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Abstract— Current rate adaptation schemes for 802.11 exhibit
sudden and severe drops in throughput in real application sce-
narios. Although there have been several propositions to remedy
such rate adaptation failures, there has not been a thorough
analysis of the causes that lead to such a “Snowball Effect.” This
paper provides an analysis of the factors that lead to the poor
performance of current rate adaptation schemes in real environ-
ments. We show that current rate adaptation schemes fail because
they do not differentiate between poor channel conditions and
collisions as the source of transmission failures, and consequently
invoke improper responses that cascade to dramatic throughput
degradation. We support the analysis through experimentation
with real data from a wireless video surveillance application, and
provide recommendations for the next generation of WiFi rate
control schemes.

I. INTRODUCTION

Commercial wireless technologies, such as 802.11, have led
to significant enhancements in consumer access and connectiv-
ity. Unfortunately, the current generation of 802.11 equipment
can be easily demonstrated to fail when subjected to adverse
conditions associated with many real applications (especially
voice/video over WLAN). One notable flaw of current local
area wireless technologies is their use of simplistic rate adap-
tation mechanisms, which can cause a wireless application
to experience sudden, severe and often irrecoverable drops in
throughput. This effect, which throughout this paper we shall
call the “Snowball Effect” (due to its characteristic behavior
witnessed in laboratory experiments), is a serious hurdle for
the deployment and adoption of local wireless technologies for
a broad range of applications and, consequently, a thorough
understanding of this effect and the performance of current
802.11 rate adaptation schemes is necessary in order to remedy
this issue.

Rate adaptation refers to techniques for dynamically and
adaptively choosing modulation schemes according to channel
conditions. The modulation schemes that yield high PHY rates
(e.g. 54Mbps) are fragile and susceptible to corruption from
interference. On the other hand, more resilient modulation
schemes can be employed at the expense of lower PHY rates.
There is clear need for such techniques in order to use the
wireless channels effectively.

In order to understand the problems associated with rate
adaptation schemes, it is important to realize that transmission
failures occur for two reasons, collisions and poor channels,
and that the current generation of rate adaptation algorithms
typically address one or the other of these issues, and generally

not both. A consequence of such a design is that the responses
taken may not be suitable for alleviating the actual cause of
transmission failure and might, in fact, worsen the problem.
In particular, an algorithm that assumes errors are due to poor
channel conditions will severely malfunction if the errors are
actually due to collisions, and vice-versa.

Indeed, the seriousness of this problem is indicated by
several recent papers (e.g. [1], [2], [3]) where the authors
discuss ways to differentiate between the two types of errors.
Although there are several papers that propose such solutions,
there are few if any papers that diagnose the cause of the
problem itself. We believe that in order for rate adaptation
schemes to overcome this problem, it is necessary to thor-
oughly understand the details of the problem itself. In this
paper, we set out to thoroughly understand these details,
and ultimately arrive at the principal requirements of next
generation rate adaptation schemes.

Our analysis is based on both simulation studies and exper-
imental evidence. Throughout our analysis, we have sought
to explore this phenomena under real application conditions,
and thus we have setup a multi-camera video surveillance
application in our laboratory for the purpose of diagnosing
the Snowball Effect. Through our analysis, we have found
that the underlying cause of the Snowball Effect is the fact
that the current generation of rate adaptation schemes do
not distinguish between the causes for transmission errors.
In particular, when an adaptive algorithm assumes that all
transmission errors are due to poor channel conditions when
the true cause is collisions, the algorithm will invoke an
improper response that leads to a chain reaction of events
that ultimately causes the system throughput to drop into a
downward spiral. Under certain conditions, the system may
recover from the downward spiral on its own, and additionally,
the failure may be predicted using a statistic that we derived.

The rest of this paper is organized as follows: Section II
defines the Snowball Effect through a complete real-world
example. After that, Section III gives a formal analysis of
the rate control problem. In Section IV, both simulations and
real experiments are used to support the claims made in the
Formal Analysis, and also to provide additional perspectives of
the Snowball Effect. Then, Section V discusses related work.
Finally, we conclude the paper in Section VI.

Although consequences of the Snowball Effect are clear
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Fig. 1. Video streaming application. (a) Prior to t=35, the system accommo-
dates ≈ 3000 packets per second, with nearly all packets being transmitted at
54Mbps. At t=35, the system begins to crash. Note the selection of decreasing
PHY rates, and also the steep drop in the number of packets per second. (b)
Screen-shot of normal (left) and Snowball-degraded (right) video streams.

(severe and sustained drops in system throughput, possibly
unrecoverable system failure, and loss of functionality for the
end user), the dynamics of this anomaly are not so clear.

II. COMPLETE EXAMPLE - VIDEO STREAMING IN A

MULTI-CAMERA ENVIRONMENT

In this section, we define and illustrate the Snowball Effect
in a real-world setting. We have used hardware from different
vendors for transmission of voice, video, and best effort data
traffic over wireless LAN, and in all cases, the voice and video
applications suffered seriously because of manifestations of the
problem. For clarity, we only focus on the video streaming
example.

A. Experimental Setup

Our real-world experimental setup is based on a wireless,
real-time, surveillance/security system. We consider the fol-
lowing scenario: Six to ten Axis 207w1 cameras stream video
(3Mbps Constant Bitrate MPEG4/RTP) wirelessly (802.11g)
to the central security center (a Dell OptiPlex GX280) via
a wireless access point (Linksys WRT54G). The GX280
processes the video in real-time to perform actions such as:
face detection, person tracking, forbidden zone detection, etc.
Such systems are commonly used to secure airports, subway
systems, and other civil infrastructure.

In our lab, the wireless signal is exposed to regular inter-
ference from nearby APs, lights, microwaves, etc., but overall,
the channel is good enough for 54Mbps transmission. Since
there are so many contending wireless stations, we expect the

1Interestingly, the Axis cameras’ release notes caution of a potential
downfall when trying to simultaneously use a large number of cameras, but
no remedy is suggested. The problems we describe manifest with many other
hardware components and configurations, and are not specific to this particular
setup or vendor.

TABLE I

NETWORK CONFIGURATION

Layer Parameter Value
Application Codec MPEG4

Traffic Direction One-way (Uplink)
Source Rate 3 Mbps

Total Packet Size (bytes) 1536
Transport Protocol IP/UDP/RTP

Header (bytes) 20+8+12
Link/MAC Protocol 802.11g

Header (bytes) 8+24 (link+MAC)
Link Adaptation Depends on experiment

Retry Limit 3
Queue Length 1000 packets + expiration logic
Fragmentation Disabled

RTS/CTS Disabled
Physical Protocol 802.11g

Header (bytes) 8 byte preamble
Max Rate (bps) 54 Mbps
Base Rate (bps) 1 Mbps

TABLE II

802.11G PHY/MAC PARAMETERS

Parameter Value Comments
Slot time 9 µs Idle slot time (σ)

SIFS 10 µs Single Inter-Frame Spacing time
DIFS 28 µs SIFS + 2 · σ

CWmin 16 Minimum contention window
m 8 Backoff stages

CWmax 1024 2mCWmin
ACK Packet Size 14 bytes Size of an ACK

main cause of transmission failures to be collisions, not poor
channel conditions. Given this setup, our system is at high risk
for the Snowball Effect (since the rate adaptation mechanisms
will react assuming that the failed transmissions are due to a
bad channel while they are really due to collisions).

We monitored a plethora of system statistics in real-time
using AiroPeek SE [4] - a packet sniffing application which
we customized to track features of interest using its SDK.
The statistics were available in real time, but they were also
archived for later use. Additionally, we recorded the received
live video streams on the OptiPlex GX280.

The experimental procedure itself was as follows: We
started 6 cameras, and simultaneously used AiroPeek to sniff
the ether while the screen capture utility recorded the live
video. We let the system run until the Snowball Effect oc-
curred. We ran the experiment several times, varying several
camera parameters like the video source rate. For the sake
of brevity, we only present results from the experimental
configuration detailed in Tables I and II.

Additionally, unless otherwise noted, we endorse the fol-
lowing facts/assumptions:

1) Prob[there is at least one packet in a station’s queue] is
near 1, but not exactly 1.

2) A wireless packet transmission can fail for two reasons:
collision or bad channel.

3) There are no hidden/exposed nodes.

B. The Snowball Effect - Experimental Observations

When we operate the network as described in the previous
section, it suffers a catastrophic failure after a short amount
of time. This catastrophic failure is characterized by:

• Lower 802.11 PHY rates (Figure 1)
• Sudden, steep drop in throughput/goodput (Figure 2)
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Fig. 2. Prior to t=35, the system obtains nearly 18Mbps total throughput.
After t=35, the system crashes and throughput is driven nearly to zero. In
addition to throughput, the figure shows the breakdown of throughput into
CTRL/MGMT traffic and video traffic, and it also shows goodput.

• Long interruption of some of the video streams or voice
calls

• Network may not recover on its own.
To the end user, this translates to severely degraded video

quality (Figure 1(b)), dropped calls (in the case of voice), and
loss of application functionality. We call this the Snowball
Effect, and we formally analyze it next.

III. FORMAL ANALYSIS

The previous figures show that the system suddenly expe-
riences serious performance degradation - goodput and PHY
rates drop abruptly, video quality becomes very bad. What
causes this sudden change?

Throughout the formal analysis presented below, we assume
that rate adaptation algorithms trigger to lower PHY rates
based on some combination of conditions on packet statistics
such as increased delay, decreased goodput, increased interval
between successfully transmitted packets, or increased number
of retries. Of course, there are many types of rate adaptation
algorithms, but they all fundamentally rely in some way on
these “trigger statistics” [3].

We will show that when a station in the BSS lowers its
PHY rate, the global probability of a collision, P [collision],
increases, which in turn, causes the aforementioned rate
adaptation “trigger” criteria to be satisfied. Therefore the
rate adaptation mechanism lowers the PHY rate further, even
though the channel conditions remain adequate for 54Mbps
transport.

A. Normal Operation

Consider an initial set of parameters that characterizes each
of N stations in a basic service set (BSS) under normal
operation:

• λi (arrival rate for station i): Assume λi is deterministic
and identical for all i (λi = λ, ∀ i ∈ N ) due to constant
bitrate video

• µi (service rate for station i): General Distribution
For this generic queue structure (i.e. D/G/1/1000), these two

parameters yield the probability that a newly arriving packet
in station i finds the queue empty, call it qi, 0 < qi < 1, i ∈
N . For now, let all stations transmit at the highest rate (i.e.
54Mbps), so µi = µ, ∀ i ∈ N Furthermore, denote one of
these N stations as station j, so µj = µi = µ, and qj = qi = q.

B. Initial Entry into the Downward Spiral

Now, assume that an event happens (e.g. burst of interfer-
ence, etc.) which forces one of the N stations (say station j)
to move to a lower PHY rate, say 36Mbps. We now have a
new set of parameters for the low-rate station:

• λ′
j = λi = λ, ∀ i ∈ N (arrival rate is unchanged)

• µ′
j (new service rate for slow station), µ′

j < µj

The arrival rate does not change, but the decreased PHY rate
causes the slow station’s service rate to decrease to µ′

j < µj ,
and consequently, there is a reduced probability, q′j < qj , that
a newly arriving packet (in the slow station) will find the queue
empty.

C. Global Effect of One Station Switching to a Lower PHY
Rate

It is tempting to assume that this lower µ′
j corresponds

only to the station operating at a reduced rate. However, in
[5], it was shown that fast stations transmitting at 54Mbps
obtain the same throughput as slow stations at 36Mbps 2

due to the throughput-fairness property of the 802.11 DCF.
Therefore, this new µ′

j applies globally to all of the stations.
Consequently, the reduced q′j also applies to all stations. Thus,
we have:

• λi = λ, ∀ i ∈ N (unchanged)
• µi = µ′

j ,∀ i ∈ N (global service rate reduction)

Theorem. Decreasing the global service rate, µ increases
P [collision].

Proof. We will use some of the results in [6], which is an
extension of Bianchi’s results [7] for the case of unsaturated
networks. Denote C̃ as the number of contending stations (i.e.
the number of stations with at least one packet in their queue)
in a discrete time step. Initially, assume all stations transmit at
their maximum rate (54Mbps). Furthermore, denote C̃avg as
the average number of contending stations in each time step:

C̃avg = N −
N∑

i=1

qi (1)

Now, let one of the N stations (station j) switch to a
lower rate. Then, by our previous arguments, there is a global
reduction in service rate (i.e. µi is reduced to µ′

j , ∀i, and hence,
qi is reduced to q′j , ∀i). Then, by Equation 1, this means that
C̃avg (and hence C̃) is likely to be larger now than it was
when all stations were transmitting at 54Mbps and obtaining
qi.

Recall the formula for calculating the collision probability
under non-saturated conditions [6], p(C̃) = 1−[1−τ(C̃)]C̃−1,
where τ(C̃) is the probability that one of the contending
stations transmits in a given time step. By inspection of this
equation, we see that the collision probability grows with C̃.
But we just showed that C̃ grows with the number of low-
rate stations in the BSS, and hence with decreasing service
rate.

2This effect will be amplified in 802.11n, where there is a wider range of
PHY rates to choose from.
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When the collision probability grows, we argue that there
is an increased likelihood that the “trigger statistics” satisfy
their criteria. For one example, consider the “retry” “trigger
statistic”. We just showed that lowering the PHY rate increases
P [collision]. But increasing P [collision] implicitly implies
that there are more failed transmissions, on average. When
transmissions fail, they are retransmitted until they either
succeed or expire [8]. Thus, increasing P [collision] also
increases the average number of retries.

As a second example, consider the “delay” “trigger statis-
tic”. The delay for a station in an unsaturated 802.11g BSS
is comprised of the following components: D = DIFQ +
DMAC + DTX , where DIFQ is time spent waiting in the
interface queue, DMAC is time spent in the MAC (delay
due to DCF contention, backoff, etc.), and DTX is trans-
mission time. Lowering the PHY rate obviously increases
DTX . Furthermore, as we just explained, the corresponding
increase in P [collision] implies an increase in the average
number of retries. When a station suffers a failed transmission
attempt, that station must increment its backoff stage before
the transmission may be reattempted [8]. Thus, as the num-
ber of retries increases on average, we see a corresponding
shift to higher backoff stages being used more frequently.
Consequently, a packet spends more time doing backoff, thus
increasing DMAC . In fact, lowering the PHY rate of a station
in the BSS hurts doubly bad since it will also cause the
medium to be sensed busy more frequently by other stations,
hence causing their backoff counters to take longer to reach
zero (and increasing DMAC even further). The sharp increases
in DTX and DMAC mean that it takes longer for a packet to
leave the transmission stage. Since a packet cannot leave the
IFQ for the transmission stage until the previous packet leaves
the transmission stage, this means that DIFQ also increases.

Similar arguments, omitted for brevity, reveal that increasing
P [collision] causes goodput to decrease, and the interval
between successfully transmitted packets to increase.

D. Completing the Circle

According to the fundamental fact stated in the beginning
of this section, rate adaptation algorithms trigger to lower
PHY rates based on some combination of conditions on the
trigger statistics. We just showed that when a station lowers
its PHY rate needlessly, it increases P [collision], and hence,
it promotes the trigger statistics to satisfy their criteria, hence
causing stations’ rate adaptation mechanisms to lower PHY
rates even further. Therefore, we are back where we started,
but at a lower PHY rate. This cycle continues until nearly all
stations are using their lowest rate. At this point, catastrophic
failure is imminent.

IV. EXPERIMENTAL ANALYSIS

In this section, both simulations and real experiments are
used to support the claims made in the previous section. Fur-
thermore, we provide additional perspectives of the Snowball
Effect by using results from real experiments.
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Fig. 3. (a) Probability of collision versus number of low-rate stations; (b)
Probability of collision for ARF link adaptation vs. no link adaptation.

A. ns2 Simulation

Our ns2 [9] simulation environment is designed to replicate
the parameters of our real experiments (as shown in Table I).
There are no interferers, and the SNR is perfect.

The goal of our first ns2 experiment is to validate the
aforementioned theorem by studying the relationship between
P [collision] and the number of low-rate stations. We expect
P [collision] to increase with the number of low-rate stations.
Indeed, Figure 3(a) shows P [collision] for a station in the
BSS vs. the number of low-rate (36Mbps) stations for a
fixed number (5) of total stations in the BSS. We increased
the number of low-rate stations from 0 to 4, and reported
P [collision] for the station that remained at a high rate
(54Mbps). It is clear from the figure that increasing the number
of low rate stations increases P [collision], thus validating our
hypothesis.

The goal of our second experiment is also to validate the
aforementioned hypothesis, but in a way that better resembles
real-life rate adaptation. Namely, we set out to study the
probability of a collision for a station in a BSS that uses ARF
[10], and in a BSS that does not use any rate adaptation. The
results, Figure 3(b), clearly show that for a given number of
stations, when ARF is used, P [collision] is higher than if ARF
is turned off and all stations transmit at a fixed rate of 54Mbps.
Since our simulation was configured with no interferers and
a perfect SNR, the increase in P [collision] is entirely due
to ARF being fooled: it treats collisions as channel errors,
and lowers the PHY rate needlessly - confirming our previous
claims.

B. Snowball effect in real-lab WLAN video streaming

Multiple real-world experiments with video/voice over
WLAN confirm the “Snowball” behavior. We first describe
in more detail the results already shown in Figures 1 and 2.
After that, we examine the time needed to recover from the
“crashed” regime when one or more clients are intentionally
shut down so as to free up bandwidth and ease contention.

Figure 1 shows a real-world example of catastrophic failure
in a video over WLAN experiment. Figure 1(a) shows the
rapid rate at which the network crashes with respect to
the decreasing PHY rates selected by the rate adaptation
mechanisms. The total system packets per second indicates
that system throughput plummets as lower PHY rates are
selected, and hence, video quality is degraded. Figure 2 shows
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the relationship between throughput (total number of bits
that are physically put on the air), broken down into video
data and 802.11 Ctrl/Mgmt packets, and the corresponding
goodput (subset of video data packets that are successfully
acknowledged by the intended receiver). It is clear that after
the network crashes (at t=35), the goodput is relegated to less
than 1Mbps.

1) Recovering from Catastrophic Failure: Once the net-
work suffers a catastrophic failure, what does it take to get
the system back at a high rate? To investigate this question,
we performed the following experiment:

1) Configure 6 Axis cameras according to Table I.
2) Start all 6 cameras simultaneously.
3) When the network crashes, stop all but 1 of the cameras.
4) Start a timer and see how long it takes for the network

(i.e. the 1 remaining camera) to recover back to its
original PHY rate of 54Mbps, and source throughput
of 3Mbps.

Then, we repeat this exact experiment, but instead of
stopping all but one camera, we stop all but two cameras,
etc. Figure 4 details our results. The captions under each
figure show the number of active cameras after the crash and
the average recovery times for each experiment. As expected,
the recovery time for each experiment increases as we try to
recover more and more cameras. In fact, apparently, we cannot
recover four or more cameras (c.f. Figure 4(d)).

2) Predicting when the regime of operation is transitioning
into a dangerous state: It is important to predict when the
system state approaches catastrophic failure. In this subsection,
we present one feature that highlights the evolution of the
system state, and which furthermore, could be used to predict
the imminent state.

We expect drops in goodput to indicate potential prob-
lems. Therefore, we propose the following feature, 0 <
gpGapi(t) = goodput/video data throughput < 1,∀i ∈ N .
This feature is measured each second, and it is an indicator
of how efficiently a station is using the medium. Master
gpGap is defined as the same ratio, but it uses total system
goodput and video data throughput instead of each stations’
goodput/throughput.

In most experiments, one can visually notice a dip in the
Master gpGap feature around the time of the crash. For
example, Figure 5(a) shows such a dip 10 seconds before
the network crashes. In some cases, the dip is narrow and
deep, but in other cases, it is wide and shallow. We track the
correlation between the gpGap statistics for three cameras at a
time. The origin in this space indicates when gpGap is jointly
zero for all 3 stations, so normal operation should ideally be
as far as possible from the origin. We are interested in the
minimum distance point to the origin, representing in 3-space,
the lowest point in gpGap for all 3 cameras. Similarly, we look
at the maximum derivative points of the gpGap statistic. We
expect there to be two maximum derivative points - one highly
negative point (formation of the dip) and one highly positive
point (termination of the dip).

We show that joint gpGap statistics clearly indicate the
evolution of the system state. In Figure 5(b) and (c), we present
the joint gpGap statistics for cameras 2, 3, and 4, and their
derivatives. The color bar to the right of each plot indicates
the time dimension. In this experiment, we add a new station
to the network every 10 seconds, so 0 < t < 10 corresponds
to one active camera, 10 < t < 20 corresponds to two active
cameras, etc.

Figure 5(b) shows three distinct clouds of operation: normal,
prediction zone (a crash may be imminent), and crashed. The
crashed state corresponds to the red points after the sixth
camera becomes active, and the Snowball Effect takes its toll.
In Figure 5, there are a series of points on both the left and
right sides of the color bar. On the left side, we have marked
points in time that are within ε = 0.075 of the minimum
distance point. Notice that the black minimum distance points
are distributed most densely near the “prediction cloud” region
marked on the color bar. On the right-hand side of the color
bar, we have marked the points that are within ε = 0.40 of
the maximum derivative. One highly negative derivative point
appears early in the prediction phase, indicating the formation
of a dip. A highly positive maximum derivative point appears
at the end of the prediction phase, completing the formation
of a dip in the gpGap plot. Overall, the transition of the
jointgpGap statistic in the scatter plot indicates if the system
is operating in a healthy regime.

V. RELATED WORK

Although the IEEE 802.11 standard allows flexibility re-
garding the selection of transmission parameters, such as PHY
rate, it does not explicitly specify when and how to use specific
settings. Early link adaptation techniques like [11] select the
corresponding PHY rate according to a goodput maximization
criteria. Alternatively, the Auto Rate Fallback (ARF) algorithm
[10], and subsequent approaches [12] adapt rates depending on
the frequency of contiguous transmission failures or successes.

Several authors have recently observed flaws in the rate
adaptation mechanisms implemented in present hardware ([1],
[2]). If a rate adaptation algorithm assumes that failures are
due to a bad channel when they are really due to collisions,
then it might unnecessarily lower the PHY rate, which causes
diminished throughput, among other serious problems (as in
ARF, [10]). Since detecting channel problems (e.g. path-loss,
interference) is difficult in practice, [1] proposes a mechanism
to detect collisions. In this mechanism, stations exchange
transmission time information (piggybacked onto data packets)
when transmission failures occur. However, the detection delay
is too large to make this solution practical.

Another scheme, [2], uses RTS/CTS messages to differ-
entiate between frame collisions and frame failures due to
channel errors. In this paper, the authors recognize that an
RTS frame transmission is not at all likely to fail due to a
bad channel (because of its small size and robust transmission
modulation), and hence use it as an indicator of collision vs.
bad channel. Simulations showed throughput improvement, but
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Fig. 4. Recovery from the Snowball Effect by intentionally stopping a subset cameras. (Recovery time is: (a) 12 sec. when 5 of 6 cameras are stopped after
the crash; (b) 24 sec. when 4 of 6 cameras are stopped after the crash; (c) 54 sec. when 3 of 6 cameras are stopped after the crash; (d) System never recovers
when 2 of 6 cameras are stopped after the crash.
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Fig. 5. The gpGap Statistic (a) may be a useful statistic for predicting catastrophic failure. Its time evolution (b), and derivatives (c) are shown in the plot.

the technique suffers from overheads, and the algorithm affects
the fairness of the DCF mechanism itself.

A third adaptation scheme is SNR-based rate adaptation,
where the algorithm estimates the SNR and adjusts the
modulation scheme accordingly. Although this approach is
impressive in theory, it faces serious practical shortcomings
like long estimation delays and difficult exchange of signal
information. Delays become particularly critical in the case of
real-time voice/video streaming applications, where the link
conditions rapidly fluctuate due to mobility or interference. To
address this problem, [3] proposes a hybrid SNR-based rate
adaptation mechanism. However, this approach is limited by
the very accuracy of the estimation possible in a closed-loop,
low delay system - especially in the absence of standardized
channel condition measurements (e.g. 802.11k).

VI. CONCLUSION

The Snowball Effect is the result of an incorrect assumption
made in current rate adaptation mechanisms. We showed that
current rate adaptation schemes fail because they do not
differentiate between poor channel conditions and collisions
as the source of transmission failures, and consequently in-
voke improper responses that cascade to dramatic throughput
degradation.

Based on our analysis, we recommend that a next gen-
eration rate adaptation algorithm should have the following
requirements: (1) It should not modify the physical layer; (2)
It should not react to all collisions or specific statistics at a
fine granularity - this is overly complex and not needed; (3)
Instead, the algorithm should track how close the system is to
saturation, and adapt the rate according to the state the system

is currently operating at; (4) The algorithm should not attempt
to exploit fine-grain IEEE 802.11 parameters.

The general problem of when such adaptation should take
place, and in what way is the topic of some of our current and
future research.
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