71-=li fori<k

v (i B $58—
lkz( P1 . Px-1)

For priorities i < k the arrival process is Poisson so the same calculation for the waiting
tme as before gives

W. = . 1<k
Y21 - py— = pp( —P1— =Py '

For priority k and above we have infinite average waiting time in queue.
3.40

(a) The algebraic verification using Eq. (3.79) listed below
Wi=RAL-py-...-pe)(l-py-...-py)

is straightforward. In particular by induction we show that

R(p;+ +py
T=pi= - =p

PIW+ -+ p W, =

The induction step is carried out by verifying the identity

R{p;+ - +pp PraR

PIW i+ 4+ DWW+ p Wy, =
The alternate argument suggested in the hint is straightforward.

(b) Cost

C = ;CkNIQ{': ;{ Cklkwk = Z

k=1

Cy
— W .
Xk)pk k

We know that W) < W3 < .. < W, Now exchange the priority of two neighboring
classes 1 and j=i+1 and compare C with the new cost

Ck .
=\p W
Xk)pk k

+
l=-py=—pr A=py—pl=p;—--

= pk+1J

&
£

£



In C' all the terms except k =i and j will be the same as in C because the interchange does

not affect the waiting time for other priority class customers. Therefore

Ci . , o
C-C=ZLpWi+ZpW,-S ow.- I nw
j PiW X, Piv X, Pi YYj X PjYY;

We know from part (a) that

o

Z P W = constant.

=1

Since Wy is unchanged for all k exceptk =iand j (= i+1) we have
|
piWi ¥ pJWj = p]W 1+pJW i

Denote

B =piWi - piW; = pjW;-pW; |
! !
Clearly we have B = (0 since the average waiting time of customer class i will be ncreased
if class 1 is given lower priority. Now let us assume that
C: Cj

:I—S,=—

i j
Then
C: C: c: C:
C-C==1( WipW)-Lp W.p W)= B[;L - zl)
Xi i i1 Xj T L A Xi i

.- C c -
Therefore, only if =L < 2L ean we reduce the cost by exchanging the priority

1 i+1
order of i and i+1. Thus, if (1,2,3,...,n) is an optimal order we must have

C C C C
—bLe 253 s onln
Xl 2 3 n

3.41

Let D(t) and T;(t) be as in the solution of Problem 3.31. The inequality in the hint is evident
from Figure 3.30, and therefore it will suffice to show that



3.46
We have
W=R/1-p)

where
M(t) Ly 2
IOl IV
=lim{ =) 2x2 _Z..z
- E}I}w [EEXI-FI 12
1=

i=

where L(t) is the number of vacations (or busy periods) up to time t. The average length of
an idle period is

oo Vv o
I= j p(v{ '[ vie ™MdT+ j Tle“ltdr]dv
0 0 v

and it can be seen that the steady-state time average number of vacatons per unit ime

) Lty 1=
== 5
We have
Lo V2
L V2 L@ 23 L@ ¥ _ VX1 - p)
i AU HI - e M =
hm*"’m?g 7 Tim t  L() e t 21 21
Therefore
R = &YZ 4 vz(l = p)
2 21
and
- AxX2 V2
Wt
3.47

(a) Since arrival dmes and service times are independent, the probability that there was an
arrival in a small interval & at time 1 - x and that this arrival is still being served at time © is
A8[1 - Fx(x)).

Ty m— —

T



—'—
(b) We have

X = J xdF, (x)
0

and by calculating the shaded area of the figure b;clow in two different ways we obtain

oo oo

fxdFX(x) =J. [1- Fx(x)]dx
0 0

This proves the desired expression.

FX(X)‘
7/
dFX(x}:;
- i

(c) Letp,(x) be the steady state probability that the number of arrivals that occurred prior to
time T — x and are stll present at time 1 is exactly n.

Forn = 1 we have

Pn(x-3)=(1-A[1 - Fx(x)]8}p,(x) + A[1 - Fx(x)18p, (x)

and for n =0 we have
Po(x-8) = {1-A[1- Fx(x)]0}py(x).

Thus p(x),n=0,1, 2, ... are the solution of the differential equations

dp,/dx = a(x)p,(x) - a(x)p,_;(x) | for n2 1




dpg/dx = a(x)py(x) for n =0
where

a(x) = A[1 - Fx(x)].
Using the known conditions

Pple=) =0 forn=1
pg(oo) =1

it can be verified by induction starting with n = 0 that the solution 1s

i jree [J a(y)dyl"

Iifn(l'l)=[t3’t ]i——-—,' x20, n=01,2,..

n! ,
Since
[ atay =2f 11- Fyooray =2E0)
0 0
we obtain

: AE(X)]"

P (O)=C)IE{X}'[——[—]L. ia=0; 1; 2,
L n! |

Thus the number of arrivals that are still in the system have a steady state Poisson

distribution with mean AE{X}.

3.48 |
(a) Denote |
£(x) = Eq[(max {0,r-x})?]
and ‘
g(x) = (Ef[max(0,r-x}})?
where E;[-] denotes expected value with respect to T (X is considered constant). We will

prove that f(x)/g(x) 1s montonically nondecreasing for x nonnegative and thus attain its
minimum value for x=0. We have




