ECE Communication Networks 1 Homework Assignment 2

Fall 2006

Problems

5. Consider the transition probability matrix

$$
P=\left(\begin{array}{lll}
0.8 & 0.2 & 0.0 \\
0.8 & 0.0 & 0.2 \\
0.0 & 0.8 & 0.2
\end{array}\right)
$$

for a discrete time Markov Chain. (a) Draw the Markov chain, and (b) compute the steady-state vector using at least 2 different approaches.
(a) The picture should have three states: 1,2 , and 3 . There is a 1 to 1 flow of 0.8 , and a 1 to 2 flow of 0.2 . There is a 2 to 1 flow of 0.8 , and a 2 to 3 flow of 0.2 . There is a 3 to 3 flow of 0.2 and a 3 to 2 flow of 0.8 .
(b) Call the matrix P. One way to calculate the steady state vector is to look at P^{k}. A quick calculation gives

$$
P^{16}=\left(\begin{array}{ccc}
0.762 & 0.190 & 0.048 \\
0.762 & 0.190 & 0.048 \\
0.762 & 0.190 & 0.048
\end{array}\right)
$$

(You should be able to do this in less than 16 matrix multiplications). Hence the steady state $\pi=$ $[0.762,0.190,0.048]$. Another way is to solve $\pi=\pi P$ as an eigenvalue-eigenvalue problem (in fact, the P^{k} method is just one way of solving an eigenvector problem).

A third method is to realize that this Markov chain describes a birth-death process, where the birth rate is 0.2 and the death rate is 0.8 . The traffic intensity is $\rho=0.2 / 0.8=1 / 4$, and

$$
\begin{gathered}
\pi_{1}=\frac{1-1 / 4}{1-1 / 4^{3}}=16 / 21=0.762 \\
\pi_{2}=\pi_{1} \rho=4 / 21=0.190 \\
\pi_{3}=\pi_{2} \rho=1 / 21=0.048
\end{gathered}
$$

6. (HARD) Consider a renewal (birth) process with interarrival times τ_{j}. Let $W_{0}=0$, and generally define the waiting time $W_{n}=\sum_{k=1}^{n} \tau_{k}$ for $n \geq 1$. Associate the counting process $N(t)$ with the renewal process, where $N(t)$ is the number of events that have occurred between time 0 and time t (where $N(0)=0)$. Assume the interarrival times are i.i.d. and follow a pdf $f_{\tau}(t)$. Let $\phi_{\tau}(z)$ be the probability generating function of $f_{\tau}(t)$, then show that

$$
\operatorname{Pr}\left[W_{n} \leq t\right]=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} \frac{\phi_{\tau}^{n}(z)}{z} e^{z t} d z
$$

The waiting time W_{n} is the sum of n i.i.d random variables, and hence

$$
\phi_{W_{n}}(z)=\left(\phi_{\tau}(z)\right)^{n}
$$

Now, we are interested in the $\operatorname{cdf} F_{W_{n}}(t)=\operatorname{Pr}\left[W_{n} \leq t\right]=\int_{0}^{t} f_{W_{n}}(u) d u$. Take the Laplace transform

$$
\int_{0}^{\infty} e^{-z t} F_{W_{n}}(t) d t=\frac{\phi_{W_{n}}(z)}{z}=\frac{\phi_{\tau}^{n}(z)}{z}
$$

where we have used properties of the Laplace transform to achieve the simplification. Now, all we need is to take the inverse Laplace transform in order to obtain:

$$
\operatorname{Pr}\left[W_{n} \leq t\right]=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} \frac{\phi_{\tau}^{n}(z)}{z} e^{z t} d z
$$

