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ABSTRACT
Wireless networks are built upon a shared medium that
makes it easy for adversaries to launch jamming-style at-
tacks. These attacks can be easily accomplished by an ad-
versary emitting radio frequency signals that do not follow
an underlying MAC protocol. Jamming attacks can severely
interfere with the normal operation of wireless networks and,
consequently, mechanisms are needed that can cope with
jamming attacks. In this paper, we examine radio interfer-
ence attacks from both sides of the issue: first, we study the
problem of conducting radio interference attacks on wireless
networks, and second we examine the critical issue of di-
agnosing the presence of jamming attacks. Specifically, we
propose four different jamming attack models that can be
used by an adversary to disable the operation of a wireless
network, and evaluate their effectiveness in terms of how
each method affects the ability of a wireless node to send
and receive packets. We then discuss different measurements
that serve as the basis for detecting a jamming attack, and
explore scenarios where each measurement by itself is not
enough to reliably classify the presence of a jamming at-
tack. In particular, we observe that signal strength and
carrier sensing time are unable to conclusively detect the
presence of a jammer. Further, we observe that although by
using packet delivery ratio we may differentiate between con-
gested and jammed scenarios, we are nonetheless unable to
conclude whether poor link utility is due to jamming or the
mobility of nodes. The fact that no single measurement is
sufficient for reliably classifying the presence of a jammer is
an important observation, and necessitates the development
of enhanced detection schemes that can remove ambiguity
when detecting a jammer. To address this need, we propose
two enhanced detection protocols that employ consistency
checking. The first scheme employs signal strength mea-
surements as a reactive consistency check for poor packet
delivery ratios, while the second scheme employs location
information to serve as the consistency check. Throughout
our discussions, we examine the feasibility and effectiveness
of jamming attacks and detection schemes using the MICA2
Mote platform.
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1. INTRODUCTION
Wireless networks are progressively becoming more afford-

able, and consequently are being deployed in a variety of dif-
ferent modalities, ranging from wireless local area networks
to mesh and sensor networks. As these networks gain popu-
larity, providing security and trustworthiness will become an
issue of critical importance. Many wireless security threats
may be addressed through appropriately designed network
security architectures [1, 10, 11, 13, 24, 27, 34], which are es-
sentially modifications of traditional security services, such
as confidentiality, authentication, and integrity to the wire-
less domain. Wireless networks, however, are susceptible
to threats that are not able to be adequately addressed via
cryptographic methods. One serious class of such threats
are attacks of radio interference.

The shared nature of the wireless medium, combined with
the commodity nature of wireless technologies and an in-
creasingly sophisticated user-base, allows wireless networks
to be easily monitored and broadcast on. Adversaries may
easily observe communications between wireless devices, and
just as easily launch simple denial of service attacks against
wireless networks by injecting false messages. Tradition-
ally, denial of service is concerned with filling user-domain
and kernel-domain buffers [12]. However, in the wireless
domain, the adversary is empowered to launch more fun-
damentally severe types of denial of service that block the
wireless medium and prevents other wireless devices from
even communicating.

Radio interference attacks are not addressable through
conventional security mechanisms. An adversary can sim-
ply disregard the medium access protocol and continually
transmit on a wireless channel. By doing so, he either pre-
vents users from being able to commence with legitimate
MAC operations, or introduces packet collisions that force
repeated backoffs, or even jams transmissions. Such MAC
and PHY-layer security threats for wireless networks have
been known for some time, and the issue of MAC-layer weak-
nesses in 802.11 has been revisited by a recent announcement
by the Australian CERT [2].



In order to ensure the dependability of future deployments
of wireless networks, mechanisms are needed that will allow
wireless networks of all types to cope with the threat of at-
tacks of radio interference, or simply RF jamming attacks.
The first stage to defending a wireless network is to un-
derstand what types of attacks are feasible, and how these
attacks may be diagnosed. This paper examines how ra-
dio jamming may be conducted, and explores the task of
detecting jamming attacks. The ability of wireless devices
to detect that they are jammed allows the wireless network
to identify regions of poor radio conditions, and therefore
take an appropriate response to such threats, such as rout-
ing around these regions or more restorative mechanisms,
such as channel surfing and spatial retreats [33].

We begin in Section 2 by presenting an overview of the
jamming problem, as well as introducing several different
adversarial models for jamming regions of a wireless net-
work. In Section 3, we discuss different measurements that
might be used to detect a radio interference attack, and
explore the situations in which these attacks can and can-
not be accurately identified as a jamming attack. In order
to address the insufficiency of the individual measurements
for detecting a jamming attack, in Section 4 we introduce
two detection schemes that build upon packet delivery ra-
tio measurements by incorporating signal strength readings
or location information to serve as the basis for consistency
checking in detecting the presence of jamming. We review
related literature in Section 5 and present conclusions in
Section 6.

2. JAMMING ATTACK MODELS AND
THEIR EFFECTIVENESS

In this section, we introduce radio interference attacks
that may be launched against wireless networks. The ad-
versary (or the malicious wireless device) that launches such
attacks is referred to as the jammer in this paper. We first
define the characteristics of a jammer’s behavior, and then
enumerate metrics that can be used to measure the effective-
ness of a jamming attack. These metrics are closely related
to the ability of a radio device to either send or receive pack-
ets. We then introduce four typical jammer attack models,
though by no means all-inclusive, which represent a broad
range of attack strategies, and will serve as the basis for our
discussion throughout the remainder of the paper. Through-
out this paper, we will use the Berkeley MICA2 Mote plat-
form for conducting our experiments with jammers. The
observed characteristics of the jammers and the detection
schemes presented later should hold for different wireless
platforms, such as 802.11.

2.1 Jamming Characteristics and Metrics
Although several studies [23,31–33] have targeted jamming-

style attacks, the definition of this type of attack remains un-
clear. A common assumption is that a jammer continuously
emits RF signals to fill a wireless channel, so that legitimate
traffic will be completely blocked [32, 33]. We believe, how-
ever, that a broader range of behaviors can be adopted by
a jammer. For example, a jammer may remain quiet when
there is no activity on the channel, and start interference as
soon as it detects a transmission. The common characteris-
tic for all jamming attacks is that their communications are
not compliant with MAC protocols. Therefore, we define a
jammer to be an entity who is purposefully trying to inter-
fere with the physical transmission and reception of wireless
communications.

The objective of a jammer is to interfere with legitimate

wireless communications. A jammer can achieve this goal
by either preventing a real traffic source from sending out a
packet, or by preventing the reception of legitimate packets.
Let us assume that A and B denote two legitimate wireless
participants, and let us denote X to be the jammer. A
legitimate participant may be unable to send out packets for
many reasons. To name just a couple, X can continuously
emit a signal on the channel so that A will never sense the
channel as idle, or X can keep sending out regular data
packets and force A to receive junk packets all the time. On
the other hand, however, even if A successfully sends out
packets to B, it is possible for X to blast a radio transmission
to corrupt the message that B receives. We thus define
the following two metrics to measure the effectiveness of a
jammer:

• Packet Send Ratio (PSR): The ratio of packets
that are successfully sent out by a legitimate traffic
source compared to the number of packets it intends
to send out at the MAC layer. Suppose A has a packet
to send. Many wireless networks employ some form of
carrier-sensing multiple access control before transmis-
sion may be performed. For example, in the MAC pro-
tocol employed by Mica2, the channel must be sensed
as being in an idle state for at least some random
amount of time before A can send out a packet. Fur-
ther, different MAC protocols have different definitions
on an idle channel. Some simply compare the signal
strength measured with a fixed threshold, while others
may adapt the threshold based on the noise level on
the channel. A radio interference attack may cause the
channel to be sensed as busy, causing A’s transmission
to be delayed. If too many packets are buffered in the
MAC layer, the newly arrived packets will be dropped.
It is also possible that a packet stays in the MAC layer
for too long, resulting in a timeout and packets being
discarded. If A intends to send out n messages, but
only m of them go through, the PSR is m

n
. The PSR

can be easily measured by a wireless device by keeping
track of the number of packets it intends to send and
the number of packets that are successfully sent out.

• Packet Delivery Ratio (PDR): The ratio of pack-
ets that are successfully delivered to a destination com-
pared to the number of packets that have been sent out
by the sender. Even after the packet is sent out by A,
B may not be able to decode it correctly, due to the
interference introduced by X. Such a scenario is an
unsuccessful delivery. The PDR may be measured at
the receiver B by calculating the ratio of the number
of packets that pass the CRC check with respect to
the number of packets (or preambles) received. PDR
may also be calculated at the sender A by having B
send back an acknowledge packet. In either case, if no
packets are received, the PDR is defined to be 0.

2.2 Jamming Attack Models
There are many different attack strategies that a jam-

mer can perform in order to interfere with other wireless
communications. As a consequence of their different attack
philosophies, these various attack models will have differ-
ent levels of effectiveness, and may also require different de-
tection strategies. While it is impractical to cover all the
possible attack models that might exist, in this study, we
discuss a wide range of attacks that have proven to be effec-
tive in disrupting wireless communication. Specifically, we
have designed and built the following jammers:



• Constant jammer: The constant jammer continu-
ally emits a radio signal. We have implemented a con-
stant jammer using two types of devices. The first type
of device we used is a waveform generator which con-
tinuously sends a radio signal. The second type of de-
vice we used is a normal wireless device. In this paper,
we will focus on the second type, which we built on the
MICA2 Mote platform. Our constant jammer contin-
uously sends out random bits to the channel without
following any MAC-layer etiquette. Specifically, the
constant jammer does not wait for the channel to be-
come idle before transmitting. If the underlying MAC
protocol determines whether a channel is idle or not
by comparing the signal strength measurement with
a fixed threshold, which is usually lower than the sig-
nal strength generated by the constant jammer, a con-
stant jammer can effectively prevent legitimate traffic
sources from getting hold of channel and sending pack-
ets.

• Deceptive jammer: Instead of sending out random
bits, the deceptive jammer constantly injects regular
packets to the channel without any gap between sub-
sequent packet transmissions. As a result, a normal
communicator will be deceived into believing there is
a legitimate packet and will be duped to remain in the
receive state. For example, in TinyOS, if a preamble
is detected, a node remains in the receive mode, re-
gardless of whether that node has a packet to send
or not. Hence, even if a node has packets to send,
it cannot switch to the send state because a constant
stream of incoming packets will be detected. Further,
we also observe that it is adequate for the jammer to
only send a continuous stream of preamble bits (0xAA
in TinyOS) rather than entire packets.

• Random jammer: Instead of continuously sending
out a radio signal, a random jammer alternates be-
tween sleeping and jamming. Specifically, after jam-
ming for tj units of time, it turns off its radio, and
enters a “sleeping” mode. It will resume jamming af-
ter sleeping for ts time. tj and ts can be either random
or fixed values. During its jamming phase, it can ei-
ther behave like a constant jammer or a deceptive jam-
mer. Throughout this paper, our random jammer will
operate as a constant jammer during jamming. The
distinction between this model and the previous two
models lies in the fact that this model tries to take
energy conservation into consideration, which is espe-
cially important for those jammers that do not have
unlimited power supply. By adjusting the distribution
governing the values of tj and ts, we can achieve var-
ious levels of tradeoff between energy efficiency and
jamming effectiveness.

• Reactive jammer: The three models discussed above
are active jammers in the sense that they try to block
the channel irrespective of the traffic pattern on the
channel. Active jammers are usually effective because
they keep the channel busy all the time. As we shall
see in the following section, these methods are rela-
tively easy to detect. An alternative approach to jam-
ming wireless communication is to employ a reactive
strategy. For the reactive jammer, we take the view-
point that it is not necessary to jam the channel when
nobody is communicating. Instead, the jammer stays
quiet when the channel is idle, but starts transmit-
ting a radio signal as soon as it senses activity on the
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Figure 1: Placement of the Motes during jammer
effectiveness experiments.

channel. As a result, a reactive jammer targets the
reception of a message. We would like to point out
that a reactive jammer does not necessarily conserve
energy because the jammer’s radio must continuously
be on in order to sense the channel. The primary ad-
vantage for a reactive jammer, however, is that it may
be harder to detect.

We have implemented the above four jammer models us-
ing Berkeley Motes that employ a ChipCon CC1000 RF
transceiver and use TinyOS as the operating system. We
disabled channel sensing and back off operations to bypass
the MAC protocol, so that the jammer can blast on the
channel irrespective of other activities that are taking place.
The level of interference a jammer causes is governed by
several factors, such as the distance between the jammer
and a normal wireless node, the relative transmission power
of the jammer and normal nodes, and the MAC protocol
employed by normal nodes. The closer a jammer is to a
node, or the higher transmit power it employs, the greater
the impact it will have on network operation. The MAC
protocols employed by the network also play a role. Usu-
ally, MAC protocols decide the channel is idle if the mea-
sured signal strength value is lower than a threshold. Many
MAC protocols, such as the one in TinyOS release 1.1.1,
uses a fixed threshold value. Some MAC protocols, how-
ever, such as BMAC [25], adapt the threshold value based
on the measured signal strength values, i.e. they choose the
minimum signal strength among the most recent n read-
ings when channel is idle as the current threshold value.
Consequently, if a constant jammer transmits at a constant
power, and both the jammer and the nodes are static, these
adaptive MAC protocols will consider the channel as idle
since they will regard the energy emitted by the jammer
as ambient noise. In addition to these network configura-
tion parameters, the impact of a jammer is also affected by
jammer-specific parameters, such as the sleep interval for a
random jammer. In order to understand the interactions of
these parameters and quantify the impact of a jammer in
different scenarios, we conducted a set of experiments in-
volving three parties: A, B, and X, where A and B are nor-
mal wireless nodes with A being the sender, B the receiver,
and X a jammer using one of our four models. The trans-
mission power levels employed by A, B, X are all −4dBm.
These three nodes are carefully placed so that X has the
same impact on both A and B. In particular, we set dXA,
the distance between X and A, equal to dXB , the distance
between X and B, and we fixed the distance between the
sender A and the receiver B at dAB = 30 inches, as depicted
in Fig. 1.

The resulting PSR and PDR for each jammer model are
summarized in Table 1. As the Table 1 shows, if A employs
1.1.1 MAC, a constant jammer that is reasonably close to
A can completely block A, from sending out packets, re-



Constant Jammer
BMAC 1.1.1 MACdXA (inch)

PSR (%) PDR (%) PSR (%) PDR (%)
38.6 74.37 0.43 1.00 1.94
54.0 77.17 0.53 1.02 2.91
72.0 99.57 93.57 0.92 3.26

Deceptive Jammer
BMAC 1.1.1 MACdXA (inch)

PSR (%) PDR (%) PSR (%) PDR (%)
38.6 0.00 0.00 0.00 0.00
54.0 0.00 0.00 0.00 0.00
72.0 0.00 0.00 0.00 0.00

Random Jammer
BMAC 1.1.1 MACdXA (inch)

PSR (%) PDR (%) PSR (%) PDR (%)
38.6 79.45 0.26 70.19 16.77tj = U[0,31]
44.0 80.15 17.48 70.30 21.95ts = U[0,31]
54.0 80.43 99.00 76.98 99.75
38.6 60.47 0.06 56.49 0.00tj = U[0,31]
44.0 60.72 47.41 56.00 0.41ts = U[1,8]
54.0 61.77 96.75 100.0 99.64

Reactive Jammer
BMAC 1.1.1 MACdXA (inch)

PSR (%) PDR (%) PSR (%) PDR (%)
38.6 99.00 0.00 100.0 0.00

m = 7bytes 54.0 100.0 99.24 100.0 99.87
72.0 100.0 99.35 100.0 99.97
38.6 99.00 0.00 100.0 0.00

m = 33bytes 44.0 99.00 58.05 100.0 87.26
54.0 99.25 98.00 100.0 99.53

Table 1: The resulting PSR and PDR for different
jammer models under various scenarios.

sulting in a very low PSR. However, if A employs BMAC,
which adapts the threshold based on the surrounding signal
strength, A can still manage to send out a large portion of
the packets, i.e, with PSR being 74.37% even when X is
only 38.6 inches away from A. The reason why A cannot
send out all of the packets is that the signal strength pro-
duced by X varies with time. The corresponding PDR in
both cases, however, is poor because most of the packets
are corrupted by the constant jammer, especially when the
constant jammer is close to the sender.

However, the same trend cannot be observed for a decep-
tive jammer. Since a deceptive jammer continuously sends
out packets with valid preamble, both A and B are forced
to constantly stay in the reception mode no matter which
MAC protocol they use. Hence, A and B cannot send out
any packets at all and the PSR are 0% all the time. PDR
in this case is defined as 0.

For the random jammer, in addition to studying the im-
pact of network configuration parameters, such as the dis-
tance between the jammer and the nodes, and the MAC
protocol on the effectiveness of the jammer, we also look
at jammer-specific parameters, such as the on-off periods.
Specifically, we studied two random jammers. For the first
random jammer, the duration of the jamming period tj is a
uniform random number between 0 and 31 spibus interrupts
in TinyOS [9], denoted by tj = U[0,31], and the duration of
the sleeping period ts is a uniform random number between
0 and 31 as well, denoted by ts = U[0,31]. For the second
random jammer, tj = U[0,31], and ts = U[1,8]. On average,
the second jammer sleeps less, and switches to the jamming
mode more often. Thus, the PSR measured in the second
jammer scenario is less than the PSR in the first jammer sce-
nario. Additionally, since the random jammer alternates be-
tween jamming and sleeping, BMAC, which always chooses
the minimum signal strength value among the recent read-
ings, cannot increase the threshold quickly enough to con-
sider the channel idle. Thus, BMAC considers the channel
as busy when the random jammer is jamming, resulting in
a lower PSR.

A reactive jammer starts interference as soon as it hears a

transmission on the channel. Consequently, the effectiveness
of a reactive jammer is also dependent on size of legitimate
network packets as well as the size of packet the jammer
emits. In Table 1, we explore the behavior of the reactive
jammer for network packets of size m = 7 and m = 33 bytes,
where the jammer emitted a 20 byte jamming packet. First,
we observe that in all cases the sender is able to reliably
send out its packets. Ideally, if m is short, one would infer
that there may not be enough time for a reactive jammer to
corrupt a network packet in transmission. However, as we
see in Table 1, for different network packet sizes, although
there is a difference in the resulting PDR, the difference is in
fact negligible. Hence, even for short packets of a few bytes
in length, a jammer employing the reactive strategy is able
to effectively disrupt network communication.

3. BASIC STATISTICS FOR DETECTING
JAMMING ATTACKS

Detecting jamming attacks is important because it is the
first step towards building a secure and dependable wire-
less network. It is challenging because jammers can employ
different models, and it is often difficult to differentiate a
jamming scenario from legitimate scenarios. Specifically, we
need to differentiate a jamming scenario from various net-
work conditions: congestions that occur when the aggre-
gated traffic load exceeds the network capacity so that the
packet send ratio and delivery ratio are affected; the inter-
rupt of the communication due to failures at the sender side,
etc.

In this section, we present several measurements that may
be employed by wireless devices for the purpose of detect-
ing jamming attacks. We explore these measurements in
detail and present scenarios where they may not be effec-
tive in detecting a jamming attack, and in fact could cause
false detections. For each of these measurements, we de-
velop statistics upon which to make decisions. Since statis-
tics built upon individual measurements may lead to false
conclusions, in Section 4 we develop two improved detection
strategies. These two detection strategies are both built
upon the fundamental assumption that communicating par-
ties should have some basis for knowing what their charac-
teristics should be if they are not jammed, and consequently
can use this as a basis for differentiating jammed scenarios
from mere poor link conditions.

3.1 Signal Strength
One seemingly natural measurement that can be employed

to detect jamming is signal strength, or ambient energy. The
rationale behind using this measurement is that the signal
strength distribution may be affected by the presence of a
jammer. In practice, since most commodity radio devices
do not provide signal strength or noise level measurements
that are calibrated (even across devices from the same man-
ufacturer), it is necessary for each device to employ its own
empirically gathered statistics in order to make its decisions.
Each device should sample the noise levels many times dur-
ing a given time interval. By gathering enough noise level
measurements during a time period prior to jamming, net-
work devices can build a statistical model describing normal
energy levels in the network.

We now explore two basic strategies that employ signal
strength measurements for detecting a jamming attack. The
first approach uses either the average signal value or the to-
tal signal energy over a window of N signal strength mea-
surements. This is a simple approach that extracts a single
statistic for basing a hypothesis test upon. Since a single



statistic loses most of the shape characteristics of the time
series, a second strategy would seek to capture the shape of
the time series by representing its spectral behavior. The
second strategy that we discuss uses N samples to extract
spectral characteristics of the signal strength for the basis
of discrimination. In the discussion below, we assume that
we have measured the channel’s received energy levels s(t)
at different times and collected N of these samples to form
a window of samples {s(k), s(k − 1), · · · , s(k −N + 1)}.
3.1.1 Basic Average and Energy Detection

We can extract two basic statistics from signal strength
readings, namely, the average signal strength and the en-
ergy for detection. In both cases, the statistical hypothesis
testing problem is binary and essentially involves deciding
between signal absent and signal present hypotheses.

The use of the signal average arises naturally when the
jammer emits a constant amplitude signal. In this case, the
detection statistic is T (k) = (

∑k
j=k−N+1 s(j))/N . The use

of the signal energy arises when the jammer emits a powerful
noise-like signal, such as a white Gaussian process. Here, the
detection statistic is T (k) = (

∑k
j=k−N+1 s(j)2)/N . In either

case, the detection decision is made by comparing T (k) to a
threshold γ that is suitably chosen by considering tradeoffs
between probability of detection and false alarm, such as
through application of Neyman-Pearson theorem [14,26].

3.1.2 Signal Strength Spectral Discrimination
The average signal strength or the signal energy over a

window of N samples does not reflect the fact that there may
be many different received signal sample paths that could
have led to the same mean or energy value. For example, a
signal that has half of its ADC values as 50 and half as 150
would be considered the same as a signal whose samples are
all 100 if we use the average signal strength as our decision
statistic.

In order to have more robustness to false decisions and
enhance the ability to classify scenarios, it is natural to
use spectral discrimination techniques to classify the sig-
nal. One possible spectral discrimination mechanism is to
employ higher order crossings (HOC). We refer the reader
to the treatise on HOC [15] for explicit definition of HOC
statistics. We have chosen to study higher order crossings
since the calculation of these statistics only involves differ-
ences between samples, and is thus simple and practical to
implement on resource-constrained wireless devices, such as
sensor nodes. More complicated spectral techniques that
involve the estimation of power spectral densities are pos-
sible and yield comparable performance but require more
computational complexity.

Effectiveness Analysis: In order to understand the effect
that a jammer would have on the received signal strength,
we performed six experiments. In the first two experiments,
we have two Motes, a sender A and a receiver B, which are
30 inches apart from each other. In the first case, A trans-
mits 20 packets per second, corresponding to a traffic rate of
5.28kbps, which we refer to as a CBR source. In the second
case, A transmits at its maximum rate; as soon as the send
function returns to the application level asynchronously, ei-
ther because the packet is successfully sent or because the
packet is dropped (the packet pumping rate is larger than
the radio throughput), it posts the next send function. Such
a sender is referred to as a MaxTraffic source, and corre-
sponds to a raw traffic rate of 6.46kbps. In the following four
experiments, in addition to A and B, we introduced the jam-
mer X, which was placed 54 inches away from B, with X em-
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Figure 2: RSSI readings as a function of time in
different scenarios. RSSI values were sampled every
1msec.

ploying our four jammer models. When X behaves as a ran-
dom jammer, it uses the following parameters: tj = U[0,31]
and ts = U[0,31]. In these four jamming scenarios, A is a
CBR source. In each of these six experiments, the receiver
B obtains the RSSI values by posting the RSSIADC.getData()

function on the port TOS_ADC_CC_RSSI_PORT every millisecond.
The reported RSSI values in Fig. 2, in dBm, are converted
from the raw values following the analog-to-digital conver-
sion of the received voltage levels [6]. We present time series
data for each of the six scenarios in Fig. 2. From these re-
sults, we observed that the average values for the constant
jammer and the MaxTraffic source scenario, are roughly the
same. Further, the constant jammer and deceptive jammer
have roughly the same average values, with the slight dif-
ference in the plot resulting from experimental setup. Ad-
ditionally, the signal strength average from a normal CBR
source does not differ much from that measured for the re-
active jammer scenario. Similar statements can be made for
using the signal energy. These results suggest the following
important observation: we may not be able to use simple
statistics, such as average signal strength or energy, to dis-
criminate jamming scenarios from normal traffic scenarios
because it is not straightforward to devise a threshold that
can separate these two scenarios.

There is a practical issue that arises from the locations
the nodes and jammers relative to each other. Nodes that
are very close to each other will naturally lead to high sig-
nal strength measurements, while nodes separated by more
distance will yield lower signal strength measurements.

From the time series in Fig. 2, we observe that there are
some differences in the shapes underlying the time series for
these scenarios. For example, the measured signal strength
for the constant jammer and the deceptive jammer exhibit
a much lower variation (the time series curve is almost flat)
compared to the signal strengths for MaxTraffic source.

We next examined the issue of whether spectral discrimi-
nation techniques would be able to distinguish between nor-
mal and jammed scenarios. We calculated the first two
higher order crossings for the time series, D1 and D2, using
a window of 240 samples. We plot D1 versus D2 in Fig.
3. From the Fig. 3 (a), we observe that the points gather
in two clusters, one cluster corresponding to the constant
and deceptive jammers, while the other cluster correspond-
ing to normal CBR and MaxTraffic sources. Hence, using
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Figure 3: Plot of the first two higher order crossings,
D1 vs. D2, for different jammer and communication
scenarios.

HOC, we can distinguish normal traffic scenarios from the
constant and deceptive jammer. However, examining Fig. 3
(b) we see that we cannot distinguish the reactive or ran-
dom jammer from normal traffic scenarios. The reason for
this is that a reactive jammer or random jammer causes the
channel state to alternate between busy and idle in much
the same way as normal traffic behaves. In particular, be-
cause the reactive jammer does not change the underlying
busy and idle periods for a normal traffic scenario, it is par-
ticularly difficult to distinguish between signal readings for
a reactive jammer and signal readings from the underlying
traffic.

Hence, based on these observations, we conclude that em-
ploying HOC (or even other spectral methods), will work
for some jammer scenarios, but are not powerful enough to
detect all jammer scenarios.

3.2 Carrier Sensing Time
As discussed in Section 2, a jammer can prevent a legit-

imate source from sending out packets because the channel
might appear constantly busy to the source. In this case, it
is very natural for one to keep track of the amount of time
it spends waiting for the channel to become idle, i.e. the
carrier sensing time, and compare it with the sensing time
during normal traffic operations to determine whether it is
jammed. We would like to emphasize that this is only true if
the legitimate wireless node’s MAC protocol employs a fixed
signal strength threshold to determine whether the chan-
nel is busy or idle. For protocols that employ an adaptive

threshold, such as BMAC, after the threshold has adapted
to the ambient energy of the jammer, the carrier sensing
time will be small even when a jammer is blasting on the
channel. Consequently, in the rest of this section, we only
focus on MAC protocols that employ a fixed threshold, such
as the MAC in TinyOS 1.1.1.

In most forms of wireless medium access control, there
are rules governing who can transmit at which time. One
popular class of medium access control protocols for wire-
less devices are those based on carrier sense multiple access
(CSMA). CSMA is employed in MICA2 Motes as well as in
both infrastructure and infrastructureless (ad hoc) 802.11
networks. The MAC-layer protocol for 802.11 additionally
involves an RTS/CTS handshake. During normal operation
of CSMA, when A (the sender) tries to transmit a packet, it
will continually sense the channel until it detects the chan-
nel is idle, after which it will wait an extra amount of time
(known as the propagation delay) in order to guarantee the
channel is clear. Then, if RTS/CTS is used it will send the
RTS packet, or otherwise will send the data packet. Sup-
pose we assume that the adversary X continuously emits
radio signal on a channel and that A attempts to transmit
a packet. Then, since the channel is occupied by X, A will
either time-out the channel sensing operation (if a time-out
mechanism is available in the MAC protocol) or be stuck in
the channel sensing mode.

Unfortunately, a large carrier sensing time could have oc-
curred in non-jammed scenarios as well, such as congestion.
It is therefore important to have some mechanism to distin-
guish between normal and abnormal failures to access the
channel. In order to do so, a thresholding mechanism based
on the sensing time can be used to identify jamming: Each
time A wishes to transmit, it will monitor the time spent
sensing the channel, and if that time is above a threshold (or
if it is consistently above the threshold), it will declare that
a jamming is occurring. The threshold may be determined
theoretically based on a simple channel occupancy model, or
empirically. The problem with theoretically calculating the
threshold is that it is extremely difficult to build a complete
mathematical model that captures a realistic MAC protocol.
A well-known M/M/1/1 queuing model may be used to de-
scribe the MAC protocol [16, 17, 33], but doesn’t capture
the notion of collisions, or retransmissions. Therefore, we
focus on the second approach to determining the threshold,
which involves each network device collecting statistics re-
garding the amount of time D that a device must wait before
it can start transmission during normal, or even somewhat
congested, network conditions. With a distribution fD(d)
describing carrier sensing times during acceptable network
conditions, we may classify any new measured sensing time
as either normal or anomalous by employing significance
testing [26]. In this case, our null hypothesis is that the
measured delay D corresponds to the distribution fD(d). If
we reject the null hypothesis, then we conclude the network
is experiencing a jamming attack. Since it is undesirable to
falsely conclude the presence of jamming when the network
is merely experiencing a glitch, we need to use a conservative
threshold to reduce the probability of a false positive.

Effectiveness Analysis: In order to quantify the validity
of detecting jamming at the MAC-layer using carrier sens-
ing time, we carried out several simulation based studies
using the ns-2 simulator with 802.11 extensions. We modi-
fied ns-2 by disabling the MAC layer retransmission so that
we could focus our investigation on the channel sensing be-
havior. In our experiments we have two nodes, A and B.
Once every 19 msecs, node A senses the channel by trying



to send out a beacon to node B. We obtain the channel
sensing time D by calculating the difference between the
time when beacon packets reach the MAC-layer and the time
when the MAC successfully senses the channel as idle and
sends out RTS. In order to capture the statistical behavior of
the sensing time, we calculate the corresponding cumulative
distribution for several scenarios involving different levels of
background traffic loads. As shown in Fig. 4(a), we intro-
duce several streams (from sender Si to receiver Ri) that
are within the radio range of A and B in order to increase
the background traffic. Each stream’s traffic represents an
MPEG-4 video stream suitable for a wireless video applica-
tion. We use traffic statistics corresponding to the movie
Star Wars IV [8], where packet sizes are governed by an ex-
ponential distribution with a mean size of 268 bytes, and the
packet inter-arrival times following an exponential distribu-
tion with mean 40msecs, resulting in each stream having
an average traffic rate of 53.6Kbps. The corresponding cu-
mulative distributions of D are shown in Fig. 4(b). These
observations can be explained as follows. When there are
only a few streams, there are few nodes competing for the
channel, and node A can get the channel quickly with high
probability. As the number of streams increases, the com-
petition for the channel becomes more intense, thus taking
longer for A to acquire the channel.

From this figure, we can observe that when the number of
streams is less than 7, the curves approach 1 quickly before
D equals 40 msecs. Even in the case of 9 streams, which
has an average PDR of 74.1% and corresponds to a very
poor quality of service, over 99% of all observed transmission
delays occur within 60 msecs. However, for the constant
jammer, the time taken to acquire the channel will be large
relative to normal MAC-sensing times, or even the times
observed for poor QoS conditions. Choosing an appropriate
threshold for the MAC-sensing time will allow the algorithm
to be robust to false detections. For example, if we would
like to ensure, with 99% confidence, that our sensing time is
a jamming attack and not a result of a normal background
with a PDR of 75%, we should choose the threshold as 60
msecs.

To study the effect of different jammers on the carrier
sensing time in a real wireless network, we performed an
experiment using two Motes, X and A. Here, Mote A corre-
sponds to a network node trying to send out a 33-byte packet
every 100msecs, and which measures the sensing time while
doing so. Mote A employed the MAC protocol from TinyOS
release 1.1.1, which used a fixed threshold for determining
idleness. Mote X cycles through the four different types
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Figure 4: The MAC-layer sensing time experiment:
(a) basic underlying experimental setup, (b) cumu-
lative distributions of D for different traffic scenarios
and the corresponding packet delivery ratio.
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Figure 5: The cumulative distribution for the carrier
sensing times measured using MICA2 Motes.

of jammers, as well as the MaxTraffic source. Additionally,
we measured the sensing time when there is no background
traffic, i.e. X does not send any traffic.

Fig. 5 depicts the cumulative distribution of the sensing
time for the six different scenarios. Fig. 5 (a) shows that
the cumulative distribution of the constant jammer and the
deceptive jammer jumps at the point where the sensing time
equals to 640msces. This is caused by a timeout we added to
the TinyOS. In our experiment, if the device does not start
to send the packet within 640msecs after the packet was
passed to the MAC-layer from application layer, a timeout
will occur, the packet will be discarded, and its sensing time
will be counted as 640msecs.

The drawback of carrier sensing time is that it exhibits
significant missed detections in the presence of other types
of jammers. As Fig. 5 (b) shows, most of the sensing time
in other jammer scenarios is smaller than the sensing time
in a congested scenario. The reactive jammer will exhibit
normal carrier sensing times because the jammer will not
attempt to jam until another node has successfully started
transmission. As a result, the transmitting node A will ob-
serve normal carrier sensing times. In particular, in our
experiment the reactive jammer produces sensing time cu-
mulative distributions that overlap completely with the case
of no background traffic.

We note that, if the MAC protocol employs an adaptive
threshold for determining channel idleness, instead of the
fixed threshold in our experiment, then the cumulative dis-
tribution of the sensing time for the constant jammer would
have shifted to the left, while there would have been no dif-
ference for the deceptive jammer since node A would still



have been locked in a received state. The reactive jammer
would have exhibited the same characteristics. Similar to
the constant jammer, the random jammer also shifts the
cumulative distribution to the left. We verified these obser-
vations through identical experiments to the ones described
above where we used BMAC instead of the MAC protocol
from TinyOS release 1.1.1.

In summary, both signal strength and carrier sensing time,
under certain circumstances, can only detect the constant
jammer and deceptive jammer. Neither of these two statis-
tics is effective in detecting the random jammer or the reac-
tive jammer.

3.3 Packet Delivery Ratio
A jammer may not only prevent a wireless node from send-

ing out packets, but may also corrupt a packet in transmis-
sion. Consequently, we next evaluate the feasibility of using
packet delivery ratio (PDR) as the means of detecting the
presence of jamming. The packet delivery ratio can be mea-
sured in the following two ways: either by the sender, or by
the receiver. At the sender side, the PDR can be calculated
by keeping track of how many acknowledgements it receives
from the receiver. At the receiver side, the PDR can be cal-
culated using the ratio of the number of packets that pass
the CRC check with respect to the number of packets (or
preambles) received. Unlike signal strength and carrier sens-
ing time, PDR must be measured during a specified window
of time where a baseline amount of traffic is expected. If
no packet is received over that time window, then the PDR
within that window is zero.

Since a jamming attack will degrade the channel quality
surrounding a node, the detection of a radio interference
attack essentially boils down to determining whether the
communication node can send or receive packets in the way
it should have had the jammer not been present. More for-
mally, let us use π0 to denote the PDR between a sender and
a receiver, who are within radio range of each other, assum-
ing that the network only contains these two nodes and that
they are static. As shown in Table 1, any one of the four
jammers, if placed within a reasonable distance from the re-
ceiver, can cause the corresponding PDR to become close to
0. In the cases shown in Table 1, π0 is 100%. From these
results, we can conclude that a jammer can cause the PDR
to drop significantly. We would like to point out that a non-
aggressive jammer, which only marginally affects the PDR,
does not cause noticeable damage to the network quality
and does not need to be detected or defended against.

Next, we need to investigate how much PDR degradation
can be caused by non-jamming, normal network dynamics,
such as congestion, failures at the sender side, etc. In order
to study the impact of congestion on PDR, we introduced
3 MaxTraffic sources, resulting in a raw offered traffic rate
of 19.38kbps1, to model a rather highly congested scenario.
Even under such a congestion level, the PDR measured by
the receiver is still around 78%. As a result, a simple thresh-
olding mechanism based on the PDR value can be used to
differentiate a jamming attack, regardless of the jamming
model, from a congested network condition.

Though PDR is quite effective in discriminating jamming
from congestion, it is not as effective for other network dy-
namics, such as a sender battery failure, or the sender mov-
ing out of the receiver’s communication range, because these
dynamics can result in sudden PDR drop in much the same
way as a jammer does. Specifically, if the sender’s battery

1At 100% duty cycle, the MICA2 radio’s maximum band-
width capacity is 12.364kbps, though the effective maximum
throughput is typically much less than that.

drains out, it stops sending packets, and the corresponding
PDR is 0%.

Consequently, compared to signal strength and carrier
sensing time, PDR is a powerful statistic in that it can be
used to differentiate a jamming attack from a congested net-
work scenario, for different jammer models. However, it still
cannot differentiate the jamming attack from other network
dynamics that can disrupt the communication between the
sender and the receiver.

4. JAMMING DETECTION WITH
CONSISTENCY CHECKS

In the previous section we saw that no single measurement
is capable of detecting all kinds of jamming attacks. Since
the purpose of a jammer is to influence the channel quality
between a node and its neighbors, it is not reasonable, or
needed, to try to detect a jammer if that jammer does not
effectively interfere with the receipt/send of packets at a
node. While a node losing its sending ability is a clear sign
that it is being jammed, a weak reception capability (i.e. a
low PDR) can be caused by several factors besides jamming,
such as a low link quality due to the relatively large distance
between the sender and the receiver.

We observed in the previous section that PDR is a power-
ful measurement that is capable of discriminating between
jammed and congested scenarios, yet is unable to identify
whether an observed low PDR is due to natural causes of
poor link quality. In order to compensate for this drawback,
and enhance the likelihood of detection, we will examine two
strategies that build upon PDR to achieve enhanced jammer
detection. We augment the use of PDR by applying signal
strength measurements to conduct consistency checking to
determine whether low PDRs are due to natural causes or
due to radio interference. Later, in Section 4.2, we discuss a
complementary technique that uses location information to
augment PDR measurements for jamming detection.

Throughout this section, we assume that a node is only
responsible for detecting whether it is jammed, and is not
responsible for detecting the jammed condition of its neigh-
bors. This follows from the fact that a wireless node is the
best source of information regarding its local radio environ-
ment and is a less reliable predictor of the radio condition
at distant locations. We assume that each node maintains
a neighbor list, obtained from the routing layer, which will
assist in making more reliable detection decisions. Addi-
tionally, we assume that the deployment of the network is
sufficiently dense to guarantee that each node has several
neighbors. All legitimate nodes in the network will partic-
ipate in the detection protocol by transmitting a baseline
amount of traffic, e.g. by sending heartbeat beacons. This
allows each node to reliably estimate PDR over a window
of time, and conclude that the PDR is 0 if no packets are
observed during that time period.

4.1 Signal Strength Consistency Checks
The packet delivery ratio serves as our starting point for

building the enhanced detector. Rather than rely on a single
PDR measurement to make a decision, we employ measure-
ments of the PDR between a node and each of its neigh-
bors. In order to combat false detections due to legitimate
causes of link degradation, we use the signal strength as a
consistency check. Specifically, we check to see whether a
low PDR value is consistent with the signal strength that is
measured. In a normal scenario, where there is no interfer-
ence or software faults, a high signal strength corresponds
to a high PDR. However, if the signal strength is low, which



Algorithm: PDRSS Detect Jam
{PDR(N) : N ∈ Neighbors} = Measure PDR()
MaxPDR = max{PDR(N) : N ∈ Neighbors}
if MaxPDR < PDRThresh then

SS = Sample Signal Strength()
CCheck = SS ConsistencyCheck(MaxPDR, SS)
if CCheck == False then

post NodeIsJammed()

end

end

Algorithm 1: Jamming detection algorithm that checks
the consistency of PDR measurements with observed sig-
nal strength readings.

means the strength of the wireless signal is comparable to
that of the ambient background noise, the PDR will be also
low. On the other hand, a low PDR does not necessarily
imply a low signal strength. It is the relationship between
signal strength and PDR that allows us to differentiate be-
tween the following two cases, which were not possible to
separate using just the packet delivery ratio. First, from
the point of view of a specific wireless node, it may be that
all of its neighbors have died (perhaps from consuming bat-
tery resources or device faults) or it may be that all of a
node’s neighbors have moved beyond a reliable radio range.
A second case would be the case that the wireless node is
jammed. The key observation here is that in the first case,
the signal strength is low, which is consistent with a low
PDR measurement. While in the jammed case, the signal
strength should be high, which contradicts the fact that the
PDR is low. Table 2 summarizes typical network scenarios
that can cause low PDR values and how the signal strength
measurements can help further isolate the cause of the low
PDR values.

Based on these observations we propose the detection pro-
tocol shown in Algorithm 1. In the PDRSS_Detect_Jam algo-
rithm, a wireless node will declare that it is not jammed if at
least one of its neighbors has a high PDR value. However,
if the PDRs of all the neighbors are low, then the node may
or may not be jammed and we need to further differentiate
the possibilities by measuring the ambient signal strength.
Rather than continually sample the ambient signal levels,
which may use precious energy and processor cycles, the
function Sample_Signal_Strength() instead reactively mea-
sures the signal strength values for a window of time after
the PDR values fall below a threshold (the threshold we
have identified in Section 3.3), and returns the maximum
value of the signal strengths during the sampling window2,
which is denoted as SS. We note that the duration of the
sampling window should be carefully tuned based upon the
traffic rate, the jamming model, the measuring accuracy,
and the desired detection confidence level.

The function SS_ConsistencyCheck() takes as input the
maximum PDR value of all the neighbors, denoted as MaxPDR,
and the signal strength reading SS. A consistency check
is performed to see whether the low PDR values are con-
sistent with the signal strength measurements. If the sig-
nal strength SS is too large to have produced the observed
MaxPDR value, then SS_ConsistencyCheck() returns False,
else it returns True.

The consistency check may be conducted empirically as
follows. During deployment, or during a guaranteed time
of non-interfered network operation, a table (PDR, SS) of

2In order to prevent spurious readings and have improved
stability, in practice we use the average of the top three
signal strength readings.

Jammed Region

Figure 6: The (PDR, SS) measurements, indicating
the relationship between PDR and signal strength.
Also presented are the (PDR, SS) values measured
for different jammers. The data was binned into
three PDR regions, (0, 40), (40, 90) and (90, 100), and
the corresponding 99% confidence intervals are pre-
sented. The shaded region is the jammed-region,
and corresponds to (PDR, SS) values that are above
the 99% signal strength confidence intervals and
whose PDR values are less than 65%.

packet delivery ratios and signal strength values are mea-
sured. We may divide the data into PDR bins and calculate
the mean and variance for the data within each bin. Or,
we may conduct a simple regression to build a relationship
between PDR and SS. The output of the binning or the
regression is a relationship from which we may calculate an
upper bound for the maximum SS that would have pro-
duced a particular PDR value in a non-jammed scenario.
Using this bound, we may partition the (PDR, SS) plane
into a benign-region and a jammed-region.

We conducted an experiment using MICA2 Motes to val-
idate Algorithm 1. We gathered (PDR, SS) values for a
source transmitting to a receiver node at a power level of
roughly −5dBm. The PDR values were calculated using a
window of 200 packets, while the SS values were sampled
every 1msec for 200msecs in order to provide sufficient res-
olution to capture the jammer behavior during a reactive
jammer attack. The packets were 33 byte long and trans-
mitted at a rate of 20 packets per second. The source re-
ceiver separation was varied in order to produce a full spec-
trum of normal (PDR, SS) values, as depicted in Fig. 6.
Using these values, we found the 99% SS confidence bars
values for (0, 40) (40, 90) and (90, 100) PDR regions. We
depict these confidence bars, and define the corresponding
jammed-region to be the region of (PDR, SS) that is above
the 99% signal strength confidence intervals and whose PDR
values are less than 65%. The jammed-region is shaded and
appears in the upper-left corner of Fig. 6. We then per-
formed experiments where we introduced the different jam-
mers. The reactive jammer that we used sent out a 20-byte
long interference packet as soon as it detects activities on
the channel, while the random jammer had tj = U[0,31] and
ts = U[0,31]. We varied the source-receiver configurations
as well as the location of the jammer, and measured the re-
sulting PDR and SS values. As can be seen in Fig. 6, the



Observed PDR Observed signal strength Typical scenarios

non-jammed: neighbor failure, neighbor absence,PDR = 0 (no preamble is received) low signal strength
neighbors being blocked, etc.

PDR = 0 (no preamble is received) high signal strength node jammed
PDR low (packets are corrupted) low signal strength non-jammed: neighbor being faraway
PDR low (packets are corrupted) high signal strength node jammed

Table 2: A combination of PDR and signal strength improves jamming detection accuracy.

(PDR, SS) values for all jammers distinctively fall within
the jammed-region.

It is to be noted that the jammer in this experiment
had a transmission power level of roughly −4dBm, which
is stronger than that of the source. In fact, in order for the
jammer to be more effective, it needs to operate at a rela-
tively higher power level. However, a jammer using higher
power will further decrease the PDR value and increase the
SS measurement, thus pushing the resulting (PDR, SS)
pair further towards the upper left corner, making it more
distinct the benign-region. On the other hand, a jammer
that operates on a lower power level is not as effective in
interfering with the network operations. As a result, the
combination of PDR and signal strength is quite powerful
in discriminating a jammed scenario from various network
conditions.

4.2 Location Consistency Checks
We now discuss a second consistency checking algorithm

for detecting the presence of a radio interference attack.
Whereas PDRSS_Detect_Jam employs signal strength to vali-
date PDR measurements, the LOC_Detect_Jam algorithm em-
ploys location information. In addition to the assumptions
listed earlier, for LOC_Detect_Jam we also assume that all le-
gitimate neighbor nodes transmit with a fixed power level,
such as the default settings when the sensor or ad hoc net-
work was originally deployed. While this assumption holds
for many real network settings, we would like to point out
that scenarios where nodes have varying transmission pow-
ers can be addressed by easy extensions to our algorithm.

In PDRSS_Detect_Jam, the sampling granularity and the win-
dow length for measuring signal strength are two parameters
that must be carefully set based upon the assumed jammer
models as well as the underlying network traffic conditions.
As noted earlier, it may not be practical to sample the signal
strength with a fine granularity over a long window of time,
and for this reason PDRSS_Detect_Jam employs a reactive con-
sistency checking strategy in the sense that signal strength
measurements are performed after PDR measurements fall
below a threshold.

Instead of employing a reactive consistency check, the
LOC_Detect_Jam algorithm uses a proactive consistency check.
Rather than a node reacting to conduct measurements, the
location consistency checking scheme involves information
that is already made available to the wireless node prior to
determining that PDR values are suspicious. As a conse-
quence of this, the granularity and window length at the de-
tector is no longer an issue. We note, in our specification of
LOC_Detect_Jam that, although we require each node to trans-
mit a location advertisement message, the issue of window
length and granularity of signal strength sampling has been
translated from a complicated issue involving assumptions
regarding the adversary’s attack model into an issue regard-
ing a node’s mobility. As shall be seen, the analogous notion
of position message frequency may be simply addressed us-
ing knowledge of node mobility and an assumption regarding
the nominal packet delivery ratio of the network.

The LOC_Detect_Jam protocol requires the support of a lo-

calization infrastructure, such as GPS [7], or other localiza-
tion techniques [3, 19, 22], which provides location informa-
tion to wireless devices. We assume that this localization in-
frastructure is not able to be attacked or exploited by poten-
tial adversaries. Recently, countermeasures have been pro-
posed to protect localization services from being exploited
by adversaries [5, 20, 21]. In the LOC_Detect_Jam protocol,
we again use PDR as the metric indicating link quality. A
node will decide its jamming status by checking its PDR
and deciding whether the observed PDR is consistent with
what it should see given the location of its neighbor nodes.
Conceptually, neighbor nodes that are close to a particular
node should have high PDR values, and if we observe that
all nearby neighbors have low PDR values, then we conclude
that the node is jammed.

In our protocol, we let every node periodically advertise
its current location and further let each node keep track of
both the PDR and the location of its neighbors. Due to node
mobility, it is necessary that the location advertisements oc-
cur with sufficient frequency to be able to reliably capture
the migration of neighbors from regions of high PDR near
node A to regions of lower PDR further from node A. If a
jammer suddenly comes into the network near node A, then
the location information that node A has will correspond to
the location of the neighbors prior to the start of the inter-
ference. Analogous to PDRSS_Detect_Jam, if node A finds that
the PDR values of all of its neighbors are below the thresh-
old PDRThresh, then node A will perform a consistency
check by using the position Pn of the neighbor who had the
maximum PDR. The distance between Pn and P0 (i.e. the
location of node A) is calculated, and together MaxPDR
and d are used as input into LOC_ConsistencyCheck() to con-
duct a location-based consistency check.

The function LOC_ConsistencyCheck() operates in a man-
ner similar to SS_ConsistencyCheck(). During deployment, a
table of (PDR, d) values are gathered to represent the profile
of normal radio operation for node A. As in SS_ConsistencyCheck(),
we may define a jammed-region and a benign-region us-
ing either a binning procedure or regression to obtain lower
bounds on the PDR that should be observed for a given dis-
tance under benign radio conditions using measured data.
If the point (MaxPDR, d) falls in the jammed-region, then
the node declares it is jammed.

Algorithm: LOC Detect Jam
{PDR(N) : N ∈ Neighbors} = Measure PDR()
(n, MaxPDR) = (arg max, max){PDR(N) : N ∈ Neighbors}
if MaxPDR < PDRThresh then

P0 = (x0, y0) = GetMyLoc()
Pn = (xn, yn) = LookUpLoc(n)
d = dist(P0,Pn)
CCheck = LOC ConsistencyCheck(MaxPDR, d)
if CCheck == False then

post NodeIsJammed()

end

end

Algorithm 2: Jamming detection algorithm that checks
the consistency of PDR measurements with location in-
formation.
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Figure 7: The (PDR, d) measurements, indicating
the relationship between PDR and distance between
source and receiver. Also presented are the (PDR, d)
values measured for the different jammer models.

We note that, just as in the operation of PDRSS_Detect_Jam,
the assumption that every legitimate node transmits a min-
imal baseline amount of traffic with which to estimate PDR
is paramount to the operation of the LOC_Detect_Jam proto-
col. This baseline amount of traffic may coincide with the
transmission of location advertisements in order to reduce
the overhead of the protocol. The baseline traffic assump-
tion allows us to declare the PDR to be 0 when no packets
are received from a neighbor node within a given time pe-
riod. This assumption is particularly important for handling
scenarios where every neighbor node is jammed, as it allows
LOC_Detect_Jam to pass into the location-based consistency
check, which will allow the algorithm to declare that the
node is jammed since its neighbors should have delivered at
least a minimal amount of packets. Finally, we note that
we have disregarded the extremely unlikely event that all
neighboring devices have faulted or depleted their power re-
sources.

We conducted an experiment to validate Algorithm 2.
The setup of the experiment was the same as the experiment
used to validate Algorithm 1. We gathered (PDR, d) values
for normal operation as well as for scenarios involving the
different jammers, as depicted in Fig. 7. As can be seen in
Fig. 7, the (PDR, d) values for the jammer scenarios, where
the source-receiver separation was small, are distinctly sep-
arated from normal operation values, and hence fall in the
jammed-region. Again, we would like to point out that, for
a reasonably dense network where every node has one or
more neighbors that are close to itself, a jammer’s presence
can be easily identified, as shown in Fig. 7. If a node, on
the other hand, does not have a nearby neighbor, then the
PDR of that node, even without the jammer, is rather poor
(Fig. 7). For these nodes, the effect of a jammer will not be
noticeable anyway.

We now address the frequency of node position advertise-
ment. There are two factors that affect the frequency: first,
nodes may move towards or away from each other, and sec-
ond, position messages may be missed, especially for neigh-
bors farther away from node A. We may address the first
factor by setting a requirement that a node announces its
location whenever it has moved a distance δ from its previ-

ous position. By using the device’s velocity v, we find that
a device should update its position at least every τ = δ/v
seconds. To address the second issue, we assume that each
device seeks a guarantee of η that its position announcement
will arrive to neighbors who are sufficiently close to have at
least a nominal packet delivery ratio of q. Assuming inde-
pendence of successive transmissions of position announce-
ment messages, the cumulative distribution for the amount
of transmissions T before the first successful delivery is

FT (T ) = 1− (1− q)T , for T ∈ {1, 2, 3, · · · } (1)

From the cumulative distribution, we may find the amount
of transmissions, T̃ , needed to have a guarantee of η that
the position announcement will have been heard. Combin-
ing the two factors, a node should announce its position
every τ/T̃ seconds. The frequent announcement of position
information guarantees that nodes will have knowledge of
their neighbor’s position.

5. RELATED WORK
Radio interference attacks are a serious threat to the op-

eration of a wireless network, regardless of the type of wire-
less network. In order to cope with the threat of jamming
attacks, it is important to understand the different threat
models that may be employed by adversaries, the methods
that are needed to diagnose these threats, and the counter-
measures that may be employed to defend against jamming
attacks.

The traditional literature on jamming primarily focuses on
the design of physical layer technologies, such as spread spec-
trum, that are resistant to RF jamming [28,30]. It should be
realized that the physical layer technologies needed to reli-
ably resist jamming have not found widespread deployment
in commodity wireless devices, such as wireless LANs and
sensor networks. Our work takes the viewpoint that rather
than replace existing systems with more complicated radio
platforms, it is instead desirable to understand the modes
of attacks that may be launched against existing platforms,
and be able to detect them. Following detection, appropri-
ate countermeasures may be employed.

The issue of jamming detection was briefly studied by
Wood and Stankovic in [32] in the context of sensor net-
works. This study posed the issue of jamming detection in
the loose context of the utility of the communication chan-
nel, and presented several factors that might affect the chan-
nel’s utility. The primary focus of this paper, however, was
on the issue of mapping the jammed region and did not
explore the fact that no single measurement is a sufficient
statistic for basing decisions upon. Our work has explored
the inconsistencies that might arise from naively employing
decision processes built upon these factors. Further, our de-
tection algorithms may be viewed as a complement to their
work and, when integrated with their mapping algorithm,
can lead to enhanced mapping services.

Although not precisely a jamming attack, one may exploit
the MAC layer to achieve increased network resources [4,18].
The issue of detecting non-MAC compliancy was recently
studied in [29]. This work showed that a greedy user can
increase his share of bandwidth by sightly modifying the
driver of his network adapter. The greedy user may try to
corrupt the RTS and CTS of other users to prevent packet
transmission, or may corrupt ACKs to cause the ACK con-
tention window to increase, leading to larger backoff. They
proposed DOMINO, a system for detection of such greedy
behavior in the MAC layer of IEEE 802.11 public networks.

Countermeasures for coping with jammed regions in wire-



less networks has been studied in [23, 33]. In [23], the use
of low density parity check (LDPC) codes is proposed to
cope with jamming. Further, an anti-jamming technique is
proposed for 802.11b that involves the use of Reed-Solomon
codes. In [33], two countermeasures are presented for coping
with jamming. The first method, channel surfing, involves
a form of on-demand link-layer frequency hopping, where
valid participants change the channel they are communicat-
ing on when a denial of service attack occurs. The second
method, spatial retreats, involves legitimate network devices
moving away from the adversary to reestablish connections.

6. CONCLUSIONS
Wireless networks are being deployed in a variety of forms,

ranging from ad hoc networks to wireless LANs to sensor
networks. The shared nature of the wireless medium will al-
low adversaries to pose non-cryptographic security threats
by conducting radio interference attacks. Therefore, under-
standing the nature of jamming attacks is critical to assuring
the operation of wireless networks. This paper has sought
to focus on both sides of the issue by presenting four differ-
ent jammer attack models that may be employed against a
wireless network, as well as exploring techniques for detect-
ing the presence of a jamming attack. We have studied the
effectiveness of our four jammer strategies by constructing
prototypes using the MICA2 Mote platform and measuring
how each of the jammers fared in terms of their effect on the
packet send ratio and packet delivery ratio.

We then studied the issue of detecting the presence of
jamming attacks, and examined the ability of different mea-
surement statistics to classify the presence of a jammer. We
showed that by using signal strength, carrier sensing time,
or the packet delivery ratio individually, one is not able to
definitively conclude the presence of a jammer. Therefore, to
improve detection, we introduced the notion of consistency
checking, where the packet delivery ratio is used to classify
a radio link as having poor utility, and then a consistency
check is performed to classify whether poor link quality is
due to jamming. We introduced two enhanced detection al-
gorithms: one employing signal strength as a consistency
check, and one employing location information as a consis-
tency check. We evaluated the effectiveness of each scheme
through empirical experiments and showed that each of the
four jammer models we introduced can be reliably classified
using our consistency checking schemes.
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