ECE Information and Network Security Homework 2

Spring 2008

Chapter 3:

2. 2. (a) Apply the Euclidean algorithm to 7 and 30:

$$
\begin{aligned}
& 30=4 \cdot 7+2 \\
& 7=3 \cdot 2+1 .
\end{aligned}
$$

Working backwards yields $1=7-3 \operatorname{cdot} 2=7-3 \cdot(30-4 \cdot 7)=13 \cdot 7+(-3) \cdot 30$. Therefore $13 \cdot 7=1$ $(\bmod 30)$, so $d=13$.
(b) Let $c=m^{7} \quad(\bmod 31)$ be the ciphertext. Claim: $c^{13}=m(\bmod 31)$. Proof: $c^{13}=\left(m^{7}\right)^{13}=$ $m^{91}=\left(m^{30}\right)^{3} m$. If $m \neq 0 \quad(\bmod 31)$ then $m^{30}=1 \quad(\bmod 31)$ by Fermat. Then $c^{13}=1^{13} m=m$. If $m=0 \quad(\bmod 31)$, then $c=m^{7}=0$, so $c^{13}=0=m$. Therefore $c^{13}=m$ for all m. Therefore decryption is performed by raising the ciphertext to the 13 th power mod 31 .
12. By Fermat's theorem, $2^{100}=1(\bmod 101)$. Therefore, $2^{10203}=\left(2^{100}\right)^{102} 2^{3}=1^{102} 2^{3}=8$. Therefore, the remainder is 8 .

Chapter 6:

1. We have $\phi(n)=(p-1)(q-1)=100 * 112=11200$. A quick calculation shows that $3 \equiv 7467^{-1}$ $(\bmod 11200)$. We have $5859^{3} \equiv 1415(\bmod 11413)$, so the plaintext was $1415=n o$.
2. (a) Here $\phi(n)=4 \cdot 10=40$. We are looking for a number d such that $e d=1(\bmod 40)$. Thus, we want to solve for d in $3 d=1 \quad(\bmod 40)$. Observe that $d=27$ gives $3 \cdot 27=81=1 \quad(\bmod 40)$. Hence $d=27$.
(b) Here, you use Euler's Theorem. d is such that $3 d=1+k \phi(n)$ for some k. Then, $c^{d}=m^{3 d}=$ $m^{1+k \phi(n)}=m \quad(\bmod n)$ by Euler's Theorem.
3. We have $c_{2} \equiv c_{1}^{e_{2}} \equiv m^{c_{1} c_{2}}(\bmod n)$. Therefore, this double encryption is the same as single encryption with encryption exponent $e_{1} e_{2}$. So the security is at the same level as single encryption.
4. We have $(516107 \cdot 187722)^{2} \equiv(2 \cdot 7)^{2} \quad(\bmod n)$. Compute $\operatorname{gcd}(516107 \cdot 187722-2 \cdot 7,642401)=$ 1129. Therefore, $642401=1129 * 569$.
5. Make a list of $1^{e}, 2^{e}, \ldots, 26^{e}(\bmod n)$. For each block of ciphertext, look it up on the list and write down the corresponding letter. The message given is hello.
