
PrePrint Draft Copy
Chapter 10

Security Protocols

Why do we need security protocols? Aren’t public key methods sufficient
to establish secure communications? The answer is definitely no. There are
major problems with authentication, for example. How does Bob know that
it is actually Alice he is communicating with, and not her evil twin, Malice?
How can you be sure a web site is legitimate? When you use a credit card
electronically, how is your information kept secure? These are questions
that are addressed in this chapter.

10.1 Intruders-in-the-Middle and Impos-

tors

If you receive an email asking you to go to a web site and update your
account information, how can you be sure that the web site is legitimate?
An impostor can easily set up a web page that looks like the correct one, but
which simply records sensitive information and forwards it to Eve. This is
an important authentication problem that must be addressed in real-world
implementations of cryptographic protocols. One standard solution uses
certificates and a trusted authority and will be discussed in Section 10.7.
Authentication will also play an important role in the protocols in many
other sections of this chapters.

Another major consideration that must be addressed in communications

243

PrePrint Draft Copy

244 Chapter 10. Security Protocols

over public channels is the intruder-in-the-middle attack, which we’ll discuss
shortly. It is another cause for several of the steps in the protocols we discuss.

Intruder-in-the-Middle Attacks

Eve, who has recently learned the difference between a knight and a rook,
claims that she can play two chess grandmasters simultaneously and either
win one game or draw both games. The strategy is simple. She waits for
the first grandmaster to move, then makes the identical move against the
second grandmaster. When the second grandmaster responds, Eve makes
that play against the first grandmaster. Continuing in this way, Eve cannot
lose both games (unless she runs into time trouble because of the slight delay
in transferring the moves).

A similar strategy, called the intruder-in-the-middle attack, can be
used against the many cryptographic protocols. Many of the technicalities
of the algorithms in this chapter are caused by efforts to thwart such an
attack.

Let’s see how this attack works against the Diffie-Hellman key exchange
from Section 7.4.

Let’s recall the protocol. Alice and Bob want to establish a key for
communicating. The Diffie-Hellman scheme for accomplishing this is as
follows:

1. Either Alice or Bob selects a large, secure prime number p and a
primitive root α (mod p). Both p and α can be made public.

2. Alice chooses a secret random x with 1 ≤ x ≤ p − 2, and Bob selects
a secret random y with 1 ≤ y ≤ p− 2.

3. Alice sends αx (mod p) to Bob, and Bob sends αy (mod p) to Alice.

4. Using the messages that they each have received, they can each cal-
culate the session key K. Alice calculates K by K ≡ (αy)x (mod p),
and Bob calculates K by K ≡ (αx)y (mod p).

Here is how the intruder-in-the-middle attack works.

1. Eve chooses an exponent z.

2. Eve intercepts αx and αy.

3. Eve sends αz to Alice and to Bob (Alice believes she is receiving αx

and Bob believes he is receiving αy).

PrePrint Draft Copy

10.1. Intruders-in-the-Middle and Impostors 245

4. Eve computes KAO ≡ (αx)z (mod p) and KOB ≡ (αx)z (mod p). Al-
ice, not realizing that Eve is in the middle, also computes KAO, and
Bob computes KOB.

5. When Alice sends a message to Bob, encrypted with KAO, Eve inter-
cepts it, deciphers it, encrypts it with KOB , and sends it to Bob. Bob
decrypts with KOB and obtains the message. Bob has no reason to
believe the communication was insecure. Meanwhile, Eve is reading
the juicy gossip that she has obtained.

To avoid the intruder-in-the-middle attack, it is desirable to have a pro-
cedure that authenticates Alice’s and Bob’s identities to each other while
the key is being formed. A protocol that can do this is known as an au-
thenticated key agreement protocol.

The standard way to stop the intruder-in-the-middle attack is the Station-
to-Station (STS) Protocol, which uses digital signatures. Each user U
has a digital signature function sigU with verification algorithm verU . For
example, sigU could produce an RSA or ElGamal signature, and verU checks
that it is a valid signature for U . The verification algorithms are compiled
and made public by the trusted authority Trent, who certifies that verU is
actually the verification algorithm for U , and not for Eve.

Suppose now that Alice and Bob want to establish a key to use in an en-
cryption function EK . They proceed as in the Diffie-Hellman key exchange,
but with the added feature of digital signatures:

1. They choose a large prime p and a primitive root α.

2. Alice chooses a random x and Bob chooses a random y.

3. Alice computes αx (mod p), and Bob computes αy (mod p).

4. Alice sends αx to Bob.

5. Bob computes K ≡ (αx)y (mod p).

6. Bob sends αy and EK(sigB(αy, αx)) to Alice.

7. Alice computes K ≡ (αy)x (mod p).

8. Alice decrypts EK(sigB(αy, αx)) to obtain sigB(αy, αx).

9. Alice asks Trent to verify that verB is Bob’s verification algorithm.

10. Alice uses verB to verify Bob’s signature.

11. Alice sends EK(sigA(αx, αy)) to Bob.

PrePrint Draft Copy

246 Chapter 10. Security Protocols

12. Bob decrypts, asks Trent to verify that verA is Alice’s verification
algorithm, and then uses verA to verify Alice’s signature.

An enhanced version of this, due to Diffie, van Oorschot, and Wiener, is
known as the Station-to-Station protocol. Note that Alice and Bob are also
certain that they are using the same key K, since it is very unlikely that an
incorrect key would give a decryption that is a valid signature.

Note the role that trust plays in the protocol. Alice and Bob must trust
Trent’s verification if they are to have confidence that their communications
are secure. throughout this chapter, a trusted authority such as Trent will
be an important participant in many protocols.

10.2 Key Distribution

So far in this book we have discussed various cryptographic concepts and
focused on developing algorithms for secure communication. But a crypto-
graphic algorithm is only as strong as the security of its keys. If Alice were
to announce to the whole world her key before starting a DES session with
Bob, then anyone could eavesdrop. Such a scenario is absurd, of course. But
it represents an extreme version of a very important issue: If Alice and Bob
are unable to meet in order to exchange their keys, can they still decide on
a key without compromising future communication?

In particular, there is the fundamental problem of sharing secret in-
formation for the establishment of keys for symmetric cryptography. By
symmetric cryptography, we mean a system such as DES where both the
sender and the recipient use the same key. This is in contrast to public
key methods such as RSA, where the sender has one key (the encryption
exponent) and the receiver has another (the decryption exponent).

In key establishment protocols, there is a sequence of steps that take
place between Alice and Bob so that they can share some secret information
needed in the establishment of a key. Since public key cryptography methods
employ public encryption keys that are stored on public databases, one might
think that public key cryptography provides an easy solution to this problem.
This is partially true. The main downside to public key cryptography is
that even the best public key cryptosystems are computationally slow when
compared with the best symmetric key methods. RSA, for example, requires
exponentiation, which is not as fast as the mixing of bits that takes place in
DES. Therefore, sometimes RSA is used to transmit a DES key that will then
be used for transmitting vast amounts of data. However, a central server that
needs to communicate with many clients in short time intervals sometimes
needs key establishment methods that are faster than current versions of
public key algorithms. Therefore, in this and in various other situations, we

PrePrint Draft Copy

10.2. Key Distribution 247

need to consider other means for the exchange and establishment of keys for
symmetric encryption algorithms.

There are two basic types of key establishment. In key agreement
protocols, neither party knows the key in advance; it is determined as a
result of their interaction. In key distribution protocols, one party has
decided on a key and transmits it to the other party.

Diffie-Hellman key exchange (see Sections 7.4 and 10.1) is an example
of key agreement. Using RSA to transmit a DES key is an example of key
distribution.

In any key establishment protocol, authentication and intruder-in-the-
middle attacks are security concerns. Pre-distribution, which will be dis-
cussed shortly, is one solution. Solutions that are more practical for Internet
communcations are treated in later sections of this chapter.

Key Pre-Distribution

In the simplest version of this protocol, if Alice wants to communicate with
Bob, the keys or key schedules (lists describing which keys to use at which
times) are decided upon in advance and somehow this information is sent
securely from one to the other. For example, this method was used by
the German navy in World War II. However, the British were able to use
codebooks from captured ships to find daily keys and thus read messages.

There are some obvious limitations and drawbacks to pre-distribution.
First, it requires two parties, Alice and Bob, to have met or to have estab-
lished a secure channel between them in the first place. Second, once Alice
and Bob have met and exchanged information, there is nothing they can
do, other than meeting again, to change the key information in case it gets
compromised. The keys are predetermined and there is no easy method to
change the key after a certain amount of time. When using the same key for
long periods of time, one runs a risk that the key will become compromised.
The more data that are transmitted, the more data there are with which to
build statistical attacks.

Here is a general and slightly modified situation. First, we require a
trusted authority whom we call Trent. For every pair of users, call them
(A, B), Trent produces a random key KAB that will be used as a key for
a symmetric encryption method (hence KBA = KAB). It is assumed that
Trent is powerful and has established a secure channel to each of the users.
He distributes all the keys that he has determined to his users. Thus, if
Trent is responsible for n users, each user will be receiving n − 1 keys to
store, and Trent must send n(n−1)/2 keys securely. If n is large, this could
be a problem. The storage that each user requires is also a problem.

One method for reducing the amount of information that must be sent

PrePrint Draft Copy

248 Chapter 10. Security Protocols

from the trusted authority is the Blom key pre-distribution scheme.
Start with a network of n users, and let p be a large prime, where p ≥ n.
Everyone has knowledge of the prime p. The protocol is now the following:

1. Each user U in the network is assigned a distinct public number rU

(mod p).

2. Trent chooses three secret random numbers a, b, and c mod p.

3. For each user U , Trent calculates the numbers

aU ≡ a + brU (mod p) bU ≡ b + crU (mod p)

and sends them via his secure channel to U .

4. Each user U forms the linear polynomial

gU (x) = aU + bUx.

5. If Alice (A) wants to communicate with Bob (B), then Alice computes
KAB = gA (rB), while Bob computes KBA = gB (rA).

6. It can be shown that KAB = KBA (Exercise 2). Alice and Bob com-
municate via a symmetric encryption system, for example, DES, using
the key (or a key derived from) KAB.

Example. Consider a network consisting of three users Alice, Bob, and
Charlie. Let p = 23, and let

rA = 11, rB = 3, rC = 2.

Suppose Trent chooses the numbers a = 8, b = 3, c = 1. The corre-
sponding linear polynomials are given by

gA(x) = 18 + 14x, gB(x) = 17 + 6x, gC(x) = 14 + 5x.

It is now possible to calculate the keys that this scheme would generate:

KAB = gA(rB) = 14, KAC = gA(rC) = 0, KBC = gB(rC) = 6.

It is easy to check that KAB = KBA, etc., in this example.

If the two users Eve and Oscar conspire, they can determine a, b, and c,
and therefore find all numbers aA, bA for all users. They proceed as follows.

PrePrint Draft Copy

10.3. Kerberos 249

They know the numbers aE , bE , aO, bO. The defining equations for the last
three of these numbers can be written in matrix form as

0 1 rE

1 rO 0
0 1 rO

a
b
c

 ≡

bE

aO

bO

 (mod p).

The determinant of the matrix is rE−rO. Since the numbers rA were chosen
to be distinct mod p, the determinant is nonzero mod p and therefore the
system has a unique solution a, b, c.

Without Eve’s help, Oscar has only a 2 × 3 matrix to work with and
therefore cannot find a, b, c. In fact, suppose he wants to calculate the key
KAB being used by Alice and Bob. Since KAB ≡ a + b(rA + rB) + c(rArB)
(see Exercise 2), Oscar has the matrix equation

1 rA + rB rArB

1 rO 0
0 1 rO

a
b
c

 ≡

KAB

aO

bO

 (mod p).

The matrix has determinant (rO − rA)(rO − rB) 6≡ 0 (mod p). Therefore,
there is a solution a, b, c for every possible value of KAB. This means that
Oscar obtains no information about KAB.

For each k ≥ 1, there are Blom schemes that are secure against coalitions
of at most k users, but which succumb to conspiracies of k + 1 users. See
[Blom].

10.3 Kerberos

Kerberos (named for the three-headed dog that guarded the entrance to
Hades) is a real-world implementation of a symmetric cryptography proto-
col whose purpose is to provide strong levels of authentication and security
in key exchange between users in a network. Here we use the term users
loosely, as a user might be an individual, or it might be a program requesting
communication with another program. Kerberos grew out of a larger devel-
opment project at M.I.T. known as Project Athena. The purpose of Athena
was to integrate a huge network of computer workstations into the curricu-
lum of the undergraduate student body at M.I.T., allowing students to be
able to access their files easily from anywhere on the network. As one might
guess, such a development quickly raised questions about network security.
In particular, communication across a public network such as Athena is very
insecure and it is easily possible to observe data flowing across a network and
look for interesting bits of information such as passwords and other types

PrePrint Draft Copy

250 Chapter 10. Security Protocols

of information that one would wish to remain private. Kerberos was devel-
oped in order to address such security issues. In the following, we present
the basic Kerberos model and describe what it is and what it attempts to
do. For more thorough descriptions, see [Schneier].

Kerberos is based on a client/server architecture. A client is either a
user or some software that has some task that it seeks to accomplish. For
example, a client might wish to send e-mail, print documents, or mount
devices. Servers are larger entities whose function is to provide services to
the clients. As an example, on the Internet and World Wide Web there is a
concept of a domain name server (DNS), which provides names or addresses
to clients such as e-mail programs or Internet browsers.

The basic Kerberos model has the following participants:

• Cliff: a client

• Serge: a server

• Trent: a trusted authority

• Grant: a ticket-granting server

1

2 3

5

4

Trent Grant

Serge

Cliff

Figure 10.1: Kerberos.

The trusted authority is also known as an authentication server. To
begin, Cliff and Serge have no secret key information shared between them,

PrePrint Draft Copy

10.3. Kerberos 251

and it is the purpose of Kerberos to give each of them information securely.
A result of the Kerberos protocol is that Serge will have verified Cliff’s
identity (he wouldn’t want to have a conversation with a fake Cliff, would
he?), and a session key will be established.

The protocol, depicted in Figure 10.1, begins with Cliff requesting a
ticket for Ticket-Granting Service from Trent. Since Trent is the powerful
trusted authority, he has a database of password information for all the
clients (for this reason, Trent is also sometimes referred to as the Kerberos
server). Trent returns a ticket that is encrypted with the client’s secret
password information. Cliff would now like to use the service that Serge
provides, but before he can do this, he must be allowed to talk to Serge.
Cliff presents his ticket to Grant, the ticket-granting server. Grant takes this
ticket, and if everything is OK (recall that the ticket has some information
identifying Cliff), then Grant gives a new ticket to Cliff that will allow Cliff
to make use of Serge’s service (and only Serge’s service; this ticket will not
be valid with Sarah, a different server). Cliff now has a service ticket, which
he can present to Serge. He sends Serge the service ticket as well as an
authentication credential. Serge checks the ticket with the authentication
credential to make sure it is valid. If this final exchange checks out, then
Serge will provide the service to Cliff.

The Kerberos protocol is a formal version of protocols we use in everyday
life (for example cashing a check at a bank, or getting on a ride at a fair).

We now look at Kerberos in more detail. Kerberos makes use of a sym-
metric encryption algorithm. In Version V, Kerberos makes use of DES op-
erating in CBC mode; however, any symmetric encryption algorithm would
suffice.

1. Cliff to Trent: Cliff sends a message to Trent that contains his name
and the name of the ticket-granting server that he will use (in this case
Grant).

2. Trent to Cliff: Trent looks up Cliff’s name in his database. If he finds
it, he generates a session key KCG that will be used between Cliff and
Grant. Trent also has a secret key KC with which he can communicate
with Cliff, so he uses this to encrypt the Cliff-Grant session key:

T = eKC
(KCG).

In addition, Trent creates a Ticket Granting Ticket (TGT), which will
allow Cliff to authenticate himself to Grant. This ticket is encrypted
using Grant’s personal key KG (which Trent also has):

TGT =

Grant’s name‖eKG
(Cliff’s name, Cliff’s Address, Timestamp1, KCG).

PrePrint Draft Copy

252 Chapter 10. Security Protocols

Here ‖ is used to denote concatenation. The ticket that Cliff receives
is the concatenation of these two subtickets:

Ticket =T‖TGT.

3. Cliff to Grant: Cliff can extract KCG using the key KC , which he
shares with Trent. Using KCG, Cliff can now communicate securely
with Grant. Cliff now creates an authenticator, which will consist of
his name, his address, and a timestamp. He encrypts this using KCG

to get

AuthCG = eKCG
(Cliff’s name, Cliff’s address, Timestamp2).

Cliff now sends AuthCG as well as TGT to Grant so that Grant can
administer a service ticket.

4. Grant to Cliff: Grant now has AuthCG and TGT. Part of TGT was
encrypted using Grant’s secret key, so Grant can extract this portion
and can decrypt it. Thus he can recover Cliff’s name, Cliff’s address,
Timestamp1, as well as KCG. Grant can now use KCG to decrypt
AuthCG in order to verify the authenticity of Cliff’s request. That
is, dKCG

(AuthCG) will provide another copy of Cliff’s name, Cliff’s
address, and a different timestamp. If the two versions of Cliff’s name
and address match, and if Timestamp1 and Timestamp2 are suffi-
ciently close to each other, then Grant will declare Cliff valid. Now
that Cliff is approved by Grant, Grant will generate a session key
KCS for Cliff to communicate with Serge and will also return a service
ticket. Grant has a secret key KS which he shares with Serge. The
service ticket is

ServTicket =

eKS
(Cliff’s name, Cliff’s address, Timestamp3, ExpirationTime, KCS) .

Here ExpirationTime is a quantity that describes the length of validity
for this service ticket. The session key is encrypted using a session key
between Cliff and Grant:

eKCG
(KCS) .

Grant sends ServTicket and eKCG
(KCS) to Cliff.

5. Cliff to Serge: Cliff is now ready to start making use of Serge’s services.
He starts by decrypting eKCG

(KCS) in order to get the session key

PrePrint Draft Copy

10.4. Public Key Infrastructures (PKI) 253

KCS that he will use while communicating with Serge. He creates an
authenticator to use with Serge:

AuthCS = eKCS
(Cliff’s name, Cliff’s address, Timestamp4) .

Cliff now sends Serge AuthCS as well as ServTicket. Serge can de-
crypt ServTicket and extract from this the session key KCS that he
is to use with Cliff. Using this session key, he can decrypt AuthCS

and verify that Cliff is who he says he is, and that Timestamp4 is
within ExpirationTime of Timestamp3. If Timestamp4 is not within
ExpirationTime of Timestamp3, then Cliff’s ticket is stale and Serge
rejects his request for service. Otherwise, Cliff and Serge may make
use of KCS to perform their exchange.

10.4 Public Key Infrastructures (PKI)

Suppose you want to buy something on the Internet. You go to Gigafirm’s
website, select your items, and then proceed to the checkout page. You are
asked to enter your credit card number and other information. The website
assures you that it is using secure public key encryption, using Gigafirm’s
public key, to set up the communications.

Public key cryptography is a powerful tool that allows for authentication,
key distribution, and non-repudiation. In these applications, the public
key is published, but when you access public keys, what assurance do you
have that Alice’s public key actually belongs to Alice? Perhaps Eve has
substituted her own public key in place of Alice’s. Unless confidence exists
in how the keys were generated, and in their authenticity and validity, the
benefits of public key cryptography are minimal.

In order for public key cryptography to be useful in commercial appli-
cations, it is necessary to have an infrastructure that keeps track of public
keys. A public key infrastructure, or PKI for short, is a framework con-
sisting of policies defining the rules under which the cryptographic systems
operate and procedures for generating and publishing keys and certificates.

All PKIs consist of certification and validation operations. Certification
binds a public key to an entity, such as a user or a piece of information.
Validation guarantees that certificates are valid.

A certificate is a quantity of information that has been signed by its
publisher, who is commonly referred to as the certification authority
(CA). There are many types of certificates. Two popular ones are iden-
tity certificates and credential certificates. Identity certificates contain an
entity’s identity information, such as an e-mail address, and a list of pub-
lic keys for the entity. Credential certificates contain information describing

PrePrint Draft Copy

254 Chapter 10. Security Protocols

access rights. In either case, the data are typically encrypted using the CA’s
private key.

Suppose we have a PKI, and the CA publishes identity certificates for
Alice and Bob. If Alice knows the CA’s public key, then she can take the
encrypted identity certificate for Bob that has been published and extract
Bob’s identity information as well as a list of public keys needed to com-
municate securely with Bob. The difference between this scenario and the
conventional public key scenario is that Bob doesn’t publish his keys, but
instead the trust relationship is placed between Alice and the publisher.
Alice might not trust Bob as much as she might trust a CA such as the
government or the phone company. The concept of trust is critical to PKIs
and is perhaps one of the most important properties of a PKI.

It is unlikely that a single entity could ever keep track of and issue every
Internet user’s public keys. Instead, PKIs often consist of multiple CAs that
are allowed to certify each other and the certificates they issue. Thus, Bob
might be associated with a different CA than Alice, and when requesting
Bob’s identity certificate, Alice might only trust it if her CA trusts Bob’s
CA. On large networks like the Internet, there may be many CAs between
Alice and Bob, and it becomes necessary for each of the CAs between her
and Bob to trust each other.

In addition, most PKIs have varying levels of trust, allowing some CAs to
certify other CAs with varying degrees of trust. It is possible that CAs may
only trust other CAs to perform specific tasks. For example, Alice’s CA may
only trust Bob’s CA to certify Bob and not certify other CAs, while Alice’s
CA may trust Dave’s CA to certify other CAs. Trust relationships can
become very elaborate, and, as these relationships become more complex,
it becomes more difficult to determine to what degree Alice will trust a
certificate that she receives.

In the following two sections, we discuss two examples of PKIs that are
used in practice.

10.5 X.509 Certificates

Suppose you want to buy something on the Internet. You go to the website
Gigafirm.com, select your items, and then proceed to the checkout page.
You are asked to enter your credit card number and other information.
The website assures you that it is using secure public key encryption, using
Gigafirm’s public key, to set up the communications. But how do you know
that Eve hasn’t substituted her public key? In other words, when you are
using public keys, how can you be sure that they are correct? This is the
purpose of Digital Certificates.

One of the most popular types of certificate is the X.509. In this system,

PrePrint Draft Copy

10.5. X.509 Certificates 255

every user has a certificate. The validity of the certificates depends on
a chain of trust. At the top is a Certificate Authority (CA). These are
often commercial companies such as VeriSign, GTE, ATT, and others. It is
assumed that the CA is trustworthy. The CA produces its own certificate
and signs it. This certificate is often posted on the CA’s website. In order
to ensure that their services are used frequently, various CAs arrange to
have their certificates packaged into Internet browsers such as Netscape and
Microsoft Internet Explorer.

The CA then (for a fee) produces certificates for various clients, such as
Gigafirm. Such a certificate contains Gigafirm’s public key. It is signed by
the CA using the CA’s private key. Often, for efficiency, the CA authozizes
various Registration Authorities (RA) to sign certificates. Each RA then
has a certificate signed by the CA.

A certificate holder can sometimes then sign certificates for others. We
therefore get a certification hierarchy where the validity of each certificate
is certified by the user above it, and this continues all the way up to the CA.

CA

Client Client

RA

Client Client Client

Figure 10.2: A Certification Hierarchy

If Alice wants to verify that Gigafirm’s public key is correct, she uses
her copy of the CA’s certificate (stored in her computer) to get the CA’s
public key. She then verifies the signature on Gigafirm’s certificate. If it
is valid, she trusts the certificate and thus has a trusted public key for
Gigafirm. Of course, she must trust the CA’s public key. This means that
she trusts the company that packaged the CA’s certificate into her computer.
The computer company of course has a financial incentive to maintain a
good reputation, so this trust is reasonable. But if Alice has bought a used
computer in which Eve has tampered with the certificates, there might be
a problem (in other words, don’t buy used computers from your enemies,
except to extract unerased information).

Figures 10.3, 10.4, and 10.5 show examples of X.509 certificates. The
ones in Figures 10.3 and 10.4 are for a CA, namely VeriSign. The part in
Figure 10.3 gives the general information about the certificate, including its
possible uses. Figure 10.4 gives the detailed information. The one in Figure

PrePrint Draft Copy

256 Chapter 10. Security Protocols

10.5 is an edited version of the Details part of a certificate for the bank Wells
Fargo.

This certificate has been verified for the following uses:

Email Signer Certificate

Email Recipient Certificate

Status Responder Certificate

Issued to:

Organization (O): VeriSign, Inc.
Organizational Unit (OU): Class 1 Public Primary Certification Authority - G2
Serial Number: 39:CA:54:89:FE:50:22:32:FE:32:D9:DB:FB:1B:84:19

Issued By:

Organization (O): VeriSign, Inc.
Organizational Unit (OU): Class 1 Public Primary Certification Authority - G2

Validity:

Issued On: 05/17/98
Expires On: 05/18/18

Fingerprints:

SHA1 Fingerprint: 04:98:11:05:6A:FE:9F:D0:F5:BE:01:68:5A:AC:E6:A5:D1:C4:45:4C
MD5 Fingerprint: F2:7D:E9:54:E4:A3:22:0D:76:9F:E7:0B:BB:B3:24:2B

Figure 10.3: CA’s Certificate; General

Some of the fields in Figure 10.4 are as follows:

1. Version: there are three versions, the first being Version 1 (from 1988)
and the most recent being Version 3 (from 1997).

2. Serial number: there is a unique serial number for each certificate
issued by the CA.

3. Signature algorithm: Various signature algorithms can be used. This
one uses RSA to sign the output of the hash function SHA-1.

4. Issuer: The name of the CA that created and signed this certificate.
OU is the Organizational Unit, O is the organization, C is the country.

5. Subject: The name of the holder of this certificate.

6. Public key: Several options are possible. This one uses RSA with
a 1024-bit modulus. The key is given in hexadecimal notation. In
hexadecimal, the letters a, b, c, d, e, f represent the numbers 10, 11,

PrePrint Draft Copy

10.5. X.509 Certificates 257

Certificate Hierarchy

⊲ Verisign Class 1 Public Primary Certification Authority - G2

Certificate Fields

Verisign Class 1 Public Primary Certification Authority - G2
Certificate

Version: Version 1
Serial Number: 39:CA:54:89:FE:50:22:32:FE:32:D9:DB:FB:1B:84:19
Certificate Signature Algorithm: PKCS #1 SHA-1 With RSA Encryption
Issuer: OU = VeriSign Trust Network

OU = (c) 1998 VeriSign, Inc. - For authorized use only
OU = Class 1 Public Primary Certification Authority - G2
O = VeriSign, Inc.
C = US

Validity
Not Before: 05/17/98 20:00:00 (05/18/98 00:00:00 GMT)
Not After: 05/18/18 19:59:59 (05/18/18 23:59:59 GMT)

Subject: OU = VeriSign Trust Network
OU = (c) 1998 VeriSign, Inc. - For authorized use only
OU = Class 1 Public Primary Certification Authority - G2
O = VeriSign, Inc.
C = US

Subject Public Key Info: PKCS #1 RSA Encryption
Subject’s Public Key:

30 81 89 02 81 81 00 aa d0 ba be 16 2d b8 83 d4

ca d2 0f bc 76 31 ca 94 d8 1d 93 8c 56 02 bc d9

6f 1a 6f 52 36 6e 75 56 0a 55 d3 df 43 87 21 11

65 8a 7e 8f bd 21 de 6b 32 3f 1b 84 34 95 05 9d

41 35 eb 92 eb 96 dd aa 59 3f 01 53 6d 99 4f ed

e5 e2 2a 5a 90 c1 b9 c4 a6 15 cf c8 45 eb a6 5d

8e 9c 3e f0 64 24 76 a5 cd ab 1a 6f b6 d8 7b 51

61 6e a6 7f 87 c8 e2 b7 e5 34 dc 41 88 ea 09 40

be 73 92 3d 6b e7 75 02 03 01 00 01

Certificate Signature Algorithm: PKCS #1 SHA-1 With RSA Encryption
Certificate Signature Value:

8b f7 1a 10 ce 76 5c 07 ab 83 99 dc 17 80 6f 34

39 5d 98 3e 6b 72 2c e1 c7 a2 7b 40 29 b9 78 88

ba 4c c5 a3 6a 5e 9e 6e 7b e3 f2 02 41 0c 66 be

ad fb ae a2 14 ce 92 f3 a2 34 8b b4 b2 b6 24 f2

e5 d5 e0 c8 e5 62 6d 84 7b cb be bb 03 8b 7c 57

ca f0 37 a9 90 af 8a ee 03 be 1d 28 9c d9 26 76

a0 cd c4 9d 4e f0 ae 07 16 d5 be af 57 08 6a d0

a0 42 42 42 1e f4 20 cc a5 78 82 95 26 38 8a 47

Figure 10.4: CA’s Certificate; Details

PrePrint Draft Copy

258 Chapter 10. Security Protocols

Certificate Hierarchy

⊲ Verisign Class 3 Public Primary CA
⊲ www.verisign.com/CPS Incorp. by Ref. LIABILITY LTD.(c)97VeriSign

⊲ online.wellsfargo.com

Certificate Fields

Verisign Class 3 Public Primary Certification Authority
Certificate

Version: Version 3
Serial Number: 03:D7:98:CA:98:59:30:B1:B2:D3:BD:28:B8:E7:2B:8F
Certificate Signature Algorithm: md5RSA
Issuer: OU = www.verisign.com/CPS Incorp. · · ·

OU = VeriSign International Server CA - Class 3
OU = VeriSign, Inc.
O = VeriSign Trust Network
C = US

Validity
Not Before: Sunday, September 21, 2003 7:00:00 PM
Not After: Wednesday, September 21, 2005 6:59:59 PM

Subject: CN = online.wellsfargo.com
OU = Terms of use at www.verisign.com.rpa (c)00
OU = Class 1 Public Primary Certification Authority - G2
OU = ISG
O = Wells Fargo and Company
L = San Francisco
S = California
C = US

Subject Public Key Info: PKCS #1 RSA Encryption
Subject’s Public Key: 30 81 89 02 81 81 00 a9 · · ·
Basic Constraints: Subject Type = End Entity,

Path Length Constraint = None
Subject’s Key Usage: Digital Signature, Key Encipherment (AO)
CRL Distribution Points: (1) CRL Distribution Point

Distribution Point Name:
Full Name:

URL=http://crl.verisign.com/
class3InternationalServer.crl

Certificate Signature Algorithm: MD5 With RSA Encryption
Certificate Signature Value: · · · · · ·

Figure 10.5: A Client’s Certificate

PrePrint Draft Copy

10.5. X.509 Certificates 259

12, 13, 14, 15. Each pair of symbols is a byte, which is 8 bits. For
example, b6 represents 11, 6, which is 10110110 in binary.

The last three bytes of the public key are 01 00 01, which is 65537 =
216 + 1. This is a very common encryption exponent e for RSA, since
raising something to this power by successive squaring (see Section 3.5)
is fast. The preceding bytes 02 03 and the bytes 30 81 89 02 81 81
00 at the beginning of the key are control symbols. The remaining 128
bytes aa d0 ba · · · 6b e7 75 are the 1024-bit RSA modulus n.

7. Signature: The preceding information on the certificate is hashed using
the hash algorithm specified – in this case, SHA-1 – and then signed
by raising to the CA’s private RSA decryption exponent.

The certificate in Figure 10.5 has a few extra lines. One notable entry is
under the heading Certificate Hierarchy. The certificate of the Wells Fargo
has been signed by the Registration Authority (RA) on the preceding line.
In turn, the RA’s certificate has been signed by the root CA. Another entry
worth noting is CRL Distribution Points. This is the Certificate Revocation
List. It contains lists of certificates that have been revoked. There are
two common methods of distributing the information from these lists to the
users. Neither is perfect. One way is to send out announcements whenever a
certificate is revoked. This has the disadvantage of sending a lot of irrelevant
information to most users (most people don’t need to know if the Point
Barrow Sunbathing Club loses its certificate). The second method is to
maintain a list (such as the one at the listed URL) that can be accessed
whenever needed. The disadvantage here is the delay caused by checking
each certificate. Also, such a web site could get overcrowded if many people
try to access it at once. For example, if everyone tries to trade stocks during
their lunch hour, and the computers check each certificate for revocation
during each transaction, then a site could be overwhelmed.

When Alice (or, usually, her computer) wants to check the validity of
the certificate in Figure 10.5, she sees from the Certificate Hierarchy that
VeriSign’s RA signed Wells Fargo’s certificate and the RA’s certificate was
signed by the root CA. She verifies the signature on Wells Fargo’s certificate
by using the public key (that is, the RSA pair (n, e)) from the RA’s cer-
tificate; namely, she raises the encrypted hash value to the eth power mod
n. If this equals the hash of Wells Fargo’s certificate, then she trusts Wells
Fargo’s certificate, as long as she trusts the RA’s certificate. Similarly, she
can check the RA’s certificate using the public key on the root CA’s cer-
tificate. Since she received the root CA’s certificate from a reliable source
(for example, it was packaged in her Internet browser, and the company
doing this has a financial incentive to keep a good reputation), she trusts

PrePrint Draft Copy

260 Chapter 10. Security Protocols

it. In this way, Alice has established the validity of Wells Fargo’s certificate.
Therefore, she can confidently do on-line transactions with Wells Fargo.

There are two levels of certificates. The high assurance certificates are
issued by the CA under fairly strict controls. High assurance certificates are
typically issued to commercial firms. The low assurance certificates are
issued more freely and certify that the communications are from a partic-
ular source. Therefore, if Bob obtains such a certificate for his computer,
the certificate verifies that it is Bob’s computer, but does not tell whether
it is Bob or Eve using the computer. The certificates on many personal
computers contain the following line:

Subject: Verisign Class 1 CA Individual Subscriber - Persona Not Validated.

This indicates that the certificate is a low assurance certificate. It does not
make any claim as to the identity of the user.

If your computer has Internet Explorer, click on Tools, then Internet Op-
tions, then Content. This will allow you to find the CA’s whose certificates
have been packaged with the browser. Usually, the validity of most of them
has not been checked. But for the accepted ones, it is possible to look at
the Certification Path that gives the path (often one step) from the user’s
computer’s certificate back to the CA.

10.6 Pretty Good Privacy

Pretty Good privacy, more commonly known as PGP, was developed by
Phil Zimmerman in the late 1980s and early 1990s. In contrast to X.509
certificates, PGP is a very decentralized system with no CA. Each user has
a certificate, but the trust in this certificate is certified to various degrees
by other users. This creates a web of trust.

For example, if Alice knows Bob and can verify directly that his certifi-
cate is valid, then she signs his certificate with her public key. Charles trusts
Alice and has her public key, and therefore can check that Alice’s signature
on Bob’s certificate is valid. Charles then trusts Bob’s certificate. However,
this does not mean that Charles trusts certificates that Bob signs – he trusts
Bob’s public key. Bob could be gullible and sign every certificate that he
encounters. His signature would be valid, but that does not mean that the
certificate is.

Each user, for example Alice, maintains a file with a keyring, containing
the trust levels Alice has in various people’s signatures. There are varying
levels of trust that someone can assign: no information, no trust, partial
trust, and complete trust. When a certificate’s validity is being judged, the
PGP program accepts certificates that are signed by someone Alice trusts,

PrePrint Draft Copy

10.6. Pretty Good Privacy 261

or a sufficient combination of partial trusts. Otherwise it alerts Alice and
she needs to make a choice on whether to proceed.

The primary use of PGP is for authenticating and encrypting email.
Suppose Alice receives an email asking for her bank account number so that
Charles can transfer millions of dollars into her account. Alice wants to be
sure that this email comes from Charles and not from Eve, who wants to
use the account number to empty Alice’s account. In the unlikely case that
this email actually comes from her trusted friend Charles, Alice sends her
account information, but she should encrypt it so that Eve cannot intercept
it and empty Alice’s account. Therefore, the first email needs authentication
that proves that it comes from Charles, while the second needs encryption.
There are also cases where both authentication and encryption are desirable.
We’ll show how PGP handles these situations.

To keep the discussion consistent, let’s have Alice send a message to Bob
in all cases.

Authentication:

1. Alice uses a hash function, usually SHA-1, and computes the hash of
the message.

2. Alice signs the hash by raising it to her secret decryption exponent d
mod n. The resulting hash code is put at the beginning of the message,
which is sent to Bob.

3. Bob raises the hash code to Alice’s public RSA exponent e. The result
is compared to the hash of the rest of the message.

4. If the result agrees with the hash, and if Alice trusts Bob’s public key,
the message is accepted as coming from Bob.

This authentication is the RSA signature method from Section 9.1. Note
the role that trust plays. If Alice does not trust Bob’s public key as belonging
to Bob, then she cannot be sure that the message did not come from Eve,
with Eve’s signature in place of Bob’s.

Encryption:

1. Alice’s computer generates a random number, usually 128 bits, to
be used as the session key for a symmetric private key encryption
algorithm such as 3DES, IDEA, or CAST-128 (these are block ciphers
using 128-bit keys).

2. Alice uses the symmetric algorithm with this session key to encrypt
her message.

3. Alice encrypts the session key using Bob’s public key.

PrePrint Draft Copy

262 Chapter 10. Security Protocols

4. The encrypted key and the encrypted message are sent to Bob.

5. Bob uses his private RSA key to decrypt the session key. He then uses
the session key to decrypt Alice’s message.

The combination of a public key algorithm and a symmetric algorithm
is used because encryption is generally faster with symmetric algorithms
than with public key algorithms. Therefore, the public key algorithm RSA
is used for the small encryption of the session key, and then the symmetric
algorithm is used to encrypt the potentially much larger message.

Note that trust is not needed when only encryption is desired.

Authentication and Encryption:

1. Alice hashes her message and signs the hash to obtain the hash code,
as in step (2) of the authentication procedure described above. This
hash code is put at the beginning of the message.

2. Alice produces a random 128-bit session key and uses a symmetric
algorithm with this session key to encrypt the hash code together with
the message, as in the encryption procedure described above.

3. Alice uses Bob’s public key to encrypt the session key.

4. The encrypted session key and the encryption of the hash code and
message are sent to Bob.

5. Bob uses his private key to decrypt the session key.

6. Bob uses the session key to obtain the hash code and message.

7. Bob verifies the signature by using Alice’s public key, as in the au-
thentication procedure described above.

Of course, this procedure requires that Bob trusts Alice’s public key
certificate. Also, the reason the signature is done before the encryption is so
that Bob can discard the session key after decrypting, and therefore store
the plaintext message with its signature.

To set up a PGP certificate, Alice’s computer uses random input ob-
tained from keystrokes, timing, mouse movements, etc. to find primes p, q
and then produce an RSA modulus n = pq and encryption and decryption
exponents e and d. The numbers n and e are then Alice’s public key. Al-
ice also chooses a secret passphrase. The secret key d is stored securely in
her computer. When the computer needs to use her private key, the com-
puter asks her for her passphrase to be sure that Alice is the correct person.
This prevents Eve from using Alice’s computer and pretending to be Alice.

PrePrint Draft Copy

10.7. SSL and TLS 263

The advantage of the passphrase is that Alice is not required to memorize or
type in the decryption exponent d, which is probably more than one hundred
digits long.

In the above, we have used RSA for signatures and for encryption of the
session keys. Other possibilities are allowed. For example, Diffie-Hellman
can be used to establish the session key, and DSA can be used to sign the
message.

The software for PGP can be downloaded for free from many websites,
including http://www.mit.edu/network/pgp.html. There is also a com-
mercial version available through Network Associates.

10.7 SSL and TLS

If you have ever paid for anything over the Internet, your transactions were
probably kept secret by SSL or its close relative TLS. Secure Sockets Layer
(SSL) was developed by Netscape in order to perform http communications
securely. The first version was released in 1994. Version 3 was released
in 1995. Transport Layer Security (TLS) is a slight modification of SSL
version 3 and was released by the Internet Engineering Task Force in 1999.
These protocols are designed for commnications between computers with no
previous knowledge of each other’s capabilities.

In the following, we’ll describe SSL version 3. TLS differs in a few minor
details such as how the pseudo-random numbers are calculated.

Suppose Alice has bought something online from Gigafirm and wants to
pay for her purchase. Alice’s computer sends Gigafirm’s computer a message
containing the following:

1. The highest version of SSL that Alice’s computer can support.

2. A random number consisting of a 4-byte timestamp and a 28-byte
random number.

3. A Cipher Suite containing, in decreasing order of preference, the algo-
rithms that Alice’s computer wants to use for public key (for example,
RSA, Diffie-Hellman, ...), block cipher encryption (3DES, DES, AES,
...), hashing (SHA-1, MD5, ...), and compression (PKZip, ...).

Gigafirm’s computer responds with a random 32-byte number (chosen sim-
ilarly) and its choices of which algorithms to use, for example, RSA, DES,
SHA-1, PKZip.

Gigafirm’s computer then sends its X.509 certificate (and the certifi-
cates in its certification chain). Gigafirm can ask for Alice’s certificate, but
this is rarely done for two reasons. First, it would impede the transaction,

PrePrint Draft Copy

264 Chapter 10. Security Protocols

especially if Alice does not have a valid certificate. This would not help Gi-
gafirm accomplish its goal of making sales. Secondly, Alice is going to send
her credit card number later in the transaction, and this serves to verify
that Alice (or the thief who picked her pocket) has Alice’s card.

We’ll assume from now on that RSA was chosen for the public key
method. The protocol differs only slightly for other public key methods.

Alice now generates a 48-byte pre-master secret, encrypts it with Gi-
gafirm’s public key (from its certificate), and sends the result to Gigafirm,
who decrypts it. Both Alice and Gigafirm now have the following secret
random numbers:

1. The 32-byte random number rA that Alice sent Gigafirm.

2. The 32-byte random number rG that Gigafirm sent Alice.

3. The 48-byte pre-master secret spm.

Note that the two 32-byte numbers were not sent securely. The pre-master
secret is secure, however.

Since they both have the same numbers, both Alice and Gigafirm can
calculate the master secret as the concatenation of

MD5
(

spm||SHA-1(A||spm||rA||rG)
)

MD5
(

spm||SHA-1(BB||spm||rA||rG)
)

MD5
(

spm||SHA-1(CCC||spm||rA||rG)
)

.

The A, BB, and CCC are strings added for padding. Note that timestamps
are built into rA and rG. This prevents Eve form doing replay attacks, where
she tries to use information intercepted from one session to perform similar
transactions later.

Since MD5 produces a 128-bit (= 16-byte) output, the master secret has
48 bytes. The master secret is used to produce a key block, by the same
process that the master secret was produced from the pre-master secret.
Enough hashes are concatenated to produce a sufficiently long key block.
The key block is then cut into six secret keys, three for communications from
Alice to Gigafirm and three for communications from Gigafirm to Alice. For
Alice to Gigafirm, one key serves as the secret key in the block cipher (3DES,
AES, ...) chosen at the beginning of the communications. The second is a
message authentication key. The third is the initial value for the CBC mode
of the block cipher. The three other keys are for the corresponding purposes
for Gigafirm to Alice.

Now Alice and Gigafirm are ready to communicate. When Alice sends
a message to Gigafirm, she does the following:

PrePrint Draft Copy

10.8. Secure Electronic Transaction 265

1. Compresses the message using the agreed upon compression method.

2. Hashes the compressed message together with the message authenti-
cation key (the second key obtained from the key block). This yields
the HMAC (= hashed message authentication code).

3. Uses the block cipher in CBC mode to encrypt the compressed message
together with the HMAC, and sends the result to Gigafirm.

Gigafirm now does the following:

1. Uses the block cipher to decrypt the message received. Gigafirm now
has the compressed message and the HMAC.

2. Uses the compressed message and the Alice-to-Gigafirm message au-
thentication key to recompute the HMAC. If it agrees with the HMAC
that was in the message, the message is authenticated.

3. Decompresses the compressed message to obtain Alice’s message.

Communications from Gigafirm are encrypted and decrypted similarly,
using the other three keys deduced from the key block. Therefore, Alice and
Gigafirm can exchange information securely.

10.8 Secure Electronic Transaction

Every time someone places an order in an electronic transaction over the
Internet, large quantities of information are transmitted. These data must
be protected from unwanted eavesdroppers in order to ensure the customer’s
privacy and prevent credit fraud. Requirements for a good electronic com-
merce system include the following:

1. Authenticity: Participants in a transaction cannot be impersonated
and signatures cannot be forged.

2. Integrity: Documents such as purchase orders and payment instructions
cannot be altered.

3. Privacy: The details of a transaction should be kept as secure as possi-
ble.

4. Security: Sensitive account information such as credit card numbers
must be protected.

PrePrint Draft Copy

266 Chapter 10. Security Protocols

All of these requirements should be satisfied, even over public communica-
tion channels such as the Internet.

In 1996, the credit card companies MasterCard and Visa called for the
establishment of standards for electronic commerce. The result, whose devel-
opment involved several companies, is called the SET, or Secure Electronic
TransactionTM protocol. It starts with the existing credit card system and
allows people to use it securely over open channels.

The SET protocol is fairly complex, involving, for example, the SSL pro-
tocol in order to certify that the cardholder and merchant are legitimate,
and also specifying how payment requests are to be made. In the follow-
ing we’ll discuss one aspect of the whole protocol, namely the use of dual
signatures.

There are several possible variations on the following. For example,
in order to improve speed, a fast symmetric key system can be used in
conjunction with the public key system. If there is a lot of information to
be transmitted, a randomly chosen symmetric key plus the hash of the long
message can be sent via the public key system, while the long message itself
is sent via the faster symmetric system. However, we’ll restrict our attention
to the simplest case where only public key methods are used.

Suppose Alice wants to buy a book entitled How to Use Other People’s
Credit Card Numbers to Defraud Banks, which she has seen advertised on the
Internet. For obvious reasons, she feels uneasy about sending the publisher
her credit card information, and she certainly does not want the bank that
issued her card to know what she is buying. A similar situation applies to
many transactions. The bank does not need to know what the customer is
ordering, and for security reasons the merchant should not know the card
number. However, these two pieces of information need to be linked in
some way. Otherwise the merchant could attach the payment information
to another order. Dual signatures solve this problem.

The three participants in the following will be the Cardholder (namely,
the purchaser), the Merchant, and the Bank (which authorizes the use of
the credit card).

The Cardholder has two pieces of information:

• GSO = Goods and Services Order, which consists of the cardholder’s
and merchant’s names, the quantities of each item ordered, the prices,
etc.

• PI = Payment Instructions, including the merchant’s name, the credit
card number, the total price, etc.

The system uses a public hash function; let’s call it H. Also, a public key
cryptosystem such as RSA is used, and the Cardholder and the Bank have
their own public and private keys. Let EC , EM , and EB denote the (public)

PrePrint Draft Copy

10.8. Secure Electronic Transaction 267

encryption functions for the Cardholder, the Merchant, and the Bank, and
let DC , DM , and DB be the (private) decryption functions.

The Cardholder performs the following procedures:

1. Calculates GSOMD = H(EM (GSO)), which is the message digest,
or hash, of an encryption of GSO.

2. Calculates PIMD = H(EB(PI)), which is the message digest of an
encryption of PI.

3. Concatenates GSOMD and PIMD to obtain PIMD||GSOMD, then
computes the hash of the result to obtain the payment-order message
digest POMD = H(PIMD||GSOMD).

4. Signs POMD by computing DS = DC(POMD). This is the Dual
Signature.

5. Sends EM (GSO), DS, PIMD, and EB(PI) to the Merchant.

The Merchant then does the following:

1. Calculates H(EM (GSO)) (which should equal GSOMD).

2. Calculates H(PIMD||H(EM (GSO))) and EC(DS). If they are equal,
then the Merchant has verified the Cardholder’s signature, and is
therefore convinced that the order is from the Cardholder.

3. Computes DM (EM (GSO)) to obtain GSO.

4. Sends GSOMD, EB(PI), and DS to the Bank.

The Bank now performs the following:

1. Computes H(EB(PI)) (which should equal PIMD).

2. Concatenates H(EB(PI)) and GSOMD.

3. Computes H (H(EB(PI))||GSOMD) and EC(DS). If they are equal,
the Bank has verified the Cardholder’s signature.

4. Computes DB(EB(PI)), obtaining the payment instructions PI.

5. Returns an encrypted (with EM) digitally signed authorization to the
Merchant, guaranteeing payment.

The Merchant completes the procedure as follows:

1. Returns an encrypted (with EC) digitally signed receipt to the Card-
holder, indicating that the transaction has been completed.

PrePrint Draft Copy

268 Chapter 10. Security Protocols

The Merchant only sees the encrypted form EB(PI) of the payment in-
structions, and so does not see the credit card number. It would be infeasible
for the Merchant or the Bank to modify any of the information regarding
the order because the hash function is used to compute DS.

The Bank only sees the message digest of the Goods and Services Order,
and so has no idea what is being ordered.

The requirements of integrity, privacy, and security are met by this pro-
cedure. In actual implementations, several more steps are required in order
to protect authenticity. For example, it must be guaranteed that the pub-
lic keys being used actually belong to the participants as claimed, not to
impostors. Certificates from a trusted authority are used for this purpose.

10.9 Exercises

1. In a network of three users, A, B, and C, we would like to use the Blom
scheme to establish session keys between pairs of users. Let p = 31 and let

rA = 11 rB = 3 rC = 2.

Suppose Trent chooses the numbers

a = 8 b = 3 c = 1.

Calculate the session keys.

2. (a) Show that in the Blom scheme, KAB ≡ a + b(rA + rB) + crArB

(mod p).
(b) Show that KAB = KBA.
(c) Another way to view the Blom scheme is by using a polynomial in two
variables. Define the polynomial f(x, y) = a + b(x + y) + cxy (mod p).
Express the key KAB in terms of f .

3. You (U) and I (I) are evil users on a network that uses the Blom scheme
for key establishment with k = 1. We have decided to get together to figure
out the other session keys on the network. In particular, suppose p = 31
and rU = 9, rI = 2. We have received aU = 18, bU = 29, aI = 24, bI = 23
from Trent, the trusted authority. Calculate a, b, and c.

4. Here is another version of the intruder-in-the-middle attack. It has the
“advantage” that Eve does not have to intercept and retransmit all the
messages between Bob and Alice. Suppose Eve discovers that p = Mq + 1,
where q is prime and M is small. Eve intercepts αx and αy as before. She
sends Bob (αx)q (mod p) and sends Alice (αy)q (mod p).

PrePrint Draft Copy

10.9. Exercises 269

(a) Show that Alice and Bob each calculate the same key.
(b) Show that there are only M possible values for K, so Eve may find K
by exhaustive search.

5. Bob, Ted, Carol, and Alice want to agree on a common key (cryptographic
key, that is). They publicly choose a large prime p and a primitive root α.
They privately choose random numbers b, t, c, a, respectively. Describe a
protocol that allows them to compute K ≡ αbtca (mod p) securely (ignore
intruder-in-the-middle attacks).

6. Suppose naive Nelson tries to implement an analog of the Diffie-Hellman
key exchange as follows. Nelson wants to send the key K to Heidi. He
chooses a one-time pad key KN and XORs it with K. He sends M1 = KN⊕K
to Heidi. She XORs what she receives with her one-time pad key KH to get
M2 = M1⊕KH . Heidi sends M2 to Nelson, who computes M3 = M2⊕KN .
Nelson sends M3 to Heidi, who recovers K as M3 ⊕KH .
(a) Show that K = M3 ⊕KH .
(b) Suppose Eve intercepts M1, M2, M3. How can she recover K?

