
ECE Advanced Information and Network Security
Homework 1 and 2 Solutions

Spring 2007

Problems from the Book:
Chapter 2
2. Changing the plaintext to numbers yields 7, 14, 22, 0, 17, 4, 24, 14, 20. Applying 5x + 7 to

each yields 5 · 7 + 7 = 42 ≡ 16 (mod 26), 5 · 14 + 7 = 77 ≡ 25, etc. Changing back to letters yields
QZNHOBXZD as the ciphertext.

4. Let the decryption function be x = ay + b. The first letters tell us that 7 ≡ a · 2 + b (mod 26).
The second letters tell us that 0 ≡ a · 17 + b.Subtracting yields 7 ≡ a · (−15) ≡ 11a. Since 11−1 ≡ 19
(mod 26), we have a ≡ 19 · 7 ≡ 3 (mod 26). The first congruence now tells us that 7 ≡ 3 · 2 + b, so
b = 1. The decryption function is therefore x ≡ 3y + 1. Applying this to CRWWZ yields happy for the
plaintext.

5. Let mx + n be one affine function and ax + b be another. Applying the first then the second
yields the function a(mx+n)+ b = (am)x+(an+ b), which is an affine function. Therefore, successively
encrypting with two affine functions is the same as encrypting with a single affine function. There is
therefore no advantage of doing double encryption in this case. (Technical point: Since gcd(a, 26) = 1
and gcd(m, 26) = 1, it follows that gcd(am, 26) = 1, so the affine function we obtained is still of the
required form.)

15. The number of seconds in 120 years is

60× 60× 24× 365× 120 ≈ 3.8× 109.

Therefore you need to count 10100/(3.8× 109) ≈ 2.6× 1090 numbers per second!
Chapter 2 Computer Problems
2. Use ’fr=frequency(lcll);’ to get a frequency count. Observe that the most common common

letter is l, which is 7 places after e. Try shifting back by 7 using ’shift(lcll,-7)’ to get the answer ’ans =
eveexpectseggsforbreakfast’.

6. a) The message can be found in the file ciphertexts.m under the variable gaat. The following code
performs the conversion to 0, 1, 2, 3, and performs the shifting.

ind0=find(gaat==A);
ind1=find(gaat==C);
ind2=find(gaat==G);
ind3=find(gaat==T);
vec=gaat; vec(ind0)=0; vec(ind1)=1; vec(ind2)=2; vec(ind3)=3;
vec=mod(vec+1,4);
ind0=find(vec==0);
ind1=find(vec==1);
ind2=find(vec==2);
ind3=find(vec==3);
output=vec;
output(ind0)=A;
output(ind1)=C;
output(ind2)=G;
output(ind3)=T;
output=char(output);
The answer is TCCAAGTGTTGGTGCCAACCGGGAGCGACCCTTTCAGAGACTCCGA.
b) The following code assumes that the affine cipher is of the form y = ax+b (mod 4). The parameters

a and b should be entered in. The restrictions are that a is relatively prime to 4 which means that a is
either 1 or 3.

ind0=find(gaat==A); ind1=find(gaat==C); ind2=find(gaat==G); ind3=find(gaat==T);
vec=gaat;
vec(ind0)=0; vec(ind1)=1; vec(ind2)=2; vec(ind3)=3;

1



vec=mod(a*vec+b,4);
ind0=find(vec==0);
ind1=find(vec==1);
ind2=find(vec==2);
ind3=find(vec==3);
output=vec;
output(ind0)=A;
output(ind1)=C;
output(ind2)=G;
output(ind3)=T;
output=char(output);
Chapter 3
1. (a) Apply the Euclidean algorithm to 17 and 101:

101 = 5 · 17 + 16

17 = 1 · 16 + 1.

Working back yields 1 = 17− 16 = 17− (101− 5 · 17) = (−1) · 101 + 6 · 17.
(b) Since −101 + 6 · 17 = 1, we have 6 · 17 ≡ 1 (mod 101). Therefore 17−1 ≡ 6 (mod 101).
Chapter 4
1. (a) Switch left and right halves and use the same procedure as encryption. The switch the left

and right of the final output. Verification is the same as that on pages 99-100.
(b, c) 1st round: M0M1 → M1[M0 ⊕K ⊕M1]
2nd round: [M0 ⊕K ⊕M1][M1 ⊕M0 ⊕K ⊕M1 ⊕K] = [M0 ⊕K ⊕M1][M0]
3rd round: [M0][M0 ⊕K ⊕M1 ⊕K ⊕M0] = [M0][M1], which is the plaintext.
Therefore 3 rounds is very insecure! After 2 rounds, the ciphertext alone lets you determine M0 and

therefore M1 ⊕ K, but not M1 or K individually. If you also know the plaintext, you know M1 are
therefore can deduce K.

3. CBC: We have DK(Cj)⊕ Cj−1 = DK(EK(Pj ⊕ Cj−1))⊕ Cj−1 = Pj ⊕ Cj−1 ⊕ Cj−1 = Pj .
CFB: Cj ⊕ L8(EK(Xj)) = (Pj ⊕ L8(EK(Xj)))⊕ L8(EK(Xj)) = Pj .
4. Let I denote the string of all 1’s. Note that the expansion E(Ri−1) = E(Ri−1) = E(Ri−1) ⊕ I.

Therefore E(Ri−1) ⊕Ki = E(Ri−1) ⊕ I ⊕Ki ⊕ I = E(Ri−1) ⊕Ki, so the input to the S-boxes doesn’t
change. Therefore the output doesn’t change. But Li−1 = Li−1 ⊕ I, so the resulting right side is
Li−1 ⊕ f(Ri−1,Ki) = Ri ⊕ I = Ri. Also, clearly the new left side is the complementary string. So each
round of DES gives the complementary string, so this is true for the final result.

11. (not assigned, but mentioned as a challenge problem) Let K be the key we wish to find.
Use the hint. Then C1 = EK(M1) and C2 = EK(M1). Now, suppose we start a brute force attack by
encrypting M1 with different keys. If, when we use Kj we get EKj (M1) = C1 then we are done and
the key we desire is K = Kj . However, when we use Kj we can eliminate another key. Here is how.
If EKj (M1) = C2 then we know (by complementation property) that EKj

(M1) = C2. Hence, if this
happens, we know the key is Kj since Kj would decrypt C2 to get M1. We are effectively testing two
keys for the price of one! Hence, the key space is cut in half and we only have to search an average of
254.

Chapter 6
1. We have φ(n) = (p− 1)(q − 1) = 100 ∗ 112 = 11200. A quick calculation shows that 3 ≡ 7467−1

(mod 11200). We have 58593 ≡ 1415 (mod 11413), so the plaintext was 1415 = no.
2. (a) Here φ(n) = 4 · 10 = 40. We are looking for a number d such that ed = 1 (mod 40). Thus,

we want to solve for d in 3d = 1 (mod 40). Observe that d = 27 gives 3 · 27 = 81 = 1 (mod 40).
Hence d = 27.

(b) Here, you use Euler’s Theorem. d is such that 3d = 1 + kφ(n) for some k. Then, cd = m3d =
m1+kφ(n) = m (mod n) by Euler’s Theorem.

8. We have c2 ≡ ce2
1 ≡ mc1c2 (mod n). Therefore, this double encryption is the same as single

encryption with encryption exponent e1e2. So the security is at the same level as single encryption.

2


