
Public Key Cryptography: RSA and Public Key Cryptography: RSA and
Lots of Number TheoryLots of Number Theory

Public vs. PrivatePublic vs. Private--Key CryptographyKey Cryptography

We have just discussed traditional symmetric cryptography:
– Uses a single key shared between sender and receiver

Asymmetric (public key) cryptography was introduced by Diffie & Hellman
and is a dramatically different approach to cryptography:
– Two keys are used: a public and a private key
– Alice generates a public and a private key
– The Public Key is given to anyone who would like to securely

communicate with Alice
– Alice keeps the Private key “private” and she may decrypt messages

encrypted with the public key

Asymmetric cryptography is NOT a replacement of symmetric cryptography
– There are many scenarios where symmetric is much better than

asymmetric (such as bulk data encryption)

PublicPublic--Key CryptographyKey Cryptography

Pros and Cons of Public Key CryptographyPros and Cons of Public Key Cryptography

There are several advantages to public key cryptography:
– Asymmetry allows for easier key distribution: We do not need a

trusted third party (KDC) to distribute keys
– Asymmetry provides proof of origin: The secret key is

something that only one entity knows.
– Can be extended to form chains of trust: Public Key Certificate

frameworks provide a natural way to model trust.

There are several disadvantages to public key cryptography:
– Computation Burden: By its very nature, public key

cryptography is not as fast or computationally efficient as
symmetric cryptography.

– Communication Overhead: PKIs typically require significant
communication overhead (frequent and large messages).

PublicPublic--Key CharacteristicsKey Characteristics

Public-Key algorithms rely on two keys with the characteristics
that it is:
– computationally infeasible to find decryption key knowing only

algorithm & encryption key
– computationally easy to en/decrypt messages when the relevant

(en/decrypt) key is known
– either of the two related keys can be used for encryption, with the

other used for decryption (in some schemes)

PublicPublic--Key CryptosystemsKey Cryptosystems

From Stalling’s Book

RSARSA

The RSA algorithm is the most popular public key scheme and was
invented by Rivest, Shamir & Adleman of MIT in 1977
Based on exponentiation in a finite field over integers modulo a prime
– Exponentiation takes O((log n)3) operations (easy)
– Exponentiation is accomplished through repeated squaring
– Uses large integer operations

Requires finding large primes
The security of RSA is based on the (believed) intractability of the
factoring of the product of two large primes
– Difficulty of factoring is based upon the size of the factors
– Factorization of RSA composite takes O(e log n log log n) operations (hard)

Setup of RSASetup of RSA

Alice wishes to generate a public key and a private key
1. She first generates two large random primes p and q
2. She computes the composite n=pq, and the Euler Phi

function

3. She chooses a random encryption exponent e such that

4. She finds the decryption exponent by:

Public key is {e,N}
Private key is {d,p,q}

)1)(1()(−−= qpnϕ

1))(,gcd(=ne ϕ
)(mod1 ned ϕ=

Encryption with RSAEncryption with RSA

Suppose Bob wishes to encrypt a message M and send it to
Alice.
He acquires her public key {e,n}
He computes the ciphertext:

Alice can decrypt by using her private key {d,p,q} via

Requirement: We are doing operations modulo n, so message
must be smaller than m

nmc e mod=

ncm d mod=

RSA ExampleRSA Example

1. Select primes: p=885320963 & q=238855417
2. Compute n = pq =211463707796206571

3. Compute phi(n)=(p–1)(q-1)

4. Select e : gcd(e,phi(n))=1; choose e=9007
5. Determine d: de=1 mod phi(n) and d < phi(n).

Value is d=116402471153538991
Example encryption

1. Suppose m=30120
2. Ciphertext c=me mod n = (30120)9007=113535859035722866
3. Reconstruct plaintext: m=cd mod n

= 113535859035722866 116402471153538991
= 30120

Why RSA WorksWhy RSA Works

OK… so we’ve covered what RSA is… now lets look
at why it works, and how to make it work in practice.
There are several key observations, most built from
number theory, that we will need.
We will cover the following:
– Euler’s Theorem
– How to Calculate Inverses
– Modular Exponentiation
– Finding Primes

We will briefly discuss the security of RSA today.
More on the security of RSA will come in a lecture on
attacks and cryptanalysis.

Euler’s TheoremEuler’s Theorem

Fermat’s Little Theorem: If p is a prime and p does not divide
a, then ap−1 ≡ 1 (mod p).
Euler’s Theorem is a generalization of Fermat’s Little Theorem
Euler’s Theorem: If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

What is φ(n)? It’s the amount of numbers between 1 and n that
relatively prime to n.

Example: φ(pq) = (p-1)(q-1)
Euler/Fermat Example: Compute 243210 (mod 101).
Solution: From Fermat’s theorem, we know that 2100 ≡ 1 (mod
101). Therefore, 243210 ≡ (2100)432210 ≡ 1432210 ≡ 1024 ≡ 14 (mod
101).

Why Does Euler Make RSA Work?Why Does Euler Make RSA Work?

Basic Principle: Let a, n, x, y be integers with n ≥ 1 and gcd(a,
n) = 1. If x ≡ y (mod φ(n)), then ax ≡ ay (mod n). In other words,
if you want to work mod n, you should work mod φ(n) in the
exponent.
In RSA, we choose ed ≡ 1 (mod φ(n)), so

med ≡ m1 = m (mod n).
Or, more explicitly ed ≡ 1 (mod φ(n)) means

ed = 1 + k φ(n)
So

med ≡ m1+kφ(n) = m (mod n)

How to Calculate Inverses for RSA?How to Calculate Inverses for RSA?

We need to calculate e and d such that ed ≡ 1 (mod φ(n)). How
do we do this?
Step 1: Choose a random e such that gcd(e, φ(n)) =1.

Why?
How?

Step 2: Now, find d.
The wrong way:

The Correct Way:
Use Extended Euclidean

Algorithm!

()
()
()

...onsoand
nmode33e
nmode22e

nmode1e

ϕ≡⋅
ϕ≡⋅

ϕ≡⋅

The Plain Euclidean AlgorithmThe Plain Euclidean Algorithm

The (plain) Euclidean Algorithm finds the gcd(a,b):
Example: gcd(1180, 482)

1180 = 2 · 482 + 216

482 = 2 · 216 + 50

216 = 4 · 50 + 16

50 = 3 · 16 + 2

16 = 8 · 2 + 0.

Last non-zero remainder is the gcd.

Plain Euclidean Algorithm, pg 2.Plain Euclidean Algorithm, pg 2.

Formally, the Euclidean algorithm for calculating gcd(a,b):
Suppose that a>b

Divide b into a: a = q1 b + r1

If r1=0 then b|a and gcd(a,b)=b
else represent b by b=q2 r1+r2

3. Continue in this way until remainder is zero. The gcd is last
non-zero remainder.

a = q1 b + r1
b = q2 r1 + r2
r1 = q3 r2 + r3

. . .
rk-2 = qk rk-1 + rk
rk-1 = qk+1 rk +0
gcd(a,b) = rk

Getting closer to inverses…Getting closer to inverses…

We can prove the following result using the Euclidean
Algorithm:
Theorem: Let a and b be two integers, with at least one of a, b
nonzero, and let d = gcd(a, b). Then there exist integers x, y
such that ax + by = d. In particular, if a and b are relatively
prime, then there exist integers x, y with ax + by = 1.
How do we use this? Suppose we know a, b, x, y as above. Then
the inverse of a (mod b) is x.
Why?
So, we need to find these x and y!
Euclidean algorithm will give us x and y, if we do bookkeeping!

Showing Showing ax+byax+by==gcd(a,bgcd(a,b))

The proof of the previous theorem just involves substitution.
r1=a-q1 b let x1=1, y1= -q1 , so r1 = x1 a + y1 b
Next step…
r2 = b – q2 r1 plug in earlier result

r2 = b – q2 (x1 a + y1 b) = -x1q2 a + (b) (1-y1 q2)
let x2 = - x1q2 , y2 = (1-y1 q2)

So r2 = x2 a + y2 b
Follow this process repeatedly: If ri = xi a + yi b
Then ri+1 = ri-1 – qi+1 ri = xi-1 a + yi-1 b - qi+1 (xi a + yi b)

= a (xi-1 - qi+1 xi) + b (yi-1 – qi+1 yi)
= a xi+1 + b yi+1

Since this holds for any ri, it holds for the last one rk=gcd(a,b).

Extended Euclidean AlgorithmExtended Euclidean Algorithm
The idea in the proof leads to the Extended Euclidean Algorithm

Input: a, b non-negative with a> b
Output: d=gcd(a,b) and x and y such that ax+by=d

If b=0 {
d=a; x=1; y=0; return(d,x,y); }

x2=1; x1=0; y2=0; y1=1;
While b>0 {

q=floor(a/b);
r=a-q*b;
x=x2-q*x1;
y=y2-q*y1;
a=b;
b=r;
x2=x1; x1=x;
y2=y1; y1=y; }

d=a; x=x2; y=y2;
Return(d,x,y)

Implementation Detail: How to multiply fast!Implementation Detail: How to multiply fast!
RSA needs calculations like me mod n. How do can we do this quickly?
If we just do sequential multiplication, it will take forever! (Remember, n is
on the order of 1000 bits!!! And so is e!!!)
To do it effectively, we use Repeated Squaring:
Example: Let’s do 21234 (mod 789)

24 ≡ 42 ≡ 16
28 ≡ 162 ≡ 256
216 ≡ 2562 ≡ 49
232 ≡ 34
264 ≡ 367
2128 ≡ 559
2256 ≡ 37
2512 ≡ 580
21024 ≡ 286.

Since 1234 = 1024 + 128 + 64 + 16 + 2 (1234 = 10011010010 in binary),
thus

21234 ≡ 286 · 559 · 367 · 49 · 4 ≡ 481 (mod 789).

Making Primes, Principles pg. 1 Making Primes, Principles pg. 1

Basic Principle: Let n be an integer and suppose there exist
integers x and y with x2 ≡ y2 (mod n), but x !≡ ±y (mod n). Then
n is composite. Moreover, gcd(x − y, n) gives a nontrivial factor
of n.
Proof. Let d = gcd(x − y, n). If d = n then x ≡ y (mod n), which
is assumed not to happen.

Suppose d = 1. We know that if a|bc and gcd(a, b) = 1, then a|c.
In our case, since n divides x2 −y2 = (x−y)(x+y) and d = 1, we must

have that n divides x + y, which contradicts the assumption that
x !≡ −y (mod n). Therefore, d is not = 1, n, so d is a nontrivial
factor of n.
Example: Since 122 ≡ 22 (mod 35), but 12 !≡ ±2 (mod 35), we
know that 35 is composite. Moreover, gcd(12 − 2, 35) = 5 is a
nontrivial factor of 35.

Making Primes, Principles pg. 2 Making Primes, Principles pg. 2
We may use Fermat’s Little Theorem to prove numbers are not prime.
Here’s the way: Suppose you have a number n and want to show it is not
prime. Choose a number a, and calculate

an-1 (mod n)
If this does not equal 1, then n cannot be prime.
Why?

Example: Show 35 is not prime.
234 = 232 22 = 11 * 4 = 9 != 1 (mod 35)

Hence 35 is not prime.
But, what if an-1 (mod n) = 1? This does not mean n is prime.
Numbers n such that an-1 (mod n)=1 for a particular a are said to be
pseudoprimes base a. “a” is said to be a liar for n.

Making Primes, MillerMaking Primes, Miller--Rabin pg. 1Rabin pg. 1

Fact: Let n be an odd prime and let , where r is odd.
Let a be any integer such that gcd(a,n)=1. Then either
or for some .
Definition: Let n be an odd composite with . Let

. If either or , for
some then n is a strong pseudoprime base a, and a is a
strong liar for n.
Fact: If n is an odd composite integer, then at most 1/4 of the
numbers a are strong liars for n.
We can use this in a Monte-Carlo algorithm to produce
“primes”:
– Test t different a’s.
– Probability of falsely identifying a prime is

r21n s=−
()nmod1ar ≡

()nmod1a r2j
−≡ 1sj0 −≤≤

r21n s=−

[]1n,1a −∈ ()nmod1a r2j
−≡()nmod1ar ≡

1sj0 −≤≤

()t4
1≤

MillerMiller--Rabin Rabin PrimalityPrimality Test, pg. 2Test, pg. 2
Generate a random (odd) integer n such that n-1 = 2sr

For k=1 to t do
Choose a random integer
Calculate y=ar (mod n)
If ((y!= 1) & (y != n-1)) then

j=1;
While ((j <= s-1) & (y != n-1)) do

y=y2 (mod n)
If y=1 then Return(“Composite”);
j++;

enddo
If (y != n-1) then Return(“Composite”);

endif
endfor
Return(“Probably Prime”);

2na2 −≤≤

OK, we know how to make primes… Now what?OK, we know how to make primes… Now what?

Not all primes are good… There are some things we should
check for when choosing primes…
Make certain (p-1) or (q-1) do not have many small factors!

Why? Else, the (p-1)-Factorization Method will make n easy to factor
Make p and q of different lengths

Why? The following result applies…
Theorem: Suppose p and q are primes with q < p < 2q. Let n=pq, and

choose e and d as in the RSA algorithm. If d < (1/3)n1/4, then d can
be calculated quickly.
Make certain adversary doesn’t know many of the digits of p or q.

Why? The following result applies…
Theorem: Let n=pq have m digits. If we know the first m/4 or the last

m/4 digits of p then we can efficiently factor n.

A Little on the Security of RSAA Little on the Security of RSA

The security of RSA is based upon the assumption that factoring
the product of two large primes is hard.
What if we assume factoring is impossible, then what are the
logical implications?
Most arguments go like this:
– If factoring is hard, and XYZ is directly related to factoring, then

XYZ is hard.
– Or, say it another way… Assume XYZ is easy, then show XYZ is

equivalent to factoring, which contradicts the fact that factoring is
impossible!

An Example of this PrincipleAn Example of this Principle

Suppose Eve sees n and e (they’re public!!!). We claim she
can’t figure out φ(n).
Proof: We show that knowing n and φ(n) is equivalent to
factoring, i.e. finding p and q !

p and q are the roots of (x-p)(x-q) = x2-(p+q)x + pq.
Note that n-φ(n)+1 = pq - (p-1)(q-1) +1 = p+q
So (x-p)(x-q) = x2 – (n-φ(n)+1)x + n
We can solve this using quadratic formula…

So, if we could find φ(n) we would be able to factor n!!!
This removes the easy way to find d by finding φ(n).

()() ()()
2

n41nn1nn
q,p

2 −+ϕ−±+ϕ−
=

Factorization and Fermat FactorizationFactorization and Fermat Factorization
Modern factorization methods involve significant mathematical machinery.
However, we may use a simple factoring method to see what not to do when
setting up RSA

Fermat Factorization:
Start with n=pq. We try to write n=x2 – y2 = (x+y)(x-y)
Can we even do this? Yes, always!
Let p=x+y and q = x-y
x+y = p 2x = p+q x = (p+q)/2
x-y = q

-(x+y = p) -2y = q-p y=(p-q)/2
x – y = q

So this is always possible.
Now, try n+12, n+22, n+32, … until we find a square
If n+y2 = x2 then we are done! n=x2 – y2

This method only works well when (x+y) and (x-y) are close! That is, when p
and q are close! So, we must not choose p and q too close.

	Public Key Cryptography: RSA and Lots of Number Theory
	Public vs. Private-Key Cryptography
	Public-Key Cryptography
	Pros and Cons of Public Key Cryptography
	Public-Key Characteristics
	Public-Key Cryptosystems
	RSA
	Setup of RSA
	Encryption with RSA
	RSA Example
	Why RSA Works
	Euler’s Theorem
	Why Does Euler Make RSA Work?
	How to Calculate Inverses for RSA?
	The Plain Euclidean Algorithm
	Plain Euclidean Algorithm, pg 2.
	Getting closer to inverses…
	Showing ax+by=gcd(a,b)
	Extended Euclidean Algorithm
	Implementation Detail: How to multiply fast!
	Making Primes, Principles pg. 1
	Making Primes, Principles pg. 2
	Making Primes, Miller-Rabin pg. 1
	Miller-Rabin Primality Test, pg. 2
	OK, we know how to make primes… Now what?
	A Little on the Security of RSA
	An Example of this Principle
	Factorization and Fermat Factorization

