ECE Communication Networks 1
 Final Exam, Due: Dec 19th, 3pm
 Fall 2006

Instructions: The exam is a takehome exam. You are to work on the exam alone. Please clearly indicate which problem you are solving and arrange the problems in order.

1. (Honor Code:) On a separate page at the front of the exam you must write out:

I attest that I have not given, or received any aid or discussion in relationship to this examination.
Additionally, you must sign this proclamation.
2. (How Discrete!) In this problem, we consider a discrete time analog of the $\mathrm{M} / \mathrm{M} / 1$ queue. Consider the time axis divided into equal slots. Let the arrival process be a Bernoulli sequence with probability p (i.e. a discrete time " $0-1$ " sequence X_{k} where $\operatorname{Pr}\left[X_{k}=1\right]=p$. Suppose the service time is geometrically distributed with parameter q (i.e. the service time S has the probability distribution $\operatorname{Pr}[S=l]=q(1-q)^{l-1}$).
In order to proceed, let us assume that: (i) a newly arriving customer is accepted into the system slightly before a new time slot begins; (ii) if the service is completed in a given time slot, the customer leaves the system before the next time slot starts; (iii) a customer waiting in the queue enters the service as soon as a previous customer leaves the server so that the new slot can be used.
Define $N(k)$ to be the number of customers in the system at time slot k. Define $A(k)=1$ if there is an arrival in time $[k, k+1)$ and $A(k)=0$ otherwise. Similarly, define $D(k)=1$ if there is a departure on time $[k, k+1)$ and $D(k)=0$ otherwise.
(a) (5 points) Show that the sequence $\{N(k)\}$ is a Markov sequence.
(b) ($\mathbf{1 0}$ points) Calculate the transition probability matrix

$$
P_{i, j}=\operatorname{Pr}[N(k+1)=j \mid N(k)=i]
$$

(c) (10 points) Define the probability $\pi_{i}(k)=\operatorname{Pr}[N(k)=i]$. If we define the matrix $\mathbf{P}=\left[P_{i, j}\right]$ and the vector $\pi(k)=\left[\pi_{0}(k), \pi_{1}(k), \cdots, \pi_{i}(k), \cdots\right]$.
Then, $\pi(k)$ satisfies

$$
\pi(k+1)=\pi(k) \mathbf{P}
$$

Let $\pi_{i}=\lim _{k \rightarrow \infty} \pi_{i}(k)$. Using this relationship, give the balance equations (note: there will be separate results for $i=0$ and $i=1,2, \cdots)$.
(d) ($\mathbf{1 0}$ points) Using the balance equations, solve for the steady state probability distribution π_{i} in terms of p and q.
3. (This Ain't No English:) Markov models are powerful tools, and in this problem you are to explore the use of the Markov process as a means to generate traffic. On the course website is a file for Sample.txt. This problem involves programming, and in order to get full credit, you must describe your methodology, implementation, and the empirical results you have obtained for your Markov model.
(a) (10 points) One approach to modeling a language is to create a Markov model that describes the transition probabilities for going from one symbol to the next. For example, there are 26 letters in the English language, and we can build a 26×26 probability matrix describing the likelihood of going from one character to the next. Using the text provided, you are to build a single-letter and a digram (a digram is a two-letter combination) Markov model for the English language. To do this, you may use any programming language of your choice. Be sure to calculate both transition probabilities and steady-state probabilities for each letter/digram.
(b) (10 points) Similar to symbol-based traffic generation, we may also build word-based traffic generators. Using the text provided, build a word-based Markov model for the English language. Provide a list of words in your state-space, their associated probabilities, and the transition probabilities.
(c) (10 points) Using your single-letter, digram, and word-level Markov models, generate a sample of text for each model. The sample should be at least 100 characters long.
4. (How General Can We Get?:) Consider a single server system, for which we define the variables:

$$
\begin{gathered}
S_{k}=\text { Service time of customer } C_{k} \\
W_{k}=\text { Waiting time of } C_{k} \\
X_{k}=\text { Interarrival time between } C_{k-1} \text { and } C_{k} .
\end{gathered}
$$

Define $Y_{k}=S_{k}-X_{k+1}$
(a) (5 points) Show that $W_{k+1}=\max \left\{W_{k}+Y_{k}, 0\right\}$ by considering the cases when $W_{k}+S_{k}-$ $X_{k+1}>0$ and when $W_{k}+S_{k}-X_{k+1}<0$.
(b) (5 points) Define

$$
F_{W_{k+1}}(t)=\left\{\begin{array}{cc}
\operatorname{Pr}\left[W_{k}+Y_{k} \leq t\right] & \text { for } t \geq 0 \\
0 & t<0
\end{array}\right.
$$

You may assume W_{k} and Y_{k} are independent. Let $F_{W}(t)=\lim _{k \rightarrow \infty} F_{W_{k}}(t)$. Show that

$$
F_{W}(t)=\left\{\begin{array}{cc}
\int_{0}^{\infty} F_{Y}(t-u) f_{W}(u) d u & \text { for } t \geq 0 \\
0 & t<0
\end{array}\right.
$$

and equivalently that

$$
F_{W}(t)=\left\{\begin{array}{cc}
\int_{-\infty}^{t} F_{W}(t-y) f_{Y}(y) d y & \text { for } t \geq 0 \\
0 & t<0
\end{array}\right.
$$

(c) The above result for $F_{W}(t)$ is an integral equation of Wiener-Hopf type, and can be used to obtain the waiting time for a general single-server queueing system. One approach to solving such integral equations is by the method of spectral factorization. In spectral factorization, we define

$$
F_{W-}(t)=\left\{\begin{array}{cc}
\int_{-\infty}^{t} F_{W}(t-y) f_{Y}(y) d y & \text { for } t<0 \\
0 & t \geq 0
\end{array}\right.
$$

In what follows, you may assume that all distributions involved decay faster than the exponential (for integral convergence).
i. (5 points) Apply the double-sided Laplace Transform to obtain

$$
\hat{f}_{W-}(s)=\left[\hat{f}_{Y}(s)-1\right] \hat{f}_{W}(s),
$$

where $\hat{f}_{W}(s)$ is the Laplace Transform of $F_{W}(t)$, and $\hat{f}_{Y}(s)$ is the Laplace Transform of $f_{Y}(t)$ (note: be careful, f_{Y} is the pdf, F_{W} is a cdf). Here, we also define

$$
\hat{f}_{W-}(s)=\int_{-\infty}^{0} e^{-s t} F_{W-}(t) d t .
$$

ii. (5 points) Applying the double-sided Laplace Transform, show $\hat{f}_{Y}(s)=\hat{f}_{X}(-s) \hat{f}_{S}(s)$, where $\hat{f}_{X}(s)$ and $\hat{f}_{S}(s)$ are the usual Laplace transforms of $F_{X}(t)$ and $F_{S}(t)$.
iii. (5 points) Suppose that you can factor

$$
\hat{f}_{Y}(s)-1=\hat{f}_{X}(-s) \hat{f}_{S}(s)-1=\frac{A(s)}{B(s)}
$$

where $A(s)$ is analytic and contains no zeros in the half plane $\operatorname{Re}(s)>0$, and $B(s)$ is analytic and contains no zeros in $\operatorname{Re}(s)<\xi$. Further, suppose that $A(s)$ and $B(s)$ have the properties: $\lim _{|s| \rightarrow \infty} A(s)=s$ for $\operatorname{Re}(s)>0$, and $\lim _{|s| \rightarrow \infty} B(s)=-s$ for $\operatorname{Re}(s)<\xi$. Then, it can be shown (you do NOT have to do this... it involves some heavy complex analysis) that

$$
\hat{f}_{W}(s) A(s)=\hat{f}_{W-}(s) B(s)
$$

for all s, and thus that

$$
\hat{f}_{W}(s)=\frac{K}{A(s)}
$$

By looking at $K=\lim _{s \rightarrow \infty} \hat{f}_{W}(s) A(s)$, show $K=F_{W}(0)$.
iv. (5 points) Finally, show also that $F_{W}(0)$ can be found by

$$
F_{W}(0)=\lim _{s \rightarrow \infty} \frac{A(s)}{s} .
$$

(d) (5 points) Part (c) has just outlined a method for finding the waiting time distribution. Putting it all together, you calculate $\hat{f}_{Y}(s)$, factor $\hat{f}_{Y}(s)-1$, solve for $F_{W}(0)$, to obtain $\hat{f}_{W}(s)$, and take the inverse Laplace Transform. Using the method just outlined, consider the $M / M / 1$ queue (with arrival parameter λ and departure parameter μ), and show that the waiting time has distribution $F_{W}(t)=1-\rho e^{-(\mu-\lambda) t}$.

