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1. INTRODUCTION

Until approximately 1980, the majority
of image coding methods relied on tech-
niques based on classical information
theory [Golomb 1966; Samet 1989b; Ziv
and Lempel 1977; Welch 1984; Huffman
1952] to exploit the redundancy in the
images in order to achieve compression.
The techniques used were pixel-based
and did not make any use of the infor-
mation contained within the image it-
self. The compression ratios obtained
with these techniques were moderate at
around 2 to 1. Even with a lossy tech-
nique, such as discrete cosine trans-
form, DCT [Wallace 1991], a higher ra-
tio (greater than 30 to 1) could be

achieved only at the expense of image
quality (see Figure 1) [Reid et al. 1994].

Attempts have recently been made to
develop new image-compression tech-
niques that outperform these first-gen-
eration image coding techniques. These
methods attempt to identify features
within the image and use the features
to achieve compression. These recent
developments have been termed second-
generation image coding [Kunt et al.
1985; Kunt 1988, 1990]. All second-gen-
eration techniques incorporate proper-
ties of the human visual system (HVS)
into the coding strategy in order to
achieve high compression ratios while
still maintaining acceptable image qual-
ity. In other words, most of the tech-
niques are of a lossy nature: however,
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they attempt to identify and separate
visually significant and visually insig-
nificant areas of the image and apply
appropriate coding techniques to each
area.

In current image coding techniques,
much effort has been expended in iden-
tifying what the human observer con-
siders visually important [Cornsweet
1974; Rosenfeld and Kak 1982a; Jain
1989]. It is generally concluded that
edge information is vital to the human
perception of images [Kunt et al. 1985].
As a result, a vast majority of the work
in the development of image coding
techniques has concentrated on meth-
ods that preserve edge information and
separate edge and texture information
while coding them separately [Rosenfeld
and Kak 1982b].

The loss of image detail in lossy sec-
ond-generation techniques has been
minimized in terms of human percep-
tion, so that when decoded, the new
image does not appear to be different
from the original. However, there are
situations that require lossless com-
pression of images, particularly in the
medical image domain [Wittenberg
1993]. Lossless coding does not remove
any of the image data in order to
achieve compression and hence the de-

coded image is identical to the original.
Most of the lossy techniques could be
adapted to become lossless since it is
normally the introduction of an error
stage in the process that provides the
facility for compression. However, if
these methods were converted to a loss-
less mode, compression would almost
certainly not occur. Therefore lossless
techniques that are a combination of
first- and second-generation methods
have been developed in order to exploit
the contents of the image but still pre-
serve the image data [Miller and Ni-
choll 1994].

With second-generation coding tech-
niques the original image is broken
down into subcomponents. These sub-
components may consist of homoge-
neous regions [Jang and Rajala 1991,
1990; Civanlar et al. 1986; Kwon and
Chellappa 1993; Kocher and Kunt 1983;
Biggar et al. 1988; Cicconi and Kunt
1993; Cicconi et al. 1994; Leou and
Chen 1991; Kocher and Leonardi 1986],
predefined visual patterns [Chen and
Bovik 1990; Silsbee and Bovik 1991],
directional components [Ikonomopoulos
and Kunt 1985; Zhou and Venetsano-
poulos 1992], and pyramidal decomposi-
tions [Burt and Adelson 1983; Mallat
and Zhong 1991]. These broad compo-

Figure 1. Effects of over-compression using DCT. Left-hand image is the original; right-hand image
has been compressed via DCT to ratio of 65 to 1.
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nents are used to categorize the rele-
vant techniques.

This article gives an overview of a
diverse selection of second-generation
image coding techniques. Although most
of the techniques considered second
generation are lossy, a single lossless
technique based on second-generation
principles is included for completeness.
The article is not intended to cover ev-
ery second-generation image coding
technique that has been developed.
However, it is intended to provide an
introduction to the broad categories of
image coding techniques that exist. Sec-
tion 2 describes some of the commonly
used properties of the human visual
system. Section 3 describes techniques
that decompose the image into pyrami-
dal representations in order to code the
original. Section 4 presents techniques
that employ directional filters as part of
the coding process. Section 5 describes
techniques for coding images based on
visual patterns. Section 6 describes the
techniques based on image segmenta-
tion and presents some of the theoreti-
cal methods used to preprocess the im-
age before segmentation takes place.
Finally, Section 7 covers methods based
on contour coding and describes two
methods, one lossy and one lossless.

2. PROPERTIES OF THE HUMAN VISUAL
SYSTEM

This section describes some of the prop-
erties of the human visual system, HVS,
that have been incorporated into part of
an image coding system. As yet, a bio-
logically complete version of the HVS
does not exist. However, common mod-
els for the HVS would include a low-
pass filter, a logarithmic nonlinearity,
and a multichannel signal-sharpening
high-pass filter. The majority of the
early work in vision research has used
the frequency sensitivity of the HVS as
described by the modulation transfer
function, MTF [Jayant et al. 1993]. Ex-
periments by Mannos [Mannos and
Sakrison 1974] and Cornsweet [1974]
have proposed a commonly used model

for this function that relates the sensi-
tivity of the eye to sine-wave gratings at
various frequencies. The nonlinearities
of the HVS at threshold sensitivity can
be described by a set of laws, the best
known of which is Weber’s Law [Forch-
heimer and Kronander 1989]. This law
states that the HVS threshold sensitiv-
ity, for spatially large stimuli and large
background illumination can be ex-
pressed as

DL 5 kL,

where k is a constant and DL is the just
noticeable difference in luminance.

Another property commonly used is
the spatial and temporal frequency de-
pendencies of the visual system. From
measurements made by Robson [1966]
on the joint spatio-temporal threshold
sensitivity, it can be seen that this joint
sensitivity is not separable and that the
threshold sensitivity depends on both
the spatial and temporal frequencies. In
the high spatial frequency range the
visual system is essentially low-pass,
whereas in the low range the response
is band-pass.

Directional anisotropy, which is re-
lated to the decreasing sensitivity at
high and low spatial frequencies, is of-
ten exhibited in the HVS [Olzak and
Thomas 1986]. Considering sinusoidal
waveforms, sensitivity is decreased by
approximately 3dB at 45° rotation from
the horizontal. This has been shown to
be due to the lower sensitivity of the eye
at oblique directions compared to verti-
cal or horizontal directions.

Finally, another common property of
the HVS is its spatial and temporal
masking effects. This property is related
to the fact that sensitivity is reduced in
the neighborhood of stimuli with large
intensity variations. A typical example
of this is that sensitivity is reduced in
the close surroundings of a high inten-
sity luminance edge. This masking ef-
fect occurs in both spatial and temporal
domains: however, the effect is only pro-
nounced in a very small region around
the masking stimuli [Limb 1978].

Second-Generation Image Coding • 5
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3. MULTISCALE/PYRAMIDAL
APPROACHES

Multiscale and pyramidal techniques
operate on the original image and sub-
sample it in order to produce various
levels of image detail at progressively
smaller details.

Burt and Adelson [1983] present a
technique based on the Laplacian pyra-
mid as a method of image compression.
Laplacian pyramid image coding has
several main stages. The first stage is to
low-pass filter the original image using
a weighted average function. This stage
produces progressively smaller images,
in both spatial intensity and dimension,
which together form the Gaussian pyra-
mid (Figure 2). Secondly, each stage in
the Gaussian pyramid, starting with
the lowest, smallest level, is interpo-
lated to the size of its predecessor. This
expanded version is then subtracted
from the predecessor in order to produce
the Laplacian pyramid.

In terms of the coding it is the Lapla-
cian pyramid that is coded as opposed to
the original image. Adding the levels of
the Laplacian pyramid with appropriate
interpolation results in the original im-
age if the last, smallest-resolution im-
age from the Gaussian pyramid is in-

cluded. The final stage of the coding
process is to quantize each level of the
pyramid. This quantization is achieved
by dividing the range of pixel values
into bins of set width: quantization then
occurs by representing each pixel value
that occurs within the bin by the bin
centroid.

The fact that compression is achieved
by quantizing the pixels within each
level of the Laplacian pyramid means
that compression ratios can be altered
by increasing or decreasing the amount
of quantization. The nature of this tech-
nique means that it is particularly
suited to progressive transmission. This
is due to the fact that each level of the
pyramid provides progressively coarser
details of the original image. Hence, if
only a rough approximation is required,
initially the lowest, smallest level of the
pyramid can be transmitted and used
for decoding. If greater quality is re-
quired, then the next pyramid layer can
be sent, and so on.

A more popular technique presently
used is wavelet compression [Averbuch
et al. 1996; O’Rourke and Stevenson
1995; Huffman 1994]. This technique is
very similar to the preceding technique
of Burt and Adelson [1983] with the

Figure 2. Set of images representing pyramidal decomposition at two levels.
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bonus that wavelet decomposition does
not increase the number of samples over
that of the original image whereas pyra-
midal decomposition does. In image pro-
cessing, most of the image area repre-
sents areas of high statistical
correlation. However, edges, for exam-
ple, have a perceptual significance that
is greater than the numerical value of
the energy contribution to the entire
image. Other transform coders, for ex-
ample, DCT, decompose images into
representations where each coefficient
corresponds to a fixed-size spatial area
and frequency band. Edge information
requires many nonzero coefficients to
represent them sufficiently. At low bit
rates other transform coders allocate
too many bits to signal behavior that is
more localized in the time or space do-
main and not enough to edges. Wavelet
techniques offer benefits at low bit rates
since information at all scales is avail-
able for edges and regions [Shapiro
1993]. The wavelet transform decom-
poses an image into a set of subimages

called shapes with different resolutions
corresponding to different frequency
bands. The initial image is typically de-
composed into a low-pass decomposi-
tion, a high-pass decomposition showing
horizontal details, a high-pass decompo-
sition showing vertical details, and a
high-pass decomposition showing both
vertical and horizontal (see Figure 3).

If, for example, the low-pass decompo-
sition is transmitted and used to recon-
struct the original (see Figure 4), a 4:1
compression has been achieved. How-
ever, in order to ensure high-resolution
image results on decompression, the
three high-pass bands must also be in-
cluded. The decomposition process can
be carried out a number of times de-
pending on the level of compression re-
quired.

Mallat and Zhong [1991] point out
that, in most cases, structural informa-
tion required for recognition tasks is
provided by the image edges. However,
one major difficulty of edge-based repre-
sentation is to integrate all the image

Figure 3. Wavelet decomposition.
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information into edges. Most edge detec-
tors are based on local measurements of
the image variations and edges are gen-
erally defined as points where the im-
age intensity has a maximum variation.
Multiscale edge detection is a technique
in which the image is smoothed at vari-
ous scales and edge points are detected
by a first- or second-order differential
operator. The image smoothing pro-
duces a structure similar to that illus-
trated in Figure 3. The coding method
presented involves two steps: the edge
points considered important for visual
quality are selected, and then efficiently
encoded. Edge points are chained to-
gether to form edge curves.

Selection of the edge points is per-
formed at a scale of 22. This means that
the edge points are selected from the
image in the pyramidal structure that
has been scaled to a factor of four.
Boundaries of important structures of-
ten generate long edge curves, so first
all edge curves whose length is smaller
than a threshold are removed. Among
the remaining curves, the ones that cor-
respond to the sharpest discontinuities
in the image are selected. This is
achieved by removing all edge curves
along which the average value of the
wavelet transform modulus is smaller

than a given amplitude threshold. After
the removal procedures, it is reported
that only 8% of the original edge points
are kept, although it is not clear if this
figure is constant for all images.

Once the selection has been per-
formed, only the edge curves at scale 22

are coded in order to save bits: the
curves at other scales are approximated
from this. Chain coding is used to en-
code the edge curve at this scale.

Although the preceding techniques in
this section decompose the original im-
age into a set of subimages, other tech-
niques exist that employ decomposition
to further reduce storage required by
parameters from other techniques. Ex-
amples of this are AVPIC [Silsbee and
Bovik 1991], discussed in Section 5, and
FMP [Zhou and Venetsanopoulos 1992]
discussed in Section 4.

The techniques covered in this section
rely on the technique of creating a pyr-
amid of progressively smaller, sub-
sampled images. The pyramidal struc-
ture has the ability to identify common
features that occur in the image at all
resolutions.

In the case of Burt and Adelson
[1983], an attempt is made to exploit
areas in the image that are largely sim-
ilar. These similar areas appear at var-
ious resolutions. Hence, when the sub-
sampled image is expanded and
subtracted from the image at the next
higher resolution, the difference image
contains large areas of zero, indicating
commonality between the two images.
The larger the degree of commonality,
the greater the amount of zero areas in
the difference images. Standard first-
generation coding methods can then be
applied to the difference images to pro-
duce good compression ratios. With very
good image quality, compression ratios
in the range 10 to 1 are achievable.

Mallat and Zhong [1991] use the py-
ramidal structure to identify image
edges that are most important to the
perception of the image. These edges
are identified in the image that has
been generated at a scale of 22, al-
though the reason for this choice is not

Figure 4. Image decompressed using only low-
pass decompositions.
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clear. Once selected, the remaining
edges are approximated using the edges
at scale 22. The compression ratio re-
ported with this method is approxi-
mately 27 to 1 with good image quality.

4. DIRECTIONAL FILTERING

Directional filtering is based on the re-
lationship between the presence of an
edge in an image and its contribution to
the image spectrum. It is motivated by
the existence of direction-sensitive neu-
rons in the HVS [Kunt et al. 1985]. It
can be seen that the contribution of an
edge is distributed all over the spec-
trum: however, the highest-frequency
component lies in the direction orthogo-
nal to that of the edge. It can also be
seen that the frequency of the contribu-
tion diminishes as we turn away from
this direction, until it vanishes at right
angles to it. A directional filter is one
whose frequency response covers a sec-
tor or part of a sector in the frequency
domain. If f and g are spatial frequen-
cies and rc is the cutoff frequency of the
low-pass filter, then the ideal frequency
response of the ith directional filter of a
set of n is given by:

GIi~ f, g!

5 5 1, if ui , tan21~ g/f ! , ui11

and f 2 1 g2 . rc
2

0 otherwise,

with

ui 5 ~i 2 1!p/ 2n, ui11 5 ~i 1 1!p/ 2n

and

uf u, ugu , 0.5.

A directional filter is a high-pass filter
along its principal direction and a low-
pass filter along the orthogonal direc-
tion (see Figure 5).

The directional filter response is mod-
ified, as in all filter design, by an appro-
priate window function [Harris 1978], to
minimize the effect of the Gibbs phe-
nomenon [Ziemer et al. 1989]. In the

sum of a trigonometric series it can be
seen that there tend to be overshoots in
the signal being approximated at a dis-
continuity. This is referred to as the
Gibbs phenomenon. An ideal filter can
be viewed as a step or rectangular pulse
waveform, that is, a discontinuous
waveform. The reason for the overshoot
at discontinuities can be explained us-
ing the Fourier transform. Consider a
signal x(t) with a Fourier transform
X(f ). The effect of reconstructing x(t)
from its low-pass part shows that:

x̃~t! 5 F21FX~ f !PS f

2WDG ,

where

PS f

2WD 5 H 1, when uf u # W
0, otherwise.

.

According to the convolution theorem of
Fourier transform theory,

x̃~t! 5 x~t!pF21FPS f

2WDG (1)

5 x~t!p~2W sinc2Wt!. (2)

Bearing in mind that convolution is a
folding-product, sliding-integration pro-
cess, it can be seen that a finite value of
W will always result in x(t) being
viewed through the sinc window func-
tion, even though as W increases more
of the frequency content of the rectan-
gular pulse will be used in the approxi-
mation of x(t).

In order to eliminate the Gibbs phe-
nomenon it is important to modify the
frequency response of the filter by a
window function. There are many win-
dow functions available, each with dif-
ferent frequency responses. The chosen
window function frequency response is
convolved with the filter response to
ensure that overall frequency response
does not contain the sharp discontinui-
ties that cause the ripple.

In a general scheme using directional
filters, n directional filters and one low-
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pass filter are required. An ideal low-
pass filter has the frequency response:

GIip~ f, g! 5 H 1, if f 2 1 g2 , rc
2

0, otherwise.

It should be noted that the superposi-
tion of all the directional images and
the low-pass image leads to an exact
reconstruction of the original image.
Two parameters are involved in the de-
sign of a directional-filter-based image

coding scheme: the number of filters
and the cutoff frequency of the low-pass
filter. The number of filters may be set
a priori and is directly related to the
minimum width of the edge elements.
The choice of low-pass cutoff frequency
influences the compression ratio and
the quality of the decoded image.

As reported by Kunt et al. [1985], a
very early technique in advance of its
time was the synthetic high system
[Schreiber et al. 1959; Schreiber 1963].

Figure 5. Set of directionally decomposed images. Low-pass cutoff frequency is 0.125.
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It is stated by Kunt that the better
known approach of directional filtering
is a refinement of the synthetic high
system. In this technique the original
image is split into two parts: the low-
pass picture showing general area
brightness and the high-pass image con-
taining edge information. Two-dimen-
sional sampling theory suggests that
the low-pass image can be represented
with very few samples. In order to re-
duce the amount of information in the
high-pass image, thresholding is per-
formed to determine which edge points
are important. Once found, the location
and magnitude of each edge point is
stored. To reconstruct the compressed
data, a two-dimensional reconstruction
filter, whose properties are determined
by the low-pass filter used to produce
the low-pass image, is used to synthe-
size the high-frequency part of the edge
information. This synthesized image is
then added to the low-pass image to
give the final output.

Ikonomopoulos and Kunt [1985] de-
scribe their technique for image coding
based on the refinement of the synthetic
high system, directional filtering. Once
the image has been filtered, the result is
1 low-pass image and 16 directional im-
ages. The coding scheme proposed is not
a lossless one since high compression is
the goal. When the image is filtered
with a high-pass filter the result gives
zero crossings at the location of abrupt
changes (edges) in the image. Each di-
rectional component is represented by
the location and magnitude of the zero
crossing. Given that a small number of
points result from this process, about 6
to 10% of the total number of points,
run-length encoding proves efficient for
this purpose. The low-frequency compo-
nent can be coded in two ways. Since
the maximum frequency of this compo-
nent is small, it can be resampled based
on the 2D sampling theorem and the
resulting pixels can be coded in a stan-
dard way. Alternatively, transform cod-
ing may be used, with the choice of
transform technique being dictated by
the filtering procedure used. The trans-

form coefficients may then be quantized
and coded via Huffman coding [Huff-
man 1952].

The compression ratios obtained with
this technique depend on many factors.
The image being coded and the choice of
cutoff frequency all play an important
role in the final ratio obtained. The
compression scheme can be adapted to
the type of image being compressed.

Zhou and Venetsanopoulos [1992]
present an alternative spatial method
called morphological directional coding.
In their approach, spatial image fea-
tures at known resolutions are decom-
posed using a multiresolution morpho-
logical technique called the feature-
width morphological pyramid (FMP).
Zhou and Venetsanopoulos [1992] re-
port that the nontrivial spatial features,
such as edges, lines, and contours
within the image, determine the quality
of the reproduced image for the human
observer. It was this fact that motivated
them to employ a stage in their coding
technique that identifies these non-
trivial features in order that they may
be coded separately. Morphological di-
rectional coding schemes were devel-
oped to preserve nontrivial spatial fea-
tures in the image during the coding
phase. Such filtering techniques are
used for feature separation as they are
spatial methods that are capable of se-
lectively processing features of known
geometrical shapes. A multiresolution
morphological technique therefore de-
composes image features at various res-
olutions.

In this technique the image decompo-
sition is a multistage process involving
a filter called an open-closing (OC) fil-
ter. Each filtered image from the cur-
rent stage is used as the input to the
next stage, and in addition the differ-
ence between the input and output im-
ages of each stage is calculated. The
first N 2 1 decomposed subimages (L1,
. . . , LN21) are termed feature images
and each contains image features at
known resolutions. For example, L1 con-
tains image features of width 1, L2 has
features of width 2, and so on. Each OC

Second-Generation Image Coding • 11

ACM Computing Surveys, Vol. 29, No. 1, March 1997



filter has a structuring element associ-
ated with it. Each of these structuring
elements for a stage is progressively
larger than the previous stage. It is this
structuring element that defines the in-
formation content in each of the decom-
posed images. The decomposed FMP im-
ages contain spatial features in
arbitrary directions. Therefore direc-
tional decomposition filtering tech-
niques are applied to each of the FMP
images in order to group features of the
same direction together. Before this is
implemented, the features in the FMP
images L2, . . . , LN21 must be eroded to
1 pixel width. Two reasons exist for this
feature-thinning phase, as suggested by
Zhou and Venetsanopoulos [1992]: the
directional decomposition filter bank
gives better results for features of 1
pixel width, and it is more efficient and
simpler to encode features of 1 pixel
width.

After the FMP images have been di-
rectionally decomposed, the features are
further quantized by a nonuniform sca-
lar quantizer. Each extracted feature is
first encoded with a vector and then
each vector is entropy-encoded. The
coarse image LN is encoded using con-
ventional methods such as VQ.

Both of these methods employ direc-
tional decomposition as the basis of
their technique. Ikonomopoulos and
Kunt [1985] implement a more tradi-
tional approach in that the directional
decomposition filters are applied di-
rectly to the image. In their method the
compression ratio varies from image to
image. The filter design depends on
many factors, which in turn affect the
compression ratio. Therefore Ikonomo-
poulos and Kunt state that these pa-
rameters should be tuned to the partic-
ular image since the quantity, content,
and structure of the edges in the image
determine the compression obtained.
Despite these factors, compression ra-
tios on the order of 64 to 1 are reported
with good image quality.

The morphological filtering technique
of Zhou and Venetsanopoulos [1992] sep-
arates the features into what are called

FMP images. It is these FMP images to
which traditional directional decomposi-
tion techniques are applied in order to
perform the coding process. The compres-
sion ratios reported by this method are
reasonable at around 20 to 1.

5. VISUAL PATTERN-BASED
APPROACHES

Visual pattern-based techniques oper-
ate by coding the image using a small
set of visual patterns that are localized
subimages containing visually impor-
tant information. The method bears
similarities to both block truncation
coding (BTC) [Delp and Mitchell 1979]
and vector quantization (VQ) [Gray
1984]. However, there are two main dif-
ferences: there is no training phase re-
quired as there is in the majority of VQ
techniques, with the exception of Lat-
tice VQ, since the visual patterns are
predefined; and the assignment of vi-
sual patterns is not based on an error
criterion, therefore no complicated
search is required. The visual patterns
used may vary with the application, but
most correlate with psychophysically
derived visual response characteristics.

Chen and Bovik [1990] developed a
coding technique using visual patterns.
In this method a subset of visual pat-
terns is designed using knowledge of
the HVS. The image is then coded by
considering single blocks at a time and
determining onto which subspace the
image block should be mapped. For each
block (a block may be, for example, a
4 3 4 region in the image), the coding
scheme consists of computing the mean
block intensity mi,j, the local gradient
measurement u¹Iu, and the block orien-
tation /¹bi, j. Each block is then cate-
gorized according to the mean value of
the block: if (u¹bui, j)

2 # (u¹Iumin)2, then
the block is considered a uniform block;
otherwise it is an edge block. In either
case, the mean of the block is quantized
and stored along with an additional bit
indicating whether the block is uniform
or edge. If the block is an edge block,
then its measured orientation maps the
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image block to some number of edge
subspaces. A unique mapping among
those at a given orientation is achieved by
selecting the pattern whose polarity dis-
tribution is closest to that of the image
block. The index of the selected pattern is
then stored in place of the image block.

Silsbee and Bovik [1991] developed a
coding method that is an extension of
the visual pattern-based image coding.
Their method is an adaptive version of
the hierarchical extension to visual pat-
tern image coding HVPIC, which is re-
ferred to as AVPIC. In HVPIC the start-
ing point is an N by N image, where N
is a power of 2. A series of subsampled
progressively smaller images is initially
generated, thus forming a resolution
pyramid with n 1 1 levels, the original
image being the bottom level. Images
are encoded in the reverse order from
generation. After each subimage has
been encoded, it is immediately de-
coded. The decoded version is then ex-
panded and subtracted from its original
in order to produce the residual or error
image. It is this residual image that is
to be coded using standard VPIC meth-
ods. At this point no loss of information
has been introduced into the image
since the original may be exactly recon-
structed by adding the error images.

The hierarchical structure inherent
with HVPIC is useful in identifying ar-
eas of constant intensity within the im-
age. Since these areas can be efficiently
represented by single values, they re-
quire fewer bits to encode. Silsbee and
Bovik [1991] suggest that a test is re-
quired, after each pyramid level has been
encoded, to determine whether a block
has been accurately described. If it has,
the particular block need not be examined
further in any finer detail. This test has
been incorporated into a quadtree struc-
ture that has been constructed using the
bottom-up approach. Each bit in the
quadtree represents one block at some
level of the pyramid (Figure 6).

The notation used for this construc-
tion is as follows.

Q(k) represents the quadtree level
corresponding to the image in the
pyramid I(k)

Qi, j
(k) represents the ith bit of the jth

column of the kth level of the
quadtree.

Each bit at the lowest level of the tree is
labeled as a terminal 0, assuming that
no edge was detected and no large cor-
rection of mean occurred for the corre-
sponding block. If the block was an
edge, or a large mean resulted, the node

Figure 6. Quadtree for three levels of AVPIC.

Second-Generation Image Coding • 13

ACM Computing Surveys, Vol. 29, No. 1, March 1997



is set to 1; that is,

Qi, j
(0) 5 0 if no significant detail

occurs at block
Qi, j

(0) 5 1 otherwise.

Note that a large correction of the cur-
rent mean value indicates that the
block differs from its neighbors and
hence some detail is present.

The remainder of the quadtree is then
constructed by examining the children
associated with a particular parent. If
the parent’s children were terminals
(i.e., 0, and no edge or mean correction
occurred at the block), the parent is
marked as a terminal; otherwise it is
set to 1. In relation to the images in the
pyramid, this process is equivalent to
examining the four blocks in the previ-
ous pyramid level, which is of finer res-
olution, and determining whether these
blocks were of constant intensity. If so,
then it follows that the equivalent
block, covering each of these four
blocks, at a lower resolution would be of
constant intensity also. It would there-
fore be redundant to code the details at
the finer level if the next resolution
level up would suffice.

The preceding process continues until
the entire quadtree has been con-
structed. At this point the quadtree may
be used to determine which blocks in
which pyramid levels should be stored/
transmitted. Only branches and leaves
in the tree that are not marked as ter-
minal are processed, since the blocks at
these nodes contain the image detail.

Using the standard VPIC method re-
ported by Chen and Bovik [1990], the
compression ratios obtained are reason-
able at between 10 and 20 to 1. These
ratios are comparable to both VQ and
BTC on which the VPIC method is
based. The decoded image quality is
also reported to be similar to that at-
tained by VQ. The method provides the
facility to preset the compression ratio
within a specified range. The adaptive
version of VPIC, AVPIC, presented by
Silsbee and Bovik [1991] is a direct ex-
tension of Chen and Bovik’s [1990]

work. It implements a standard VPIC
technique, but instead of applying it
directly to the image, they first create a
residual pyramid structure and then ap-
ply VPIC methods to this. In addition,
further redundancy is exploited by sug-
gesting that to code and store each of
the blocks in all levels of the pyramidal
structure would be wasteful in terms of
bit allocation. It is suggested by Silsbee
and Bovik [1991] that it is sufficient to
encode only the blocks in one level,
assuming that this block accurately rep-
resents the area in the image at all
subsequent finer resolutions. The com-
pression ratios obtained by the AVPIC
approach do make an improvement on
the original VPIC method, values being
in the range 16 to 33 to 1 for various
images. However, in some cases where
the image contains large amounts of
fine detail, the addition of the quadtree
section as a decision stage becomes re-
dundant and HVPIC produces better re-
sults.

6. SEGMENTATION-BASED APPROACHES

In general, a technique that is consid-
ered to be segmentation-based has three
main steps:

—preprocessing,
—segmentation, and
—coding of contours and texture compo-

nents.

This section describes some of the im-
age-coding techniques based on segmen-
tation. In addition, overviews of the var-
ious techniques used in the coding
techniques, for example, preprocessing,
segmentation, coding of contours, and
texture representation, are also pre-
sented in Sections 6.1 through 6.5.

6.1 Preprocessing

The purpose of preprocessing is to elim-
inate small regions within the image
and remove noise generated in the sam-
pling process. It is an attempt to model
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the action of the HVS and is intended to
alter the image in such a way that the
preprocessed image will more accu-
rately resemble what the human brain
processes. Various methods are used to
preprocess the image, all derived from
properties of the HVS (see Section 2).
Two properties commonly used are We-
ber’s Law and the modulation transfer
function (MTF) [Jang and Rajala 1991,
1990; Civanlar et al. 1986].

Marqués et al. [1991] suggest the use
of Steven’s Law. This takes into account
the greater sensitivity of the HVS to
gradients in dark areas rather than
light ones. For example, if B is the per-
ceived brightness and I the stimulus in-
tensity then:

B 5 K.In.

Therefore, by preprocessing according to
Steven’s Law, visually homogeneous re-
gions will not be split unnecessarily and
heterogeneous dark areas will not be
falsely merged.

In addition, the inverse gradient filter
[Wang and Vagnucci 1981] has also
been implemented in order to give a
low-pass response inside a region and
an all-pass response on the region con-
tour [Kwon and Chellappa 1993; Kocher
and Kunt 1983]. This is an iterative
scheme that employs a 3 3 3 mask of
weighting coefficients. These coeffi-
cients are the normalized gradient in-
verse between the center pixel and its
neighbors. If the image to be smoothed
is expressed as an n 3 m array where
p(i, j) is the gray level of the pixel at (i,
j) with i 5 1, . . . , n and j 5 1, . . . , m,
the inverse of the absolute gradient at
(i, j) is defined as

d~i, j;k, l ! 5
1

up~i 1 k, j 1 l ! 2 p~i, j!u
,

where k, j 5 21, 0, 1, but k and l are
not equal to zero at the same time. This
means that d(i, j ; k, l)s are calculated
for the eight neighbors of (i, j); this is
denoted the vicinity V(i, j). If p(i 1 k,

j 1 l) 5 p(i, j), then the gradient is zero
and d(i, j ; k, l) is defined as 2.

The proposed 3 3 3 smoothing mask
is defined as

W~i, j!

5 3
w~i 2 1, j 2 1! w~i 2 1, j!

w~i 2 1, j 1 1!

w~i, j 2 1! w~i, j!
w~i, j 1 1!

w~i 1 1, j 2 1! w~i 1 1, j!
w~i 1 1, j 1 1!

4
where w(i, j) 5 1⁄2 and w(i 1 k, j 1 l) 5
1⁄2[(V(i, j)(i, j ; k, l)]21d(i, j ; k, l) for k,
l 5 21, 0, 1 but not 0 at the same time.

The smoothed image is then given as

p̂~i, j!

5 O
k521

1 O
l521

1

w~I 1 k, j 1 l !p~i 1 k, j 1 l !.

6.2 Segmentation Techniques

This section introduces some of the com-
monly used methods for segmenting an
image. Segmentation groups similar
pixels into regions and separates those
pixels that are considered dissimilar. It
may be thought of as representing an
image by a disjoint covering set of im-
age regions [Bigger et al. 1988]. Many
segmentation methods have been devel-
oped in the past [Pal and Pal 1993;
Haralick 1983] and it is generally the
segmentation method that categorizes
the coding technique.

6.2.1 Region Growing. Region grow-
ing is a process that subdivides a (fil-
tered) image into a set of adjacent re-
gions whose grey-level variation within
the region does not exceed a given
threshold.

The basic idea behind region growing
is that, given a starting point within the
image, the largest set of pixels whose
grey level is within the specified inter-
val is found. This interval is adaptive in
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that it is allowed to move higher or
lower on the grey scale in order to inter-
cept the maximum number of pixels.

6.2.2 Split and Merge. Split and
merge algorithms [Pavlidis 1982] seg-
ment the image into sets of homoge-
neous regions (see Figure 7). In general,
they are based around the quadtree
[Samet 1989a] data structure. Initially
the image is divided into a predefined
subdivision, for example, 64 divisions;
then, depending on the segmentation
criteria, adjacent regions are merged if
they have similar grey-level variations
or a quadrant is split further if large
variations exist.

6.2.3 k-Means Clustering. k-means
clustering is a segmentation method
based on the minimization of the sum of
squared distances from all points in a
cluster to a cluster center. First k initial
cluster centers are taken and the image
vectors are iteratively distributed
among the k cluster domain. New clus-
ter centers are computed from those
results in such a way that the sum of
the squared distances from all points in
a cluster to a new cluster center is min-
imized (see Figure 8).

6.2.4 Graph Theory. A number of im-
age-segmentation techniques are based
on the theory of graphs and their appli-
cations [Morris et al. 1986]. A graph is
composed of a set of vertices connected
to each node by links. In a weighted
graph the vertices and links have
weights associated with them. Each ver-
tex need not necessarily be linked to
every other, but if they are, the graph is
said to be complete. A partial graph has
the same number of vertices but only a
subset of the links of the original graph.
A spanning tree can be referred to as a
partial graph. A shortest spanning tree
of a weighted graph is a spanning tree
such that the sum of its link weights is
a minimum for many possible spanning
trees.

In order to analyze images using
graph theory, the original image must
be mapped onto a graph. The most obvi-
ous way to do this is to map every pixel
in the original image onto a vertex in
the graph (Figure 9). The link weight
can be taken as the absolute difference
between the vertex weights it joins. Seg-
mentation using graphs can be achieved
by using shortest spanning trees (SSTs)
[Cheriton and Tarjan 1976]. An infor-
mal definition of an SST is that for any

Figure 7. Image segmented via split-and-merge
technique. Here 1405 regions have been produced.

Figure 8. Test image segmented via k-means
clustering. Here 20 initial clusters have been cho-
sen.
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tree in a forest, if a link with the lowest
weight connecting that tree to another
is added, then the link will be in the
SST. If the forest forms part of the SST,
then the complete SST can be found by
successively adding the new links to it.

In order to segment an image, the
most similar vertices are located by
finding the lowest-value link weights.
This can be done for the entire graph by
finding an SST. Once the SST has been
found, segmentation is achieved by cut-
ting the SST at its highest link weights,
thus forming partitions that differ from
neighbors by a maximum amount. Fur-
ther regions may be located by making
more cuts in the SST.

6.2.5 Fractal Dimension. The fractal
dimension D is a characteristic of the
fractal model [Mandelbrot 1982] that is
related to properties such as length and
surface of a curve. It provides a good
measure of the perceived roughness of
the surface of the image. Therefore, in
order to segment the image, the fractal
dimension across the entire image is
computed (Figure 10). Once the fractal
dimension for the entire image has been
computed, various threshold values can
be used to segment the original image
according to its fractal dimension.

6.3 Polynomial Approximation

The regions produced by the segmenta-
tion process identify areas in the origi-
nal image whose grey-level variation is

similar. In order to code these areas
efficiently they are often represented by
an nth-order polynomial. The basic idea
behind polynomial fitting is that an at-
tempt is made to model the grey-level
variation within a region by an order-n
polynomial while ensuring that the
mean-squared error between the pre-
dicted value and the actual is mini-
mized. An order-0 polynomial would en-
sure that each pixel in the region was
represented by the average intensity
value of the region. An order-1 polyno-
mial is represented by:

z 5 a 1 bx 1 cy,

where z 5 new intensity value at (x, y).

Figure 9. Graph theory: mapping from raster to graph format.

Figure 10. Fractal dimension image.

Second-Generation Image Coding • 17

ACM Computing Surveys, Vol. 29, No. 1, March 1997



Figure 11 shows a typical image with
regions represented by an order-1 poly-
nomial.

6.4 Coding of Image Contours

In order that the modeled regions
within the image may be decoded accu-
rately, their position in the overall im-
age must be recorded. Obviously it
would be inefficient to record every
pixel position in the region. Therefore
more efficient methods have been devel-
oped. Each region is generally a closed
structure and as such has a defined
outline or contour (see Figure 12). One
such method often cited in relevant lit-
erature for representing these contours
is Freeman chain coding.

Freeman chain coding [Freeman
1976, 1974, 1961] represents the given
contour by an initial starting position
and a set of codes representing relative
positions. The Freeman chain codes are
shown in Figure 13. The basic principle
behind this coding process is this: an
initial starting point on the curve is
stored via its (x, y) coordinates. After
this, the position of the next point on
the curve is located. This position can
be in one of eight locations, as illus-
trated in Figure 13. If, for example, the
next position is (x, y 2 1), then the

pixel happens to lie in position 2 accord-
ing to Freeman, and hence a 2 is output.
This pixel is then updated as the cur-
rent position and the coding process re-
peats. The coding is terminated when
either the original start point has been
reached (closed contour) or no further
points on the curve can be found (open
contour). The code is an efficient repre-

Figure 13. Possible directions of movement for a
pixel at the center. Numbers then represent the
Freeman chain codes.

Figure 11. Test image segmented using split and
merge.

Figure 12. Contours of regions obtained after
split and merge.
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sentation of the contour since at least 3
bits are required to store each code in
the chain; however, further gains can be
achieved by applying entropy coders or
lossy contour-coding techniques to the
contours.

6.5 Region-Growing Techniques

Kocher and Kunt [1983] presented a
technique based on region growing
called contour texture modeling. The
original image is preprocessed by the
inverse gradient filter [Wang and Vag-
nucci 1981] to remove picture noise in
preparation for the region-growing pro-
cess. After the growing process, a large
number of small regions are generated,
some of which must be eliminated. This
elimination is necessary in order to re-
duce the number of bits required to
describe the segmented image, and thus
increase the compression ratio. It is per-
formed on the basis of removal of small
regions and merging of weakly contrast-
ing regions. Regions whose grey-level
variations differ slightly are considered
weakly contrasting.

Once the segmentation process is
complete, two components arise that
must be coded, as illustrated in Figures
7 and 12:

—contours describing regions, and
—texture within regions.

Contour coding is performed in stages.
First, it is possible that the contours
describing two neighboring region
boundaries may touch, so that describ-
ing each of these contours fully would
incorporate some redundancy. There-
fore the contour pixels that touch, or
describe two regions, are removed from
one of the contours. Second, the opened
contours are approximated by a succes-
sion of connected segments whose sizes
depend on the contour complexity. Tex-
ture coding is achieved by representing
the grey-level variation within the re-
gion by an nth-order polynomial func-
tion.

This representation by itself does not
produce a very natural-looking image

upon reconstruction. Therefore the
noise removed by the preprocessing
stage is added back in the form of pseu-
dorandom noise.

Civanlar et al. [1986] present an
HVS-based segmentation coding tech-
nique. In this a variation of the centroid
linkage-region-growing algorithm [Hara-
lick 1983] is used to segment the image
after preprocessing. In a centroid link-
age algorithm the image is scanned in a
set manner, for example, left to right or
top to bottom. Each pixel is compared to
the mean grey-level value of the already
partially constructed regions in its
neighborhood and if the values are close
enough, the pixel is included in the re-
gion and a new mean is computed for
the region. If no neighboring region has
a close enough mean, the pixel is used
to create a new segment whose mean is
the pixel value. In Civanlar et al.’s
[1986] technique, the centroid linkage
algorithm previously described applies.
However, if the intensity difference is
less than an HVS visibility threshold,
the pixel is joined to an existing seg-
ment. If the intensity differences be-
tween the pixel and its neighbor seg-
ments are larger than the thresholds, a
new segment is started. The work by
Kocher and Kunt [1983] provides the
facility to preset the approximate com-
pression ratio prior to the operation.
This is achieved by setting the maxi-
mum number of regions to be generated
after the region-growing process. The
results obtained via their method are
good both in terms of reconstructed im-
age quality and compression ratio. How-
ever, they point out that the perfor-
mance of their technique in terms of
image compression and quality is opti-
mal for images that are naturally com-
posed of a small number of large re-
gions.

Civanlar et al. [1986] report good im-
age quality and compression ratios,
comparable to those in Kocher and Kunt
[1983]. The basic technique presented
by Civanlar et al. [1986] is similar to
that of Kocher and Kunt [1983]; how-
ever, the methods employed to code the
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texture and contour components are not
apparent in the latter paper.

6.6 Split-and-Merge-Based Techniques

Kwon and Chellappa [1993] present a
technique based on a merge and thresh-
old algorithm—segmentation-based im-
age coding [Kunt et al. 1987]. After the
image has been preprocessed, the inten-
sity difference between two adjacent re-
gions is found. If this difference is less
than or equal to k, which has been
initialized to 1, the regions are merged
and the average of the intensities is
computed. A histogram of the merged
image is computed and if separable
clusters exist, the preceding steps are
repeated; otherwise, the original image
is segmented by thresholding the inten-
sity clusters. When the overall process
is complete, the regions obtained may
be represented by an nth-order polyno-
mial.

The preceding method of segmenta-
tion extracts only homogeneous regions
and thus for textured regions a large
number of small homogeneous regions
are generated. In terms of image coding,
it is more efficient to treat textured
areas as one region than as several
small regions. Therefore, in addition to
the homogeneous region extraction
scheme, textured regions are also ex-
tracted and combined with the results of
the uniform region segmentation.

Multiple features are used in the tex-
ture-extraction process, along with the
recursive thresholding method using
multiple 1D histograms. First the image
is regarded as one region. A histogram
is then obtained within each region of
the features to be used in the extraction
process. The histogram showing the
best clusters is selected and this corre-
sponding region is then split by thresh-
olding. These steps are repeated for all
regions until none of the histograms
exhibit clustering.

Final segmentation is achieved by la-
beling the extracted uniform regions. If
the area of such a region is covered by
more than 50% of a textured region of

type X, then the uniform region is la-
beled as a textured region of that type.
Adjacent uniform regions are merged
with a texture region if they show at
least one texture feature similar to the
corresponding texture region. In terms
of coding, uniform regions are repre-
sented by polynomial reconstructions
and texture regions by a texture-synthe-
sis technique using the Gaussian-
Markov random field (GMRF) model
[Chellappa et al. 1985]. Encoding the
image therefore involves storing infor-
mation about the contours of the re-
gions, polynomial coefficients of the uni-
form regions, GMRF parameters for
textured regions, and a means of identi-
fying each region. Variable bits are allo-
cated for each component.

Another approach based on a split-
and-merge algorithm is that of Cicconi
and Kunt [1993; Cicconi et al. 1994]—
symmetry-based image segmentation.
Segmentation is performed by initially
clustering the image using a standard
k-means clustering algorithm (Figure
8).

After the initialization process, any
cluster, along with its associated vec-
tors, is discarded if the membership
measure of that cluster is below a spec-
ified threshold. Clusters exhibiting
large variances are split in two, and
clusters that are close enough to each
other are merged. This sequence is re-
peated until no clusters are discarded,
split, or merged, or if the maximum
number of iterations has been reached.
Once the image has been segmented
into homogeneous areas, an attempt to
further reduce the redundancy inside
the regions is implemented by looking
for symmetries within the regions. In
order to do this the medial-axis trans-
formation (MAT) [Pavlidis 1982] is used
for shape description. The MAT is a
technique that represents, for each re-
gion, the curved region descriptor. The
MAT corresponds closely to the skeleton
that would be produced by applying se-
quential erosion to the region. Values
along the MAT represent the distance to
the edge of the region and can be used
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to find minimum and maximum widths.
The histogram of the values will give
the variation of the width. Once the
MAT has been found, a linear prediction
of each pixel in one side of the MAT can
be constructed from pixels symmetri-
cally chosen in the other side.

Coding of the segmented image is per-
formed in two stages: contour coding
and texture coding. Since the MAT asso-
ciated with a region can be recon-
structed from a given contour, only con-
tours have to be coded. Texture
components in one part of the region
with respect to the MAT may be repre-
sented by a polynomial function. How-
ever, to represent the polynomial coeffi-
cients precisely requires a large number
of bits. Therefore, the proposed method
suggests defining the positions of six
pixels, which are found in the same way
for all regions, then quantizing these six
values. These quantized values allow
the unique reconstruction of the approx-
imating second-order polynomial [Cic-
coni and Kunt 1993].

Both of these techniques are similar
in that they employ a split-and-merge
algorithm to segment the original im-
age. However, Kwon and Chellappa
[1993] state that better compression ra-
tios may be obtained by segmenting the
image into uniform and textured re-
gions. These regions may be coded sepa-
rately and, in particular, the textured
regions may be more efficiently repre-
sented by a texture-synthesis method,
such as a GMRF model, as opposed to
representing the textured region with
many small uniform regions. Cicconi
and Kunt’s [1993; Cicconi et al. 1994]
method segments the image into uni-
form regions and, in addition, they pro-
pose to exploit further redundancy in
these regions by identifying symmetry
within the regions. The grey-level varia-
tion within each of the uniform regions
is represented using polynomial model-
ing. As stated, Cicconi and Kunt further
developed a method for reducing the
storage requirements for the polynomial
coefficients.

Despite the different methods used to

represent both the contours and the
grey-level variations within the regions,
both methods report similar compres-
sion ratios.

6.7 Tree/Graph-Based Techniques

Biggar et al. [1988] developed an image
coding technique based on the recursive
shortest spanning tree (RSST) algo-
rithm [Morris et al. 1986]. The RSST
algorithm maps the original image onto
a region graph so that each region ini-
tially contains only one pixel. Sorted
link weights, associated with the links
between neighboring regions in the im-
age, are used to decide which link
should be eliminated and therefore
which regions should be merged. After
each merge, the link weights are recal-
culated and resorted. The removed links
define a spanning tree of the original
graph.

Once the segmentation is complete,
the spanning tree is mapped back to
image matrix form, thus representing
the segmented image. The regions gen-
erated are defined by coding the lines
that separate the pixels belonging to
different regions. The coded segmented
image has three sources: a list of coordi-
nates from which to start tracing the
edges, the edge description, and a de-
scription of the intensity profile within
each region.

The intensity profile within the re-
gion could be represented as a simple
flat intensity plateau; however, it has
been suggested by Kunt et al. [1985]
and Kocher and Kunt [1983] that a bet-
ter result is achievable by higher-order
polynomial representation. Biggar et al.
[1988] suggest that to embed the poly-
nomial fitting procedure at each stage of
the region-merging process, as Kocher
and Kunt [1983] do, would be computa-
tionally too expensive. Therefore in this
case a flat intensity plane is used to
generate the regions and polynomials
are fitted after the segmentation is com-
plete.

The edge information is extracted
from the segmented image using the
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algorithm for thin line coding by
Kaneko and Okudaira [1985].

A similar technique based on the min-
imum spanning forest, MSF, is reported
by Leou and Chen [1991]. The segmen-
tation and contour coding is performed
exactly as described by Biggar et al.
[1988]; however, the intensity values
within a segmented region are coded
with polynomial representation. Here a
texture-extraction scheme is used,
based on the assumption that lights are
cast overhead on the picture and that
the grey values vary according to the
distance to the corresponding region
centroid. After texture extraction, the
regions have a high pixel-to-pixel corre-
lation. Therefore, for simplicity and effi-
ciency, a polynomial representation
method is used to encode the texture.
This is achieved by representing any
row of the image by a polynomial.

A different graph-theory approach is
presented by Kocher and Leonardi
[1986] based on the region adjacency
graph (RAG) data structure [Pavlidis
1982]. The RAG is again a classical map
graph with each node corresponding to
a region and links joining nodes repre-
senting adjacent regions. The basic idea
of the segmentation technique is that a
value that represents the degree of dis-
similarity existing between two adja-
cent regions is associated with a graph
link. The link that exhibits the lowest
degree of dissimilarity is removed and
the two nodes it connects are merged
into one. This merging process is re-
peated until a termination criterion is
reached. Once complete, the RAG repre-
sentation is mapped back to the image
matrix form, and thus a segmented im-
age is created.

The segmented image is coded using a
polynomial representation of the re-
gions and gives very good compression
ratios.

All of the preceding methods are
based on similar graph structures that
enable the image to be mapped to the
graph form in order to perform segmen-
tation. The techniques by Biggar et al.
[1988] and Kocher and Leonardi [1986]

both model the texture within the image
via a polynomial modeling method.
However, Kocher and Leonardi [1986]
report on compression ratios of much
larger proportions than Biggar et al.
Leou and Chen [1991] implement a seg-
mentation technique identical to that
presented by Biggar et al.; however,
Leou and Chen point out that better
compression ratios can be achieved by
first performing a texture extraction
process and then modeling the texture
by polynomials as opposed to polyno-
mial functions. The compression ratio
achieved via this method does improve
on that reported by Biggar et al. [1988].

6.8 Fractal-Based Techniques

In the previous sections various meth-
ods for image segmentation have been
suggested that lend themselves to effi-
cient compression of the image. Most of
these techniques segment the image
into regions of homogeneity and thus,
when a highly textured image is en-
countered, the result of the segmenta-
tion is many small homogeneous re-
gions.

Jang and Rajala [1990, 1991] suggest
a technique that segments the image in
terms of textured regions. They also
point out that in many cases previous
segmentation-based coding methods are
best suited to head- and shoulder-type
images and that results obtained from
complex natural images are often poor.

In their technique the image is seg-
mented into textually homogeneous re-
gions as perceived by the HVS. Three
measurable quantities are identified for
this purpose: the fractal dimension, the
expected value, and the just noticeable
difference. These quantities are incorpo-
rated into a centroid linkage region-
growing algorithm that is used to seg-
ment the image into three texture
classes: perceived constant intensity,
smooth texture, and rough texture. An
image coding technique appropriate for
each class is then employed.

The fractal dimension value D is then
thresholded to determine the class of
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the block. The following criteria are
used to categorize the particular block
under consideration:

D , D1 perceived constant
intensity

D1 , D , D2 smooth texture
D . D2 rough texture.

After this segmentation process the
boundaries of the regions are repre-
sented as a two-tone image and coded
using arithmetic coding [Witten 1987;
Nelson 1992]. The intensities within
each region are coded separately accord-
ing to their class. Those of class 1, per-
ceived constant intensity, are repre-
sented by the average value of the
region; class 2, smooth texture, and
class 3, rough texture, are encoded by
polynomial modeling. It should be noted
from the description in section 6.3 that
polynomial modeling leads to some
smoothing and hence may not be useful
for rough texture. Therefore, it is not
clear why Jang and Rajala choose this
method of representation for the class-3
regions.

Each of the various segmentation
techniques used group pixels according
to some criterion, whether it is homoge-
neity, texture, or pixels within a range
of grey-level values. The problem that
arises after segmentation is how to effi-
ciently code the grey-level values within
the region. The most basic representa-
tion of grey level within a region is by
its mean value. This will result in a
good compression, especially if the re-
gion is large; however, the quality of the
decoded image will be poor. In most
cases grey-level variation is approxi-
mated by a polynomial function of order
two. The results obtained by polynomial
approximation can be visually poor, es-
pecially for highly textured images. It is
for this reason that more researchers
are representing highly textured re-
gions by texture synthesis techniques
such as GMRF. These methods do not
gain over the compression ratios ob-
tained using polynomial approximation,
but the quality of the reproduced image

is claimed to be improved [Kwon and
Chellappa 1993]. Another approach
used to encode the grey level variation
is by representing the variations by
polynomials, as per Leou and Chen
[1991]. This method is of similar compu-
tational complexity, but the results in
terms of compression ratio and image
quality are claimed to be better than
polynomial reconstruction.

As stated by Jang and Rajala [1990,
1991], many of the preceding segmenta-
tion-based techniques are not sufficient
when the input image is a natural one,
that is, an image of a real scene. These
may be images that contain highly tex-
tured regions and when segmented us-
ing conventional methods, the resulting
textured region is composed of a large
number of small regions. These small
regions are often merged or removed in
order to increase the compression ratio
and as a result the decoded image looks
very unnatural. Therefore Jang and Ra-
jala [1990, 1991] used the fractal dimen-
sion to segment the image. This ensures
that the region is segmented into areas
that are similar in terms of surface
roughness, this being the result of visu-
alizing the image in three dimensions
with the third dimension being grey-
level intensity. However, once seg-
mented into regions of similar rough-
ness, the method employed to code the
identified areas is similar to that of
traditional segmentation-based coding
methods, that is, polynomial modeling.
This polynomial modeling, as reported
by Kwon and Chellappa [1993], does not
suffice for the representation of highly
textured regions and they suggest the
use of texture synthesis. Therefore, it
may be concluded that a better segmen-
tation-based coding method might em-
ploy the fractal dimension segmentation
approach coupled with texture synthe-
sis for textured region representation.
Table I summarizes the methods used
in the techniques that employ a seg-
mentation algorithm as part of the cod-
ing process.
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7. CONTOUR-CODING-BASED
APPROACHES

This section presents two image coding
techniques that use the notion that con-
tours can be used solely in the coding
process. It was shown in Section 6 that,
in general, an image is composed of
regions and that each region can be
described by its outer contour and some
representation of the grey level in the
region. The techniques presented in this
section make no attempt to model the
content of a region; instead, they con-
sider the image as composed of many
separate contours, and it is these con-
tours and their properties that are used
in the coding process.

7.1 Lossy Coding

Marshall [1992, 1987] presents a paper
based on applications of image contours
to various aspects of image processing.
There are two aspects of image process-
ing that until recently have been re-
searched separately, namely, analysis
and compression. The idea of using con-
tours to record constant intensity was
suggested by Graham [1967] and, as
Marshall points out, could prove to be
as valid a coding method as a raster
scan approach. The coding algorithm
proposed by Marshall has four main
steps: conversion of the image to con-
tours using a contour-tracing algorithm,
efficient representation of the contours,
recreation of contours from their de-
scriptions, and image reconstruction by
interpolation between contours.

As with all sampling processes, an
error is introduced that may be reduced

by decreasing the sampling distance.
Therefore in this case the spacing be-
tween samples in the contour tracing is
reduced to a reasonable amount. A large
number of small contour segments are
produced by the tracing procedure and,
in order to achieve better compression,
these were removed as they had little
significance on the reconstructed image.
Remaining contours are coded using a
4- or 8-way chain code [Kaneko and
Okudaira 1985; Freeman 1976, 1974,
1961]. This involves coding the starting
point of the contour segment and the
directions of the contour points of the
remainder of the segment. Various
methods can be used to code the results
of the chain coding procedure, for exam-
ple Huffman [1952], Fourier, or vector
coding.

7.2 Lossless Compression

The common feature of all the preceding
techniques is that compression is
achieved by ignoring or removing some
of the original image data and thus the
technique can be said to result in lossy
compression. In these cases great effort
has been devoted to ensuring that the
loss of image detail is minimized in
terms of human perception. This argu-
ment is perfectly valid when the image
domain is that of natural images, and
compression is necessary for, say, multi-
media applications. However, the ques-
tion arises of the validity of these meth-
ods when applied to medical images.
Wittenberg [1993] states that there are
legal reasons why lossy compression of
medical images is not acceptable. He

Table I. Results from Segmentation-Based Methods

Technique Texture coding
method

HVS-based segmentation [Civanlar et al. 1986] polynomial function
segmentation-based [Kwon and Chellappa 1993] polynomial & GMRF
symmetry-based coding [Cicconi et al. 1994] polynomial function
RSST-based [Bigger et al. 1988] polynomial function
MSF-based [Leou and Chen 1991] polynomial function
RAG-based [Kocher and Leonardi 1986] polynomial function
fractal dimension [Jang and Rajala 1991] polynomial function
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suggests that a radiologist cannot as-
sume he or she has made a correct
diagnosis based on lossy compression
and for this reason in some countries,
for example, Germany, it is illegal to
use lossy compression for medical im-
ages.

Millar and Nicholl [1994] present a
new lossless compression technique
based on contour coding for the com-
pression of images that contain at least
one main feature, that is, medical im-
ages. In this method the image is pro-
cessed initially in order to identify a
single feature in the image. The path of
this major feature is then recorded and
is used to direct the path of the coding
technique. Coding of the image consists
of a run-length-type coding the path of
which is dictated by the outline of the
feature. Once the current outer contour
has been encoded, it is removed and the
coding continues on the next inner con-
tour. Each subsequent contour in the
image follows the inner path of the pre-
vious contour exactly. In terms of image
reconstruction, each of the contours con-
tained in the image can be recon-
structed from the path of the outer con-
tour. Hence only the path of this outer
contour must be stored along with the
run-length tuples.

Both of these techniques implement a
contour-based coding scheme. However,
Marshall’s [1992, 1987] technique treats
each contour within the image sepa-
rately. It is assumed that the image is
composed entirely of small contours.
This method could have been imple-
mented in a lossless mode; however, due
to the number of small contours gener-
ated, loss is introduced by assuming a
sampling size greater than one pixel
width.

In contrast, Millar and Nicholl [1994]
present a lossless coding technique that
identifies the major feature within the
image and use this to perform a path-
directed run-length coding. This coding
technique achieves compression ratios
on the order of 1.5 to 1 for typical mag-
netic resonance images [Cho et al. 1982;
Morris and Peter 1986; Kean and David

1986]. In terms of compression ratio
this does not compare to the previously
reported lossy techniques. However, the
technique does outperform standard
lossless first-generation techniques that
were applied to the same images. This
technique not only provides some com-
pression but has the advantage that
structural information is stored as part
of the coding process. Thus image ma-
nipulation, such as translation and ro-
tation, may also be performed on the
compressed data.

8. SUMMARY

Image coding is, in general, a two-stage
process commonly stated as:

modeling of the image data
1 coding of the model parameters.

In this article various second-genera-
tion image coding techniques have been
presented. These techniques have been
grouped in terms of their modeling
stage, which for second-generation cod-
ing tends to be a modeling process that
mimics a property of the HVS.

In the segmentation-based tech-
niques, the modeling stage has been
based on the fact that the eye is good at
identifying regions that appear similar
and grouping them accordingly. The
segmentation algorithm employed in
the overall technique is responsible for
separating the original image into its
various regions. The contents of these
regions will then be represented via
some criterion, that is, polynomial ap-
proximation or a texture-representation
scheme, such as GMRF. These modeling
schemes can represent the contents of a
region very accurately and hence pro-
duce good-quality reproduced images.
However, they do rely heavily on the
initial segmentation. If the image has
been segmented unrealistically, for ex-
ample, if too few regions have been pro-
duced, then the resulting decoded image
will be visually poor. In general, most of
the segmentation techniques perform
well for images that contain large areas
of similar texture or intensity. However,

Second-Generation Image Coding • 25

ACM Computing Surveys, Vol. 29, No. 1, March 1997



it has been pointed out by Jang and
Rajala that the performance for real-
world images, such as landscape im-
ages, is poor. It was for this reason that
they employed the fractal dimension as
a segmentation method, and it can be
seen that for a real-world image this
method does identify larger regions
than, for example, region growing.

Visual-pattern-based coding tech-
niques make use of the fact that the eye
can decompose the overall image into a
set of smaller “visual patterns.” The ini-
tial work in this field was presented by
Chen and Bovik [1990], and their work
resulted in compression ratios of similar
size to that of VQ (on which the tech-
nique is based). Further improvements
were reported by Silsbee and Bovik
[1991], who implemented a hierarchical
version of their predecessors. Compres-
sion ratios reported by Silsbee and Bo-
vik are comparable to those achieved
with some of the early segmentation-
based approaches.

Directional filtering has been em-
ployed as a modeling scheme in order to
exploit the fact that the eye is composed
of direction-sensitive neurons. The
scheme can be applied directly to the
original image, as Ikonomopoulos and
Kunt [1985] do, with the resulting direc-
tional images being coded in traditional
ways, for example, Huffman coding to
produce good-quality decoded images at
reasonable compression ratios. Alterna-
tively, the directional filtering stage
may be applied to the output of a fea-
ture separation stage, as in Zhou and
Venetsanopoulos [1992].

Multiscale techniques take the origi-
nal image and subsample it in order to
produce various levels of image detail at
progressively smaller details. This idea
exploits the fact that the eye is capable
of identifying such levels of progres-
sively finer details in the image. By
creating sets of progressively smaller
subsampled images, a mechanism is de-
veloped that can be used to identify
common features in the image that are
present at various levels of detail.

The final grouping for the modeling

schemes is based on the eye’s ability to
identify edges in the images. Contour
coding considers that the image to be
coded is composed of many line seg-
ments or closed contours that spiral to-
wards the center of the main body of the
image. These methods identify the line
segments, code their position and de-
scription, and then use this description
to code the image via standard coding
methods, for example, path-directed
run-length schemes.

As stated previously, second-genera-
tion image coding is, in general, lossy in
nature. The majority of the schemes
discussed previously compress the im-
age by removing some of the visual re-
dundancy inherent in the image. As in-
dicated, the coding schemes are based
on some property of the human visual
system and hence the redundancy is
removed on the principle that if we can-
not see the redundant information then
it may be successfully removed without
impairing the “look” of the image. The
recent explosion in multimedia PCs and
applications has opened the way for
such possibilities as image databases
and photo CDs. These applications may
contain many thousands of digital im-
ages and hence massive storage space is
required. At present a vast majority of
“commercial” image storage software
employs techniques such as JPEG and
fractal compression [Waite 1990; Jac-
quin 1993; Fischer 1985] (this is a sepa-
rate technique based on VQ principles
and fractals and is not related to Jang
and Rajala’s method). These methods
can produce good compression ratios but
often at the expense of image quality.
Second-generation coding removes only
visually redundant information from
the image and as such is ideal for such
applications as image database storage.
However, the problem arises of which
technique and hence which particular
property of the HVS to use.

One drawback with the majority of
second-generation techniques is that
they are inherently lossy. Despite the
fact that the loss cannot be detected by
the eye, this is not acceptable for those

26 • M. M. Reid et al.

ACM Computing Surveys, Vol. 29, No. 1, March 1997



cases that do not tolerate any loss, for
example, diagnostic medical imaging. In
these cases we cannot apply such tech-
niques that merge small regions and
remove insignificant ones as in this case
the region may actually be of diagnostic
value. In medical imaging, similar ap-
plications to those in multimedia are
found, such as storage in an image data-
base or picture archive and communica-
tion system (PACS). At present many of
these images are stored using standard
file compression utilities, Unix com-
press, for example. Therefore it is vital
that lossless techniques are continually
developed.

All the techniques presented here
have their relative merits and draw-
backs. They all exhibit similar computa-
tional complexity and in general are
linear in their compress/decompress cy-
cle; that is, similar complexity is in-
volved in both the compression and de-
compression phases. The choice of
algorithm will be very much influenced
by nonrelated items such as ready avail-
ability of a particular algorithm and/or
prewritten software, that is, image-pro-
cessing libraries. The techniques pre-
sented in this article cover a diverse
selection, with each group of techniques
being based on one different aspect of
the HVS, which makes a direct compar-
ison between techniques difficult. This
is compounded by the fact that each
technique works well for some images
and not for others. In general, most of
the techniques will perform well on
head-and-shoulders-type images, as in
the test image used here.

Finally, it should be noted that no
direct comparison has been made be-
tween techniques that rely on different
modeling schemes. In general, results
from image coding are normally quoted
in terms of compression ratio, or bits
per pixel, of the compressed image. The
compression ratio is the ratio of the
original image size to the compressed
image size. In the past, various metrics
have been used as an indication of the
error associated with the compression/
decompression cycle of first-generation

coding techniques. These include root-
mean-squared (RMS) error and signal-
to-noise ratio (SNR). The only compari-
son that could be made between the
methods presented here is via their re-
ported compression ratios. However, the
quality of the decoded image is also an
important factor for second-generation
coding. As a result, direct comparisons
on compression ratio are not considered
valid since one particular method may
produce a good compression ratio but
unacceptable image quality. Therefore,
until a quantitative measure of image
quality has been adopted, direct com-
parisons between these second-genera-
tion techniques will not be possible.
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