they are all outside the forge-capable area of key

. Even though there is still one MAC left to be authenticated
for each packet from interval , the receiver can conclude that all
packets that passed the authentic check for key are actu-
ally fully authenticated and release those packets now. In order to
save communication overhead, the source even does not need to
attach the MAC’s corresponding to key for packets from in-
terval . The larger the area the source can protect, the better we
can reduce the full authentication delay. The amount of time in-
tervals that can be reduced for full authentication corresponds
to the largest forge-capable area within the protected region.

When specifying a region in network space near the source
that can be protected, it is necessary to realize that the network
delay will vary from packet to packet in a real network. Conse-
quently, it is important to choose the region that the source can
protect based upon the minimal delay that would be experienced
by a packet traversing a portion of the network. In particular,
since the queuing component of network delay might be 0, the
region that can be protected should be decided based upon the
nonvariable components composing network delay (i.e., propa-
gation, transmission and minimum processing delay). Another
way to look at this is that the protected area must be the inter-
section of the guaranteed areas for all packets.

In practice, proximity protection can be realized in different
ways for different types of networks. The relationship between
network delay and hop counts suggests that the source needs to
have a guarantee that network entities within a certain hop count
are trustworthy. For networks, such as the Internet, this corre-
sponds to having a guarantee that devices within the same access
network are trustworthy. For networks, such as wireless ad-hoc
networks, hop counts can be related to actual physical distance
from the source [25]. Thus, in such networks, network proximity
protection becomes equivalent to physically guaranteeing that
there are no adversaries within a geographic region around the
source. Additionally, proximity protection may be achieved by
appropriately employing scheduling and traffic control at inter-
mediate routers (e.g., an overlay network or an ad-hoc network)
in order to ensure a specified level of minimum network delay.

Finally, we note that the authentication delay that can be re-
duced by proximity protection is quantized to multiples of the
interval length. If an application needs to further reduce the au-
thentication delay gap between the protected area and the largest
forge-capable area, or the guaranteed area is too small to include
any forge-capable area, it can use smaller intervals at the ex-
pense of additional communication overhead. Further, it might
be necessary to shorten the interval length in order to have the
resolution to define protected regions on networks where the
nonvariable delay component is small.

B. Distributed Key Distributors

We now present a scheme for reducing full authentication
that may be used when there are no proximity guarantees.
This scheme can be used with traditional TESLA or staggered
TESLA. For simplicity, we focus our discussion on applying
distributed key distributors to TESLA.

We start by examining the total time that a packet will stay
in the buffer in conventional TESLA, then we discuss the fac-
tors we can change to reduce delay. Consider a packet sent at

time in interval , which takes time units to arrive at the re-
ceiver. The first packet in interval that contains the key seed
needed to authenticate the packets from interval will be sent at
time . It takes time units for this packet and, hence, the
key seed to be delivered. Upon receiving this packet, the receiver
can start authenticating packets from interval . Thus, the total
time that the packet from interval will remain in the buffer is

. Among these four factors, , , and are
unchangeable. We can control , the time needed for the key
to cross the network, by introducing additional key distributors
in the network. These key distributors are trusted by the source,
and possess a copy of the whole set of key seeds prior to the start
of communication. The key distributors must be time-synchro-
nized with the source, and will send out key seeds at the same
pace as the source. Synchronization can be accomplished by em-
ploying standard methods, such as NTP [28], to synchronize a set
of distributed servers. The key distributors do not distribute con-
tent, but instead save communication overhead by sending only
one key packet for each interval. The source can be thought of as a
special key distributor, which sends out keys and data at the same
time. The use of the key distributors allows us to partition the net-
work, whereeach network node belongs to the partition with min-
imum delay between the key distributor and itself. This reduces
the average delay needed to receive the authentication key.

The key distributors can be placed at arbitrary locations in the
network, though it is desirable to evenly place the key distribu-
tors in the network in order to better reduce the average authen-
tication delay. If the network topology is known and the size of
the network is small, the optimal locations can be obtained by
exhaustive search. For larger networks, the -means algorithm
[29] can be modified to find the optimal locations for the key
distributors. Each object is categorized in one of the clusters
according to the nearest neighbor policy. In our key distributor
problem, the positions of the network nodes yield centroid
points, where we place the key distributors. However, it should
be noted that a slight modification to the -means algorithm is
necessary since we do not have control over the position of the
source, and must therefore fix one of the centroid positions, and
determine the locations of remaining centroids in order to
minimize network delay.

We now outline a modified -means algorithm for placing
the key distributors. As input to the algorithm, we assume that
we have knowledge of the relative network delay positioning of
each network entity.

1) Begin with an initial choice of nodes, together with
the source as the centroid points.

2) Partition the whole set of objects into clusters using the
nearest neighbor policy.

3) Compute the centroid for each cluster and obtained a new
set of centroid points, except the one with the source as its
centroid.

4) Compute the attribute for the new partition. If it has been
changed by a small enough amount since the last iteration,
then stop. Otherwise, go to step 2.

Just as in the traditional -means algorithm, our modified
-means algorithm will converge to a local optima. In reality,

network delay is variable, and the positions of the key distribu-
tors can be achieved using the estimated average delay.
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Fig. 6. d+ 1 consecutive intervals at the receiver. We depict the arrivals from
the source during the first interval using blank triangles, and denote their inter-
arrival times by t . The first packet received in the d + 1th interval, whether
from the source or the adversary, is depicted by the solid black triangle, and ar-
rives after t seconds after the start of the d + 1th interval.

Finally, we would like to briefly mention an alternative to dis-
tributed key distributors. The multiple key distributors are re-
sponsible just for transmitting key information. It is possible
to replicate full multicast server functionality in the network
and have the replicated servers transmit both content and key
seeds. This has the effect of cutting the network into smaller net-
works for both the content distribution and the key distribution
functions. Such a strategy is merely running multiple staggered
TESLA or TESLA servers and, therefore, we will not consider
it further in this paper.

V. BUFFER REQUIREMENTS AND TRADEOFFS

When using staggered TESLA, choosing an appropriate buffer
size becomes an important issue. Too large a buffer size is a waste
of resources, while too small a buffer will result in buffer over-
flow. In this section we revisit staggered TESLA and explore the
required buffer size for threat scenarios consisting of different ad-
versarial attack rates. By explicitly calculating the average buffer
size needed for the receivers, we provide guidelines for designing
the buffer to fit the application and threat environment.

We employ a single adversary with the same network layout
as depicted in Fig. 1. Let us consider successive time in-
tervals at the receiver. These intervals correspond to the receipt
of packets sent in consecutive intervals, as represented in
Fig. 6. We denote the duration of each time interval by , which
is a constant value. Throughout our discussion, we will assume
that an adversary forges packets corresponding to the interval
that is associated with the latest key seed the receiver knows.
We will revisit this assumption in Section VI.

We will break the calculation of the buffer requirements into
two parts: first, we will consider packets originating from the
source, and then we will consider adversarial packets. After
completing these analyses, we combine the two components to
get the total average number of packets in the buffer.

For the first part, we assume that the packets sent by the source
follow a Poisson process with parameter ,1 and, thus, the inter-
arrival times are governed by an exponential distribution with
parameter , . We assume that there are a total
of arrivals in the first interval that came from the source, and
we denote their interarrival times as , as depicted by
the blank triangles in Fig. 6. Since the interarrivals are exponen-
tially distributed, we may use the memoryless property to define

to be the time from the start of the first interval to the first
arrival, in which case has the same distribution as .

During the th time interval, the first packet that arrives,
which we depict with a solid black triangle, may be either from
the source or from the adversary. By the memoryless property of

the exponential distribution, the time period from the boundary
of the th interval to the arrival of the first received packet
originating from the source in the th interval has the same
distribution as . Similarly, if the adversary emits packets as
a Poisson process with parameter , then the time period
from the boundary of the th interval to the first received
packet originating from the adversary in the th interval has
exponential distribution with parameter , .
Hence, the time period from the boundary of the th
interval to the first received packet in the th interval is
the minimum of and , . Assuming that
and are independent, then has exponential distribution with
parameter , i.e. .

Packets originating from the source during interval can be au-
thenticated when the receiver receives the first packet sent during
interval because the packet contains the key seed needed to
recover the authentication key . In Fig. 6, all packets received
in the first interval will be authenticated after the receiver re-
ceives the first packet in the th interval. Therefore, the total
time these packets will stay in the buffer are

...
...

(5)

The expected value of is

(6)

where is the probability of having packets from time in-
terval1.Theexpectedvalueof conditionedonthe totalnumber
of arrivals that originated from the source is the average of
the total time these packets will stay in the buffer. Thus

(7)

Since are from independent exponential dis-
tributions with parameter , and has exponential distribu-
tion with parameter , the expected values are and

, respectively. Hence, (7) can be simplified as

(8)

Substituting (8) into (6) and noting that has Poisson distri-
bution with parameter , yields

(9)
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Fig. 7. Arrival and departure process �(t) and �(t) for packets arriving at a
receiver.

We will let stand for the number of packets that origi-
nated from the source and are in the buffer at time , while we
will denote to be the number of packets originating from
the source that the receiver receives and to be the number
of packets the receiver authenticates until time . Further, let
be the time spent in the buffer by the received packet origi-
nating from the source. The time average of up to time is

(10)

Usually changes with time , but it tends to a steady-state
value, , as increases, . Similarly, the
steady-state arrival rate of packets originating from the source
during is defined as

(11)

The average time in the buffer spent by a packet that originated
from the source is

(12)

The arrival and removal of the packets sent by the source is
shown in Fig. 7. The arrival process follows a single increase
model, whereas the removal process is a multiple decrease
model since many packets are flushed from the buffer simulta-
neously. From Little’s theorem [30], the relationship between

, , and is . Assuming ergodicity in the
arrival process, we may equate the time average with the
ensemble average to get .

The derivation of the average time to remove a false packet
is similar to the above calculation. The receiver does not need
to wait for the full disclosure delay period to remove false
packets in staggered TESLA. Let be the number of intervals
needed to remove a forged packet. Then, the expected total time

that a forged packet will stay in the buffer is

(13)

TABLE I
(THEORETICAL) AVERAGE NUMBER OF PACKETS IN BUFFER

From Little’s theorem, the average number of false packets
can be expressed as . Again from the assumption
of the ergodicity of the arrival process, we can equate with

. Thus, .
The packets in the buffer either originate from the source or

from the adversary. Hence, the total average number of packets
in the buffer is the sum of those originating from the source

and those from the adversary

(14)

We calculated the average number of packets in the buffer for
different attack rates and for varying amounts of MACs em-
ployed in staggered TESLA. The values were calculated ac-
cording to (14), and are presented in Table I, where the interval
length was 200 ms, the delay disclosure was four intervals, and
the mean interarrival time from the source was 40 ms. The first
line of the table corresponds to the average interarrival time of
the adversary’s packets in units of milliseconds. An infinite ad-
versarial interarrival time corresponds to no adversary. If we
place the adversary at a distant location relative to the source, the
single MAC case, which corresponds to conventional TESLA,
has intervals. Similarly, in this scenario, when we use
four MACs, the number of intervals needed to purge forged
packets is . From this table, we see the advantage that
staggered TESLA provides as we increase the attack rate.

One way to think of the system is an queue with
two classes of arrivals—one from the source and the other from
the adversary. These two arrivals are independent Poisson pro-
cesses with different parameters and, hence, their sum is simply
another Poisson process with parameters equal to the sum of
the parameters of the two classes. These two classes of arrivals,
however, have different service characteristics. Forged packets
have a service time that depends on the availability of authenti-
cation keys, while nonforged packets must wait the full disclo-
sure delay to be fully authenticated.

VI. SIMULATIONS AND PERFORMANCE ANALYSIS

We performed a series of event-driven simulations to evaluate
the performance of staggered TESLA and techniques to reduce
the full authentication delay. The first set of simulations, pre-
sented in Sections VI-A–C, studies the multigrade property of
staggered TESLA. In these simulations, we assume there is no
variability in the link delays. This allows us to deduce the ef-
fect of the adversary’s network position on the buffering and au-
thentication process. The second set of experiments, presented
in Section VI-D, involves a more general network with variable
delay links.
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Fig. 8. Arrangement of the source (S), receiver (R), and adversary (A) in the
simulations. The connection between each pair of participants represents the
aggregate link.

A. Simulations on Multigrade Authentication

The first set of experiments analyzes the improvement to the
utilization of the receiver’s buffer, as well as the impact that
an adversary’s location has on the buffer’s behavior. We con-
ducted two simulations that involved one sender, one receiver,
and one adversary, as shown in Fig. 8. In this setup, we ab-
stracted the possible existence of multiple hops between each
entity by representing the connection between each pair by a
single, effective link. The first simulation we conducted is de-
signed to show the effective usage of the receiver’s buffer and
the speed at which the receiver removes forged packets from
the buffer when the adversary is at a fixed location. The second
simulation shows how the performance of staggered TESLA
changes for specific locations of the adversary relative to the
source and receiver. In both simulations, we collected statistics
for the number of packets in the buffer and calculated the per-
centage of packets that actually originated from the source. Ad-
ditionally, we recorded the total time needed to purge a forged
packet from the buffer.

For both simulations, we set the length of a time interval to be
ms, and the key disclosure delay to be four intervals.

Both the source and the adversary send out packets as a Poisson
process. The source sends out packets with an average of interar-
rival time of 40 ms, which is a typical sending rate for MPEG-4
video [23]. The average interarrival time of packets from the ad-
versary is a parameter in the first simulation, and fixed at 5 ms
in the second simulation. The network delay between the source
and the receiver was set to 600 ms. We assumed that the adver-
sary has a fast link to the receiver with a delay of only 1 ms. The
delay between the source and the adversary is set to 599 ms in
the first simulation, and varies in the second simulation.

The objective of a DoS attack is to keep the receiver’s buffer
as full as possible. We now look at the strategic issues governing
the adversary’s attack. An adversary has to decide which in-
terval he or she will attempt to forge packets for before he or
she transmits those packets. On one hand, an adversary does
not want to send “old” packets that have already violated the
TESLA security condition as these will be immediately dis-
carded by the receiver. On the other hand, if the adversary knows
the key seeds before the receiver, he or she also does not want
to release those seeds to the receiver because giving new key
seeds to the receiver will help the receiver free the buffer even
faster. Third, the adversary also wants to make the bogus packets
stay in the buffer as long as possible. Thus, the adversary should
forge packets corresponding to the interval associated with the
latest key seed that the receiver knows.

In order to reveal the behavior of staggered TESLA under
the worst possible threat scenarios, we empower the adversary
by giving him or her knowledge of the difference between the
sender-to-receiver network delay and the sender-to-adversary-
to-receiver network delay. From the knowledge of the network
delays, the adversary can figure out the newest key the receiver
will know when he or she receives forged packets. The adversary
should then transmit packets from the interval that corresponds
to the release of that key. If the adversary has some of the keys
to calculate the attached MACs, those MACs will pass the au-
thentication check. If the adversary does not have the keys, he
or she will fake those MACs with random bits. Those MACs
will fail in the authentication check. The closer the adversary is
to the source, the sooner he or she receives the key seeds and,
thus, can attach more valid MACs to the packets, requiring a
longer period for the receiver to remove the forged packets. In
the worst case, if the adversary knows all of the key seeds ex-
cept the latest, it will take the receiver the full disclosure delay
to flush bogus packets from the buffer.

B. Performance Analysis of Staggered TESLA

We now examine different sending rates for the adversary
and the effect these rates have on the performance of staggered
TESLA. In order to gauge the efficiency of the staggered MACs
to remove packets from the buffer, we set the buffer size to
be sufficiently large so that buffer overflow does not occur for
all adversarial transmission rates. We measured the number of
packets in the receiver’s buffer and calculated the proportion of
packets in the buffer that originated from the source. Addition-
ally, we computed the total time needed to remove a false packet
from the buffer. The simulation was run for 50 s, long enough
for the system to achieve steady-state. We compared the per-
formance for different amounts of MACs in staggered TESLA.
Since the key disclosure delay was four intervals in the simula-
tion, the maximum number of MACs that could be employed in
each packet was 4. Note that when only one MAC is attached to
each packet, the situation is precisely conventional TESLA.

In the simulation, the adversary is set to be relatively far away
from the source (at a fixed delay of 599 ms). In order to demon-
strate the behavior of staggered TESLA during a normal traffic
scenario and to illustrate the potential damage that our adver-
sary can cause, the first 5 s involved only the source, and the
adversary commences his or her DoS attack after that.

Fig. 9 shows a realization of the number of packets in the
buffer for the first 30 s, when the average interarrival time of
packets from the adversary is 5 ms. Before the start of the ad-
versary’s DoS, the number of packets in the buffer is about 18.
The number of packets in the buffer sharply increases as the ad-
versary starts sending forged packets for all cases. The dashed
lines depict the average number of packets in the buffer before
the start of the adversary’s DoS, while the solid lines depict the
average during the DoS. When the receiver receives a packet
which does not contain a new key seed, the packet will be put
into the buffer. When a packet is received that provides the key
seed for a new key, all of the packets in the buffer with MACs
claiming to have been created using the new key will undergo
authentication verification. If the adversary does not have the
new key when he or she forges packets, those packets are proven
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Fig. 9. Number of packets in the buffer in the first simulation, where the
source–adversary link has a delay of 599 ms. The four curves correspond to
different amounts of MACs employed in staggered TESLA. The adversary
starts the DoS attack at 5 s.

TABLE II
AVERAGE NUMBER OF PACKETS IN BUFFER

to be false in this layer’s authentication check and are then dis-
carded. If the new key is the last key used to compute the MACs
in a packet from the source, the packet will be completely au-
thenticated.

It is clear from Fig. 9 that when multiple MACs are em-
ployed in staggered TESLA, the number of packets in the buffer
are much lower during a DoS than in the case of conventional
TESLA. A full-fledged version of staggered TESLA (in this
case, employing all four MACs) is able to significantly reduce
the average amount of packets in the buffer, even compared to
the cases when only two or three MACs are used. In Table II,
we present the averaged values of the number of packets during
the DoS for a time period of 45 s. The first line of Table II is
the average interarrival time of packets sent by the adversary,
in units of milliseconds. corresponds to no adversary, and
can be identified with the first 5 s of the simulation. Columns
further to the right represent more powerful adversaries that are
capable of conducting their DoS attack at higher attack rates. In
all cases, the number of packets in the buffer increases as the
adversary’s sending rate increases.

The true advantage of staggered TESLA is revealed when we
examine the results within each column. For a fixed column (i.e.,
when the sending rate is fixed), the number of packets in the
buffer is lower when there are more MACs in each packet. A
more enlightening phenomenon is observed when we increase

TABLE III
AVERAGE PERCENTAGE OF TRUSTED PACKETS IN BUFFER

TABLE IV
AVERAGE TIME TO PURGE A FORGED PACKET

the attack rate of the adversary. For example, examining the
columns for an attack rate of 40 and 2 ms, which corresponds to
an increase in the attack rate by a factor of 20, we see that the
number of packets in the buffer increases roughly by a factor
of 10 for conventional TESLA, but only by a factor of 3 for
staggered TESLA with four MACs employed. Comparing the
four cases in the table, full-fledged staggered TESLA has the
best performance.

Staggered TESLA not only decreases the number of packets
in the buffer compared to conventional TESLA, but also im-
proves buffer utilization efficiency. In Table III, we calculated
the average percentage of packets in the buffer that originated
from the source. In all cases, the utilization efficiency drops
as the adversary’s sending rate increases. For a fixed sending
rate, the efficiency increases as we use more MACs and shows
the improvement that the full-fledged staggered TESLA pro-
vides compared to TESLA. Further, for full-fledged staggered
TESLA, the buffer utilization drops slower as we increase the
transmission rate than it does for conventional TESLA. Overall,
these results mean that staggered TESLA will provide improved
resilience to buffer overflow attacks.

Overall, the use of multiple, staggered MACs in delayed
key disclosure decreases the buffer requirements and more
efficiently uses the buffer. These improvements are due to the
fact that the receiver removes false packets faster in staggered
TESLA than in conventional TESLA. This can be explicitly
seen in Table IV, where we present the average time needed
to remove a false packet from the buffer. When there is only
one MAC attached to each packet, it takes the receiver the
full-delay disclosure time to remove false packets. Since the
key disclosure delay is four, it takes the receiver four intervals
to remove a false packet. Because some packets arrive earlier
in an interval and some arrive later, the average time to remove
a false packet is around 720 ms. When there are two MACs
in each packet, it takes the receiver three intervals to remove
a false packet and the average time to flush false packets is
around 520 ms. The decrease in time is due to the fact that
the adversary does not have both and when forging
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TABLE V
AVERAGE NUMBER OF PACKETS IN BUFFER

packets. When the number of MACs increases to three, the
number of intervals needed to remove a false packet decreases
to two. Finally, when there are four MACs appended to each
packet, it only takes the receiver one interval to remove forged
packets, which yields an average buffer time of around 120 ms.
In this case, when the adversary forges the packets, he or she
does not know any of the keys used to compute the MACs (i.e.,

, , , and ).

C. Impact of the Locations of Adversaries

We conclude from the above discussion that the source should
attach MACs in each packet to optimize the performance when
the adversary is “relatively” far away. We now examine the
relationship that the adversary’s position has upon staggered
TESLA. We emphasize that the advantages provided by stag-
gered TESLA do not depend on the ability of either the source or
the receiver to locate the adversary’s relative position, nor does
it depend on the ability to formally map out a forge-capable re-
gion in the network. Rather, the performance advantages follow
strictly from the use of multiple MACs.

The second simulation was conducted to analyze the effect
of the adversary’s position. The adversary’s DoS behavior was
fixed throughout all simulations as a Poisson source with an av-
erage sending rate of a 5-ms delay between consecutive packets.
The adversary was placed at different, constant network delay
distances from the source. We measured the number of packets
in the buffer for different locations for the adversary. The av-
erage number of packets in the buffer is shown in Table V. The
first row in the table is the source-to-adversary-to-receiver delay
in units of milliseconds. It was assumed that the adversary had
a fast connection with which to attack the receiver and, thus, the
adversary-receiver delay was fixed to 1 ms. Thus, the adversary
becomes progressively closer to the source as we move from left
to right on the table. The delay corresponds to no adversaries.

From this table, we see that for scenarios where the adver-
sary is further away from the source, there is improved buffer
behavior as we use more MACs. On the other hand, when the
adversary is closer to the source, there is little advantage to em-
ploying multiple MACs as the number of packets for different
amounts of MACs is practically the same. A second observation
that can be made from this table is that the number of packets in
the buffer for different MACs can be divided into an amount of
clusters that are roughly . For example, in the case
where ms, there is a single cluster centered at 150
packets, while for ms, there appears to be three
clusters: one at 157.5, one at 116.8, and one centered around
75. Similar observations can be made when one examines the

TABLE VI
AVERAGE TIME TO PURGE A FORGED PACKET

Fig. 10. Position of different classes of adversaries and their corresponding
forge-capable areas for staggered TESLA. Here, the key disclosure delay is
d = 4.

average time needed to purge a forged packet, as presented in
Table VI.

As we discussed earlier, keys sent out at different times will
result in different forge-capable areas. The position of the ad-
versary determines how many valid MACs he or she can forge
when he or she sends out the forged packets. Let us consider a
staggered TESLA packet, sent during interval , that consists of
four MACs, such as

As shown in Fig. 10, when the path from the source to the re-
ceiver via adversary is 600 ms (three intervals), is just
outside the forge-capable area of . does not have any
of the keys needed to compute the MACs when he or she forges
the packets. Thus, when there are four MACs attached in the
packets, the receiver can remove those forged packets from
when he or she receives . It takes the receiver only one in-
terval to remove false packets. We have depicted the sequence
of events leading to the removal of forged packets in this sce-
nario in Fig. 11(a). During time interval , the adversary gets

and has . At the same time, the receiver has received
and has . Recall that we assumed a powerful adversary who
knows the state of the receiver he or she is attacking, and that
the adversary will therefore forge packets corresponding to the
interval associated with the latest key the receiver knows. Thus,
during interval , the adversary will create forged packets .
The adversary did not know any of the keys , , , or

and, hence, will only stay in the receiver’s buffer for
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Fig. 11. Sequence of events in staggered TESLA. (a) The case when the source
(S)-adversary(A)-receiver(R) delay is 600 ms. (b) The case when the S-A-R
delay is 400 ms.

one interval. In contrast, if only three MACs were used in the
packets, the receiver will only be able to remove false packets
when he or she receives the seed for , and the receiver must
wait for two intervals before removing false packets. In the ex-
treme case, for conventional TESLA, it will take the receiver
four intervals to remove false packets.

Consider adversary , whose source-adversary-receiver
delay is two intervals. He or she is outside the forge-capable
area of , but inside the forge-capable area of . If
the source attaches four MACs, then is able to forge the
fourth MAC correctly. We present the sequence of events for

in Fig. 11(b). receives during interval , but
will create a forged packet during interval . Because

knows during time interval , the receiver will
not be able to reject until interval , when it gets the
seed to calculate . Thus, it is actually
that provides the ability to remove forged packets and, hence,

does not help to remove packets any faster.
This explains why attaching three and four MACs gives roughly
the same performance for an S-A-R delay of 400 ms in Table V.

Other locations for the adversary follow the same patterns.
For adversary , which is one interval away, attaching two,
three, or four MACs gives roughly the same result. Finally, for
adversary , who can get the key seeds as soon as the source
releases them, only one MAC is able to authenticate packets and,
thus, all cases give approximately the same result as TESLA.

An interesting observation can be made if we examine adver-
sary , who is 2.5 intervals from the source. is inside the
forge-capable area of key . At first glance, the case should
be similar to the scenario for and have only three levels.
However, since the adversary receives in the middle of
an interval, all packets forged before the adversary receives
the seed will have wrong fourth MACs. For some adversarial
packets, all four MACs are useful for removing packets, while
for others, only three MACs are useful. Thus, there are four
levels for the number of packets in the 500-ms column in
Table V, though the improvement of attaching four MACs over
three MACs is not as large as for the 600-ms delay case.

The theoretical values in Table I are close to the simulation
results in Tables II and V. There are two factors affecting the dif-
ferences. First, the theoretical calculations assumed the key seed
is always available at the beginning of an interval for the adver-
sary. In reality, this is not the case, and this effect is more pro-
nounced when the adversary is far away. The adversary might
receive shortly into the interval, but until that time, any forged

will use an incorrect and, thus, will be immediately
dropped by the receiver since it will fail the key seed verifica-
tion. This results in the simulation having slightly lower values,
as seen when comparing the 600-ms cases with the values from
Table I. Second, the theory calculations assumed that during
each interval, the key seed is always available in the first packet
that arrives at the receiver, though in actuality, the first few
packets might fail seed verification. Consequently, packets from
interval remain in the buffer for a slightly longer period of
time, and this effect can be seen in the case where four MACs
are used. These two effects appear in different locations in the
tables. Overall, the discrepancies are small, which suggests that
the theoretical calculations can serve as a good guideline for de-
termining buffer requirements.

D. Simulation on Reducing Authentication Delay

The second set of experiments compares the full authentica-
tion delay and communication overhead of our two schemes
described in Section IV. The simulations were conducted in
the ns2 simulation environment with the network configuration
shown in Fig. 12. The network is comprised of 64 stationary
nodes located on an 8 8 grid. The distance between adja-
cent nodes is 50 m, and the communication range and sensing
range are set to be 50 and 100 m, respectively. Thus, nodes
can only communicate with their adjacent neighbors. Node 56
is set to be the source, which sends out packets as a Poisson
source with 40-ms average delay between successive packets.
For simplicity, broadcast is used as the traffic dissemination pat-
tern in the simulations. Each node only forwards newly received
packets and discards all old ones. There is a fixed 25-ms pro-
cessing delay at each node before forwarding each packet. In ad-
dition to the variable queuing delay provided by ns-2, we added
a random delay that was uniformly distributed between 0 and 10
ms to reduce collisions. The payload of each packet is 1300 B,
corresponding to a typical medium-quality video [23]. We chose
802.11b for the ad hoc network and, thus, the link bandwidth is
11 Mb/s. The farthest node (i.e., node 7) is 14 hops away via the
shortest path and has a shortest path network delay of around
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Fig. 12. Grid network topology of 64 nodes. If the source can protect the region
left to the solid line, then the average authentication delay can be reduced by
100 ms. The dashed line is the assurance boundary of 200 ms.

400 ms. The addition of queueing delay and use of an alterna-
tive path may result in longer delay. The interval size is 100 ms,
and key disclosure delay is 800 ms.

In Fig. 12, the five-hop neighbors of the source will have a
delay greater than 100 ms. If the source can employ proximity
protection for the region to the left of the solid line (which de-
notes the 100-ms delay line), then it is not necessary for the
receivers to check the authenticity of the last MAC for full au-
thentication. Further, it is not necessary to attach the last MAC
in order to save communication overhead.

The positions of the key distributors are determined by the
minimum sum of network delay according to the partition made
by the key distributors. We placed the distributors by conducting
a search to find the best locations for up to four key distributors.
For the case of only one key distributor, either node 20 or 29
will be the solution. When two key distributors are placed, four
combinations give the same result—nodes 10 and 38, nodes 11
and 45, nodes 11 and 46, and nodes 18 and 38. Only one choice
of locations is available for three key distributors, namely, nodes
14, 18, and 45. Either nodes 10, 22, 34, and 53 or nodes 13, 17,
43, and 46 can be chosen for the four key distributors scenario.
The source sends out packets as a Poisson process with 40-ms
average interrarival time, while the key distributors send out one
key packet per interval.

The simulation results are shown in Table VII, where we
compare TESLA, full-fledged staggered TESLA, and staggered
TESLA with a proximity protection of 100- and 200-ms delay,
and the use of distributed key distributors with up to four key dis-
tributors placed in their optimal positions. The simulation was
run for 50 s of network time while, in all cases, steady-state
was achieved in only a few seconds of simulation time. The
five columns stand for the packet size in bytes, average authen-
tication delay in milliseconds, maximum authentication delay
in milliseconds, packet delivery ratio, and the bandwidth con-
sumed in bytes at each node for each data packet compared
to TESLA. Each data packet consists of 24-B physical-layer

TABLE VII
COMPARISON OF REDUCED-DELAY AUTHENTICATION SCHEMES

convergence protocol (PLCP) header and preamble, 24-B MAC
header, 4-B frame control sequence (FCS), 20-B IP header, 16-B
released key, MACs (each being 20 B), and the payload. For
the proximity protected delay of 100 ms, only seven MACs are
attached to each packet, while only six MACs are attached to
each packet for the proximity protection delay of 200 ms. For
key packets used by the key distributors, there is no payload and
no MACs are attached, producing a key-bearing packet of size
88 B.

As presented in Table VII, both the proximity protection and
distributed key distributor schemes can significantly reduce
average authentication delay. The maximum authentication
delay can also be reduced in most cases. Proximity protection
for 100/200 ms can reduce the average authentication delay
by about 100/200 ms. With only one key distributor added in
the network, the average authentication delay will decrease by
about 120 ms, which is slightly better than proximity protection
for 100 ms. Adding extra key distributors will further decrease
the average authentication delay. Due to collisions, in all cases,
the packet delivery ratio is about 95%. Compared to TESLA,
there is an additional 9%, 7%, and 6% communication over-
head compared with full-fledged staggered TESLA, staggered
TESLA with a proximity protection of 100 ms, and staggered
TESLA with proximity protection of 200 ms. By comparison,
there is only a 1%–2% additional communication overhead for
key distributors. It should be noted, however, that the reduced
communication cost for distributed key distributors does not
capture the overhead needed to maintain synchronized key
distributors, or the cost needed to install the key distribution
functionality at different locations in the network.

VII. CONCLUSION

In this paper, we introduced the notion of multigrade au-
thentication and presented an approach by which multiple de-
grees of trust can be incorporated into multicast authentica-
tion schemes based on delayed key disclosure. We developed
a multigrade multicast authentication scheme, known as stag-
gered TESLA, that employed multiple, staggered authentica-
tion keys that are used in creating the MACs for authenticating
a packet. As a result, the receiver may partially authenticate a
packet by using those authentication keys it has prior to the ar-
rival of new key seeds. The use of these staggered MACs not
only provides varying levels of authentication, but also reduces
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the delay needed to filter forged packets, thereby resulting in
more efficient utilization of buffer resources compared to con-
ventional TESLA. Theoretical results were derived that provide
design guidelines for determining the appropriate buffer size.
Further, theoretical and simulation results showed that the use
of multiple MACs and, hence, multiple grades of authentication,
allow the receiver to flush forged packets quicker than conven-
tional TESLA. As a result, staggered TESLA provides an advan-
tage against a DoS attack as it requires an adversary to attempt
a DoS at a higher attack data rate than is necessary in conven-
tional TESLA. With the complementary forms of information
assurance, staggered TESLA can further reduce full authenti-
cation delay. We also examined a second strategy for reducing
full authentication delay by introducing additional key distribu-
tors in the network. Simulations showed that staggered TESLA
with proximity protection, as well as the use of additional key
distributors, is able to reduce authentication delay compared to
TESLA, with a minor increase in communication requirements.
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