
GNUradio Python 
Programming 

WINLAB

KC Huang



WINLAB

Outlines
Python Introduction
Understanding & Using GNU Radio

What is GNU Radio architecture?
How to program in GNUradio? (Python and 
C++) 

An example: dial-tone
Useful Resources



WINLAB

Python - running
Why Python?

Object-oriented
Free
Mixable (python/c++) 

Python scripts can be written in text files 
with the suffix .py

Example:
$ python script.py
This will simply execute the script and return to the 
terminal afterwards



WINLAB

Python - format
Module: a python file containing definitions and 
statements

from pick_bitrate import pick_tx_bitrate
(from file import function)  
from gnuradio import gr, (or *)
(from package import subpackage or all)  
Some modules are built-in e.g. sys (import sys)

Indentation: it is Python’s way of grouping 
statements 

Example:
while b < 10: 

print b
return

Body of loop has to be indented by the same amount 
to indicate statements of the loop



WINLAB

Python – function & class (1) 
Function definitions have the following basic 
structure:
def func(args):

return values

Regardless of the arguments, (including the case of no 
arguments) a function call must end with parentheses
Example:
def f1(x):

return x*(x-1)
f1(3) = 6



WINLAB

Python – function & class (2) 
Classes
class ClassName:

<statement-1> 
. . . 
<statement-N>

Objects
x = ClassName() creates a new instance of this class and 
assigns the object to the variable x

Initial state: for instantiation and parameter pass
def __init__(self):

<statement-1>



WINLAB

Python – function & class (3) 
class cs_mac(object): 

def __init__(self, tun_fd, verbose=False): 
self.tun_fd = tun_fd
self.verbose = verbose 
self.fg = None 

def main_loop(self): 
min_delay = 0.001 # seconds

while 1: 
payload = os.read(self.tun_fd, 10*1024) 
if not payload: 

self.fg.send_pkt(eof=True) 
break

if self.verbose: 
print "Tx: len(payload) = %4d" % (len(payload),) 
delay = min_delay
while self.fg.carrier_sensed(): 

sys.stderr.write('B') 
time.sleep(delay) 
if delay < 0.050: 

delay = delay * 2 # exponential back-off
self.fg.send_pkt(payload) 



WINLAB

GNUradio Architecture

User-defined 
Code

RF 
Front end

Sender

DACUSB FPGA

mother board
PC

USRP

daughter board

GNU radio has provided some useful APIs
What we are interested in at this time is how to 
use the existing modules that has been provided  
in GNU radio project to communicate between 
two end systems



WINLAB

GNUradio Architecture - software
How these modules co-work?

Signal processing block and flow-graph
C++: Extensive library of signal processing blocks

Performance-critical modules
Python: Environment for composing blocks 

Glue to connect modules
Non performance-critical modules

Signal Processing Block
Source: No input

noise_source, signal_source, usrp_source

Sink: No outputs
audio_alsa_sink,usrp_sink

Processing blocks: one or more inputs/outputs



WINLAB

GNUradio Architecture – software(2) 

C++

C++ C++

C++

C++ C++
V1

V2

V3Source

Sink

V2

V1

V3

At python level, what we need to do is always just 
to draw a diagram showing the signal flow 

from the source to the sink in our mind.



WINLAB

GNUradio Architecture – software(3) 

Python scripting language used 
for creating "signal flow graphs“

C++ used for creating signal 
processing blocks

An already existing library of 
signaling blocks

The scheduler is using Python’s 
built-in module threading, to 
control the ‘starting’, ‘stopping’
or ‘waiting’ operations of the 
signal flow graph.

Python

Application development
Flow graph construction

C++

Signal processing blocks

Scheduler

Control flow graph

http://mobiledevices.kom.aau.dk/fileadmin/mobiledevices/teaching/software_testing/Gnu_radio_lecture.pdf



WINLAB

Dial Tone Example (1)  

from gnuradio import gr
from gnuradio import audio
from gnuradio.eng_option import eng_option
from optparse import OptionParser

Import modules from GNU Radio library
1. The import command is similar to the #include directive in C/C++.

2. gr is the basic GNU Radio module

#!/usr/bin/env python It tells the shell that this file is a 
Python file and to use the Python 
interpreter to run this file.

Sine Generator 
(350Hz) 

Sine Generator 
(440Hz) 

Audio Sink



WINLAB

Dial Tone Example (2)  

class my_top_block(gr.top_block):
def __init__(self):

gr.top_block.__init__(self) 

• The class called my_top_block is derived from another class, gr.top_block
• gr.top_block class maintains the graph and also provides 

all the functions to build and connect blocks 

• Instantiating a flow graph object and the parent constructor is called



WINLAB

Dial Tone Example (3)  

parser = OptionParser(option_class=eng_option) 
parser.add_option("-O", "--audio-output", type="string", default="",

help="pcm output device name.  E.g., hw:0,0") 
parser.add_option("-r", "--sample-rate", type="eng_float", default=48000,

help="set sample rate to RATE (48000)") 
(options, args) = parser.parse_args () 
if len(args) != 0:

parser.print_help() 
raise SystemExit, 1

sample_rate = int(options.sample_rate) 
ampl = 0.1

Python dial_tone.py –r 50000

Define and parse command-line options



WINLAB

Dial Tone Example (4)  

src0 = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 350, ampl) 
src1 = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 440, ampl) 
dst = audio.sink (sample_rate, options.audio_output) 
self.connect (src0, (dst, 0)) 
self.connect (src1, (dst, 1)) 

• Setting up sinewaves at 350 and 440 Hz and 
sampling rate by command-line

• Create signal generating blocks
• defining destination
• connecting source and destinations, left and right 

channel (it specifically connects src0 to port 0 of 
dst )  



WINLAB

Dial Tone Example (5)  

if __name__ == '__main__':
try:

my_top_block().run() 
except KeyboardInterrupt:

pass

Run the flow graph when the program is executed



WINLAB

GNUradio modules
from gnuradio import MODULENAME

Miscellaneous utilities, mathematical and others. gru

Use from gnuradio.eng_options import eng_options to import this feature. 
This module extends Pythons optparse module to understand 
engineering notation (see above). 

eng_opt
ion
s

Adds some functions to deals with numbers in engineering notation 
such as `100M' for 100 * 106'. 

eng_not
ati
on

This module contains additional blocks written in Python which 
include often-used tasks like modulators and demodulators, some 
extra filter code, resamplers, squelch and so on. 

blks2

Soundcard controls (sources, sinks). You can use this to send or
receive audio to the sound cards, but you can also use your 
sound card as a narrow band receiver with an external RF 
frontend. 

audio 

USRP sources and sinks and controls. usrp

The main GNU Radio library. You will nearly always need this. gr



WINLAB

GNUradio scheduler

Unlock a flow graph in preparation for reconfiguration. When an 
equal number of calls to lock() and unlock() have occurred, the 
flow graph will be restarted automatically. 

unlock
()

Lock a flow graph in preparation for reconfiguration. lock()

Wait for a flow graph to complete. Flowgraphs complete when either 
(1) all blocks indicate that they are done, or (2) after stop has 
been called to request shutdown. 

wait()

Stop the running flow graph. Notifies each thread created by the
scheduler to shutdown, then returns to caller. 

stop()

Start the contained flow graph. Returns to the caller once the 
threads are created. 

start()

The simplest way to run a flow graph. Calls start(), then wait().
Used to run a flow graph that will stop on its own, or to run a 
flow graph indefinitely until SIGINT is received. 

run()



WINLAB

Creating Your Own Signal Block
Basics

A block is a C++ class
Typically derived from gr_block or gr_sync_block class

Three components
my_block_xx.h: Block definition
my_block_xx.cc: Block implementation
my_block_xx.i: Python bindings (SWIG interface)
(SWIG, a tool that generates wrapper code around your 
C++ functions and classes, so that they are callable from 
Python) 



WINLAB

Useful Resource
GNUradio:

Homepage (download, more links, etc) 
http://gnuradio.org/trac/

More comprehensive tutorial
http://gnuradio.org/trac/wiki/Tutorials/WritePythonApplications

Available Signal Processing Blocks
http://gnuradio.org/doc/doxygen/hierarchy.html

GNU Radio Mailing List Archives
http://www.gnu.org/software/gnuradio/mailinglists.html

CGRAN: 3rd Party GNU Radio Apps
https://www.cgran.org/

Python:
http://docs.python.org - online version of built-in Python function 
documentation
http://laurent.pointal.org/python/pqrc - Python Quick Reference Card
http://rgruet.free.fr - long version of Python Quick Reference Card
http://mail.python.org - extensive Python forum


	GNUradio Python Programming
	Outlines
	Python - running
	Python - format
	Python – function & class (1)‏
	Python – function & class (2)‏
	Python – function & class (3)‏
	GNUradio Architecture
	GNUradio Architecture - software
	GNUradio Architecture – software(2)‏
	GNUradio Architecture – software(3)‏
	Dial Tone Example (1)‏
	Dial Tone Example (2)‏
	Dial Tone Example (3)‏
	Dial Tone Example (4)‏
	Dial Tone Example (5)‏
	GNUradio modules
	GNUradio scheduler
	Creating Your Own Signal Block
	Useful Resource

