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Abstract—In this paper, we consider the problem of tracking in a stop-and-go fashion. It can also show where frequent
fine-grained speeds variations of vehicles using signal stngth |ane changes occur that cause traffic shock waves. These
traces from GSM enabled phones. Existing speed estimation 5c5r5 have a significant effect on accident rates and igasol

techniques using mobile phone signals can provide longeetm ti d Id theref be | tant t it
speed averages but cannot track short-term speed variatian consumption, and wou ererore be important to monitor on

Understanding short-term speed variations, however, is ipor- & larger scale. Techniques to determine vehicle speed fetim ¢
tant in a variety of traffic engineering applications—for example, phone signals are particularly useful because they do oat in
it may help distinguish slow speeds due to traffic lights from the high infrastructure costs of traffic cameras or loopctets
traffic congestion when collecting real time traffic information. embedded into the roadway [7], [6], [11]. While fine-grained
Using mobile phones in such applications is particularly aractive A . ° .
because it can be readily obtained from a large number of speed trac_:es can also be Obta_'ned through net\_/vorked istgehi
vehicles. GPS devices, cell phone signals can readily be collected
Our approach is founded on the observation that the large- from a much larger number of vehicles. Cell phone signal
scale path loss and shadow fading components of signal stigth  strength readings also impose no energy overhead, at least
readings (signal profile) obtained from the mobile phone on @&y \yhen collected at the base station. Existing speed estimati

given road segment appears similar over multiple tips alog the techniques from cell phone communications are limited to
same road segment except for distortions along the time axis q P

due to speed variations. We therefore propose a speed tracig  €Stimating average speeds over road segments. One approach
technique that uses a Derivative Dynamic Time Warping (DDTW  derives speed from the time between two handoffs [21], [10].
algorithm to realign a given signal profile with a known training  |n our own prior work [4], we have also shown how average
profile from the same road. The speed tracking technique than gneeds can be estimated by matching a cell phone’s signal
translates the warping path (i.e., the degree of stretchingand . .
compressing needed for alignment) into an estimated speerhte. stre_ngth trace agf';llnst a known trace from this r<_)ad segment.
Using 6.4 hours of GSM signal strength traces collected from a While these solutions can cover most of the arterial rodus, t
vehicle, we show that our algorithm can estimate vehiculargeeds average speed estimates are typically over road segments of
with a median error of + 4mph compared to that of using a GPS about 100m and cannot track vehicle’s exact speed vargtion
and can capture significant speed variations on road segmesnt o, Approach. In this paper, we propose a speed trace
with a precision of 68% and a recall of 84%. estimation technique based on a Derivative Dynamic Time
Keywords-Derivative Dynamic Time Warping (DDTW), Re- \Warping (DDTW) algorithm that aligns a received signal
ceived Signal Strength (RSS), Global System for Mobile Com- gyrength (RSS) trace from a moving cell phone handset with
munications (GSM) . .
a reference trace for a given road segment to estimate speed.
The technique relies on the observation that large scale pat
loss and dominant shadow fading effects usually remairequit
This paper considers the problem of estimating fine-grainednstant at the same location. To illustrate this insigig, E
speed and detecting temporary speed variations of a vehiglets the instantaneous speed and RSS trace from the associa
from cellular handset signals. More fine-grained speecefraccell tower for two vehicle trips along the same stretch of a
could benefit a number of transportation applications. Kker eroad. The vehicle drove roughly at the same speed during the
ample, fine-grained speed trace could improve estimatiig dirst 150 seconds of both trips, but then it slowed down in the
pinpointing traffic congestion, particularly on arterialads first trip and sped up in the secohdhe graph shows how
with traffic signals. Since fine-grained speed traces revdhe RSS traces remain similar over the first part of the trace,
where on a road segment vehicles slow down, it becomes
easier to distinguish speed variations due to congestmm fr _ ,
- . . The car travelled the same distance in both cases and stapplee same
slowdowns due to red traffic |IghtS. Fme'gra'ned Speed::"t"acphysical location. However, due to the speed difference, fitst trip took
also reveal whether traffic is flowing slow but smoothly o#bout 300 seconds while the second only lasted 200 seconds.

|I. INTRODUCTION



The existing work on vehicular speed estimation can be
classified based on the modality of sensikixed Infrastruc-
ture based sensing, Smartphone based sensing, Cellular phone
based sensing, and Doppler shift-based sensing.

Fixed Infrastructure based sensing By far the most
common of highway speed estimation system is the inductive
\ loop detectors [7], [6], [11] which are based on on-road sens
5 s 100 0 00 250 200 gmbedded in the pavement. Traffic cameras .[9] have also been
Time (sec) installed on roads that uses a sequence of image captured on
several cameras on the road to calibrate the speed of a moving
—# Drive-1 vehicle. [7] has shown that speed estimation accuracy using
—— Drive—2 | loop detectors for a vehicle traveling at over 50mph can be in
the order of 20mph to 120mph. Besides that, they suffer from
i their limited reliability and high installation cost, wiianakes
shitt € os rofio due | it hard to maintain significant coverage on the road network.

: : to slowdown Smartphone based sensingUsing GPS enabled smart-
0 50 100 150 200 250 300 phones for sensing [12], [1] has gained huge popularity in
Time (sec) the recent times due to its negligible deployment cost. &hes
techniques, if adopted by a large number of users, can provid
Fig. 1. Stability of RSS over time very accurate speed estimation on most roadways. However,
. frequent sampling of the GPS unit can result in fast battery
where the vehicle traveled at the same speed, and depart W on the mobile phone. [22] tried to overcome some of the
the vehicle varied its speed in the later part of these twistri energy limitations by sub-sampling the GPS and combining
Note also, how the trace from the slower trip is essentiallyge \Wi-Fi outdoor positioning along with map-matching to
stretched version of the fe}ster trip in the second part of theimate speeds with high accuracy. Still, energy consiompt
trace. For example, the dip below an RSS value of 20 dRymains higher than approaches that use existing phone sig-
occurs in the same location in both trips but due to the speggis |t also require software modifications on each handset
difference the graph shows them at different times. which makes bootstrapping the service more difficult.

The key idea underlying our technique is to stretch (or cejiylar phone based sensing Unlike the smartphone
compress) the RSS trace until it best matches the referepegeq sensing, these techniques rely on the location of the
trace. The stretch factor can vary over the length of theyiyiar phone over time calibrated either using triantjara
_trace. Since the |n§tantaneous speed over the referemee tg he GSM signal strength [24] over time or Fingerprint
is knpwn, the algorithm can f[hen convert these stretch 'faCt(?natching of the phone successive signal strength readfijgs [
into instantaneous speed estimates for the test RSS trags, T, the |ocation where the cellular phone handsoff between
our approach can perform vehicular sp_eed tracking and detggyers [21], [10]. Our previous work [4] uses the stability
bottlenecks on road segments effectively. We assume tjakjgnal strenth profiles on a road segment to derive average
training RSS profiles and their speeds are available for rogdaeq estimate. [20] uses the rate of change of RSS between
segments under study. These could be collected as part of {{jgcessive samples to determine the speed. While all of the
service provider signal measurements to determine cogerag,qye techniques can overcome the bootstrapping (since the
We also assume that the approximate starting location @d foyider already has access to the signal strength infaomat
road_ segment the veh|cI¢ travels on is k_now_n, for example gy phone) and energy issues that were present in smagphon
monitoring handoff locations as shown in prior work [12]. paseqd sension, these can only estimate average speeds over

The rest of the paper is organized as follows: We firglagment of length typically over 100m. Therefore, they cann
perform an overview of general vehicular speed estimatig sed to track small variations in speed that are important
techniques in Section Il We then describe our technical agyy several traffic engineering applications. We differnfrall
proach in terms of DDTW algorithm, and explain how speege apove techniques by estimating speeds with high aggurac
estimation and tracking is performed in Section Ill. We nexh aqdition, we are the first to show the possibility of using
present how to predict road bottlenecks by detecting védnicug g signal strength for tracking temporary speed variation
slowdowns in Section IV. We collect traces from real traﬁi?for, example bottlenecks causing slowdowns).
drives and compare the performance of our mechanism W'thDoppIer shift-based sensing Finally, [23], [25] makes
existing algorthms in Section V, then conclude in Section Vl,ge of the doppler shift in frequency caused by the moving
transmitter to estimate speed. [23] can only perform coarse
speed classification while [25] can predict the actual speed

In this section, we first review existing studies on vehiculaf the mobile. But the latter assumes the presence of strong
speed estimation. We then describe the baseline algorithbmse of Sight(LOS) component between the transmitter and
that we compare with our approach in this work. the receiver which can make this technique impractical.
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We further choose two representative algorithiraaliza-  A. Derivative Dynamic Time Warping Algorithm
tion Algorithm andNormalized Euclidean Distance Algorithm, ¢ find the optimal alignment between sequences of signal
which can be used to perform vehicular speed tracking aglength measurements for speed estimation, we apply two
detect the bottlenecks in road segments. These two algwithsequences of signal strength measurements, one called the
will be used as the baseline approaches to compare with @ining and the other called the testing, to the Dynamic
mechanism in Section V. Note that the performance of thgme Warping (DTW) Algorithm. Dynamic Time Warping
localization algorithms for tracking speed variationssirgilar is 5 classic dynamic programming algorithm which has
to our prior speed estimation algorithm [4]. We thereforgeen widely used for optimal alignment of two time series
only include the more general and better known localizatifatasets and was particularly popular for applications lik
algorithm as a baseline algorithm. . speech processing[15], [19], data mining[16], [14], anstgee

Localization Algorithm: This method estimates the Spee‘i’ecognition[S].
of a mobile phone between two points by estimating the |n particular, we use a variant of the DTW algorithm
phones’ locations at the two points, calculating the distancglied Derivative Dynamic Time Warping (DDTW) [13],
the phone has travelled and dividing it by the time travelleghich exploits the same principle as DTW but for the
In this paper, we use the fingerprinting [17] algorithm folpyt data, where, instead of the time-series of RSS, we
determining phone’s location. The algorithm uses the RSge the time-series of derivative of RSS. For example, if
fingerprints obtained from 7 neighboring towers at différeny _— (a1,as,...ap;) is a time series of RSS measurements

known locations as the training. When an RSS fingerprint §g|lected over M time points, the input to DDTW is
obtained from a mobile at an unknown location, the algorithoy — (4!, ...d};), the derivative ofA which is defined as

estimates the euclidean distance in signal space betwéeen th
obtained fingerprint and all the training fingerprints antede o — (a;i —ai—1) + (aiy1 —ai—1)/2 l<i<M. (2)
mines the location to be the location of the training fingetpr Given two RSS profilezs A and B with lengths of M and

that yields the minimum euclidean distance. . . .
Normalized Euclidean Distance Algorithm: This algo- N samples r(.esp(_ectwelly, DDTW constructs a distance matrix
d[M x N] which is defined as:

rithm detects speed changes during speed tracking, exg- sl
downs, by calculating the normalized euclidean distance be d(i,j) = (a — b;-)2 3
tween consecutive GSM measurements and declaring a slovierea; andbd’; are theit" and ;" elements of the derivative
down when the distance falls beyond a certain threshold.Tokthe RSS profilest and B respectively. With thisi[M x N]
normalized Euclidean distance between two measurementsif\the input to the algorithm, DDTW returns a warping path
and B, havingn common cell towers is defined as: P = (p1,p2,....ox) Wherep, = (z,y) € [1 : M] x [1 : N]
V@ =5+ (@ =0 F o an =52 /n (L) for I € [1: k] as shown in Figure 3. The warping path must

Note that Euclidean distance between successive sampﬁ%gsw the following cgnd|t|ons:
from a mobile phone is directly proportional to the distance 1) Boundary Condition: p, = (1,1) andpy = (M, N).
the phone moves in physical space, which in turn depends on 1 1iS énsures that the warping path always stars at)
how fast the phone moves. While we cannot derive an accurate  @Nd ends ati/, N). -
speed estimate from this relation, we can still predictorgi ) Monotonicity Condition: If pi—1 = (c,d) and p; =
where there are slowdowns. We experimented with multiple ~ (¢» /), we havee —¢ > 0 and f —d > 0. The
other metrics suggested in [20], but found the normalized monotonicity condition ensures that the matching always

euclidean distance to work the best. Hence, we chose to use Progresses in the forward direction of time. ,
this algorithm for comparison with our mechanism. 3) Global Constraints: Global constraints are constraints

that limit the region in which the warping path can

Ill. SPEEDTRACKING exist. In addtion, global path constraints also guarantee

Our speed tracking technique comprises two components. the existance of a path fromil, 1) to (M, N). Fig-
First, the Derivative Dynamic Time Warping Algorithm ure 3 illustrates the region for warping path generation.
(DDTW) algorithm aligns a given signal profile with a known The region enclosed within the parallelogram is the

training profile. Second, the speed tracker will convert a  region that corresponds to the global constraints. In
warping path produced by the DDTW algorithm into a speed  Figure 3, Eyax is defined as the maximum allow-
trace for the vehicle. This approach assumes that a training able expansion (or compression) in time axes of one
signal profile from the same road segment is available, which  time series with respect to the other, and is chosen
was collected at a known speed. Similar measurements are to be max(2, [max(M, N)/ min(M, N)]). The ratio

often carried out by cellular service providers to creatkilze [max(M, N)/min(M, N)] defines the amount of ex-
coverage maps. The testing signal profiles can be either pansion of one trace relative to the other. Accordingly,
obtained on a cell phone handset itself, or at the base stgtio the sides of the parallelogram are set to have slope values

the cell phone is on an active call). The speed trace produced of Eyax and1l/Epax.
by this technique can then also serve as input for the slomdow 4) Local Constraints: Finally, Local constraints define the
estimation technique described in the following section. set of admissible step-patterns. There are three types of
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Fig. 2. DDTW local constraints that restrict the admissipéhs to every location within the matrix:
(@ C(i,7) = d(i,j) + min(C(i — 1,7 — 1),C(4,5 — 1), C(i — 1, 7))
(b) C(i,§) = d(i, j) + min(C(i — 1,5 — 1),C(i — 1,5 — 2) +d(i,j —1),C(i — 2,5 — 1) + d(i — 1,5))

(C) 0(7’7]) = min [min1§7‘§EMAX (0(7’ - 17] - 7”) + Z;lzj,(r,l) d(lvjl) 7min2§7‘§EMAX 0(7’ - ij - 1) + Z;L:l:if(rfl) d(l17]))]

step progressiorhorizontal, vertical and diagonal. As  Note that the optimal path t@, j) depends only on the values
shown in Figure 2, different kinds of local constraint®f (i, ;') wherei’ < ¢ and j* < j. From the cost matrix,
are possible. For example, Figure 2(a) shows the mdke algorithm derives a warping patR by back-tracking
unrestrictive step constraint whefg j) can be reached the constructed cost matrix fror/, N) to (1,1). While
from one of its three neighbours — 1,5 — 1),(¢ — backtracking, the path that the algorithm chooses from any
1,7), (¢,5 — 1). Whereas Figure 2(b) and 2(c) illustratgoint (¢, j) will be the (i, j') that resulted in optimal (i, j).
more constrained progressions where a diagonal progrége will next explain how we use the warping path to estimate
sion is forced for everyE;4x horizontal or vertical the speed of the testing trace.

progressions.

To generate a warping path, DDTW constructs a cost mati Estimating Vehicular Speed from DDTW's warping path

C[M x N] which represents the minimum cost to reach _ .

any point (i, ) in the matrix from(1,1) using a dynamic hThe .DDlel algor|;\r2[mNretl¥rr]1_'s a warping pz;\]fﬂdbgtweer;]

programming formulation. For example, in Figure 2(@)) t € pomts_( 1) to (M, N). This warping pa_lt € |.nes.t ¢
o timal alignment between the two time series, which in this

can be reached from one of its three neighbours, namety, S .
(i—1,j—1),(i—1,7), and(i,j — 1), and the algorithm picks C2S€ aré the RSS measurements from the training and testing

the neighbour that has the minimum cost. This relation can EQVES' As explained in Sgcnon |, there is a direct corietat
shown as: etween the speed of vehicle and the overall shape of the RSS
o . ) . . o _ _ curve. Therefore, an optimal alignment of the RSS curvasfro
C(i,j) = d(i, j)+min(C(i—1,5-1),C(1, 5 1), C(Z_l’])jf' the training and testing drives can yield a correspondimgdp
However, using an unconstrained local constraint ad¥homstimate of one drive relative to the other.
in 2(a) can lead to an undesirable effect called “singuémit ~ We define three kinds of matching between training and
[13] where either one sample point in the testing is mappedt&sting tracesType-1, Type-2, and Type-3. If one point in the
a very large number of samples in training (unrestricted-hotesting trace is mapped tb points in the training trace as
zontal progression) or many points in testing map to the sasiegown in Figure 3(b), the resulting speed estimate for the
point in training (unrestricted veritical progressionhi§ effect testing trace isk times that of the training. We call this as
as observed previously[15] can be minimized by using a mofgpe-1 matching as shown in Figure 3(a). The figures illustra
constrained topology for forward progression. In this workhis for k = 2. Similarly, Type-3 matching is wheh points in
we thus take an approach of using the constrained DDTte testing trace are mapped to one point in the trainingfrac
with a maximum expansion oF;;4x. our local constraints speed of the testing trace is/k times the training speed.
resemble the ones in Figure 2(b) and 2(c). For example, 2fhally, Type-2 match is when one point in testing maps to
forces a diagonal progression before every horizontal ticale exactly one point in training trace. In this case, speedsiirig
progression, whereas 2(c) allows ugtly,4x) horizontal or equals speed of training.
vetical progressions before forcing a diagonal progressio We note that the estimated speed from time warping is
For a complete description of local constraints, we refer ttalways a multiple of the training speed. For example, if the
readers to [15]. The local constraints that we use in thiskwotraining speed at any instance is 20mph, the resultingngpsti
allow upto Fy;4x Vvertical or horizontal progressions beforespeed can only be multiples of 20mph such as 60mph, 40mph,
forcing a diagonal progression and the cost matiig, j) 20mph or 10mph. Figure 3(b) plots the speed estimation
corresponding to this local constraint can be formulated asfrom a warping path when the training speed is a constant
, at 20mph. The speed estimates from different segments of the
Oig)y=min [mini <<y 0 (CG—13 =TT, Ly diin)), warping path are depicted based on Type-1, Type-2, and Type-
ming<r<py a4y (CO—Ti—D+EE i () Clia ). (5) 3 matches. Furthermore, the resulting speed estimatestfrem



‘/‘/"’\Q\,I[;air;ilg/./ We define a slowdown as a sudden reduction in the speed of

a moving vehicle by more thanmph to a value beloyw mph.

! The duration of the slowdown is the period of time the speed
remains below: mph. A slowdown is detected by sequentially
scanning the input trace. The input trace can be the grouthdtr
speed data derived from GPS readings, DDTW estimated
~Slope=1/E, ., speed, speed estimate from the Localization algorithmher t
Normalized Euclidean Distance from Normalized Euclidean
Distance algorithm. Our scheme identifipgaks and dips in
the input trace. A peak occurs in the input trace at any given
point when its first derivative (slope) at that point changes
from positive to negative. Similarly dips occur when thepso
changes from negative to positive. Our scheme initiallygass
) a very low value to the first detected peak and a very high value
5|ope=EMA§~ M X N to the first detected dip. As the scheme proceeds scanning the
trace, the peak value is adjusted to the highest observdd pea
Similarly, the dip value is adjusted to the lowest observigd d
Training After every adjustment of the peak and the difpiéak —dip)
> 7, anddip < u, a slowdown is declared. The duration of this
slowdown is then the period of time the dip remains bejaw
Finally, the peaks and dips are reset to the lowest and highes
values respectively and the scheme repeats until all slawndo
are detected in the specific trace.

The main challenge in identifying slowdowns accuratelg lie
on the choice ofr and .. We performed an emperical study
_ — Training on 18 of our GPS traces that lasted for a total of 6.4 hours
5 i - Testing and picked a threshold of 25mph fersince most breaking

(a) Cost MatrixC'(M, N) and the warping path generation

Testing

peed of Testing = 2*Speed of Training
Speed of Testing = Speed of Training/2
(b) Speed estimation from a warping path

£

‘éig events involved slowding down the vehicle from 40-45mph

210 speed limit in arterial roads to a very slow speed of around
0 5-10mph. Our choice for is 20mph because most residential

(c) Estimated speed from a warping path regions have a speed limit of 25mph or more and we do not
want to classify those residential regions as bottlenecks.

While a choice of 25mph and 20mph for and p fits
testing trace versus the training speed are illustratedgarg the ground truth speed from GPS, these thresholds need not
3(c). be the same for the speeds estimated from either DDTW or

We observed that there are speed fluctuations from thacalization. and the normalized euclidean distance ed&th
estimated speed. In order to remove these fluctuations, Q¢Normalized Euclidean Distance algorithm. For example, w
apply a moving window smoothing filter over the estimateghowed in Section IlI-B that the speed estimate from DDTW
speed which averages the speed estimates within the erfif@very instance is a multiple of the training speed which in
window to produce a single speed. The choice for the windd# requires a moving window smoothing filter to be applied
size should not be too large since this might smooth out QYer the estimated speed to get the speed estimate. However,
variations leaving a very coarse speed estimate. Similafipie to this smoothing, an actual speed change of 25mph in the
having a very small window size may result in the overafiround-truth speed may only correspond to a speed change of
speed estimation to be highly fluctuating. We will evaluatt®mph in the estimated speed.

Fig. 3. lllustration of vehicle speed estimation from DDTW.

the length of the optimal smoothing window in Section V.  In order to capture this relationship between the ground-
truth speed and the estimates from other algorithms, we
IV. SLOWDOWN DETECTION performed a regression analysis using a linear least sdisare

In practice, most traffic engineering applications do natver the data sets. The inputs to the regression analysthare
require the instantaneous speeds of vehicles and are mgmeund-truth speed from GPS and the output from any of the
concerned about regions of bottlenecks. Such bottlenatksthree estimation algorithms under study: DDTW, Localizati
road networks can in turn be detected from vehicular speeatsd Normalized Euclidean Distance. For instance, Figure 4
by observing the regions where vehicles typically slowdowshows a scatter plot of the ground-truth speed from GPS sersu
or by observing the normalized euclidean distance where tiie estimated speed from DDTW, and the corresponding fitted
normalized euclidean distance between successive sagpledine obtained from linear least square fit. The slope of the
below a threshold. We will next provide a formal definition ofitted line determines that a drop in ground-truth speed by
slowdown and describe the scheme for slowdown detectior25mph corresponds to only 15mph drop in the estimated speed



from DDTW. Similarly, ap value of 20mph in ground-truth
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Fig. 5. Figure lllustrating the metrics for quantifying telewdown detection
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V. EVALUATION

Fig. 4. Least square fit between the ground-truth speed frét8 @nd the In this section, we evaluate the DDTW algorithm in terms
estimated speed from DDTW. . " . .
of its ability to estimate instantaneous speed and detewat-sl

The slowdown detection algorithm takes any of the foufowns. We first describe our data collection methodology.
inputs, namely,ground-truth speed trace, estimated speed Then, we present evaluation results for estimating inatant
trace from DDTW, estimated speed trace from Localization neous speed and detecting slowdowns on residential roads
or normalized euclidean distance trace from Norm.Euc.Dist using GSM signal strength from mobile phones. Next, we
algorithm, along with their respective and. values. Figure study the sensitivity of DDTW to the alignment error. Fiyall
5 illustrates the results of slowdown detection performad ave show the generality of DDTW by presenting its speed
a 1000 seconds long ground-truth speed trace from GPS @atimation accuracy on a trace collected indoors with WiFi-
the corresponding estimated speed from DDTW respectivelyased equipment.
We treat the slowdown detection obtained from the GPS data .
as the ground truth. The y-axis on the left side correspandsA- Data Collection
the speed of the traces, while the y-axis on the right reptese To evaluate DDTW, we collected two sets of data. The first
the duration of each of the identified slowdown locations. set of data was collected outdoors using GSM enabled HTC

Finally, we will use three metricstrue Positive, False Pos-  Typhoon phones running the Intel-POLS [2] software. The
itive and False Negative to quantify how well the the different software records the time, cell tower description (Cell ID,
algorithms detect bottlenecks in Section V. In the slowdowdNC, MCC, LAC, IMEI), and the received signal strength
detection, true positives are the time periods when thergtou from the 7 strongest cells once every second. We used Holux
truth slowdowns coincide with the slowdowns estimated i#PSIim236 GPS receivers paired with mobile phones through
the result of the algorithm under consideration, i.e.,DDTVBluetooth for logging the ground truth location informatio
or Localization, or Normalized Euclidean Distance. Wheeeafor all traces. We collected 18 signal strength traces on a 10
false positives occurs when slowdown is detected in o0tile long road, located in a residential area with lots offita
scheme under consideration but not in the ground-trutiseFalights. We chose the road with traffic lights to ensure thélyig

negative is when the slowdown exists in the ground-trut@riable speed traffic pattern of our traces. We used oneeof th
however, is not detected by our scheme. 18 traces as training and the remaining 17 traces as thagesti

traces. In total, the 17 testing traces contain 6.4 hoursat#.d
The second set of data was collected indoors on a 802.11b

T o Wi-Fi network. We collected 9 traces in which the experi-
Ground-Truth Speed from GPS 25 mph 20 mph menter placed a laptop equipped with 802.11b WG511T Wi-
Ezmizg gggzg Efgzgﬂgﬁon) fgfg‘p‘;‘h gé:gi mzﬂ Fi card in a cart and moved along a corridor measuring 228
Norm. Euc. Dist.(Norm. Euc. Distance Al 4.15 dBm | 26 dBm ft in length thrice at three different speeds ( 1ft/sec,s2it]
gorithm) 4ft/sec) while sending out packets at the rate of 2 pkts/sec.
TABLE | Three receivers were placed along the corridor: one closer

THRESHOLDST AND 11 FOR THE SLOWDOWN ESTIMATION ALGORITHMS 0 the beginning of the corridor, one in the middle and one
closer to the end of the corridor. The receivers were 802glL1b
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Fig. 6. Comparison of speed estimation accuracy of DDTW anchlization algorithms.

enabled, configured to listen on channel 6 in monitor mode a 1
log the packets using Tshark [3] packet sniffer utility. trat,

we had 550 seconds of data logged at each of the receive 08y *
Unless otherwise noted, we used the first set of data for 0_6‘//\/._._‘—.___._7

experiments in this paper.

F-Measure

B. Speed Estimation Accuracy

In this section, we evaluate the accuracy with which DDTV
can estimate instantaneous speed and compare it to the a 0 ‘ ‘ ‘ ‘ ‘ : :
racy achieved by the Localization algorithm, describedén-S 1020 Smi%thingomef\?m (NG(;) of Sngplgcs)) 0
tion II. We do not include results for the Normalized Euchde '

Distance algorithm in this section since the algorithm can b Fig. 7. The effect of the smoothing interval on the F-measure

used to detect slowdowns only and cannot be used to estimate

speed. Figure 6(a) plots the ground truth (actual) speed @¥rithm. The median error of 5.2 mph is encouraging and
a vehicle obtained through GPS, as well as the estimat¢@ believe is suitable for a wide range of traffic engineering
speeds of the DDTW and the Localization algorithms. Thapplications. In the next section, we will evaluate a metad
drive took 1500 seconds to complete. The figure shows the&n be used by an application that detects regions of bettlen
the speed estimated by DDTW matches the actual speed vefya road. This requires detecting when a vehicle signifigant
well, whereas the Localization algorithm performs poofly. reduces its speed.

quantify how closely the two algorithms follow the actual )

speed, we calculated the Pearson’s product-moment ctiorelaC: Slowdown Detection Accuracy

coefficients between each of the algorithms and the actualn this section, we evaluate the accuracy with which DDTW,
speed. The Pearson’s correlation coefficient measure®arlinLocalization and Normalized Euclidean Distance algorghm
dependence between two variables. The coefficient of 1 mea@as detect slowdowns, as defined in Section IV. Recall that a
very strong positive correlation. The coefficient of 0 meaas true positive occurs when an algorithm correctly predibts t
correlation. The Pearson’s correlation coefficients a@wvsh there is a slowdown. A false positive occurs when an algarith
in the upper left corner of the figure. The actual speed apdedicts that there is a slowdown but there is none. A false
the DDTW algorithm exhibit very strong correlation of 0.83negative occurs when an algorithm doesn’t predict a slowdow
The Localization algorithm, on the other hand, has a weald there is one. Please refer to Figure 5 for an illustradion
correlation with the actual speed of 0.34. We also calcdlatall these metrics.

the Pearson’s correlation coefficients for all the testisgeés  We present our results using Precision, Recall and F-
combined. The correlation between the estimated speednofasure [18]. Precision captures the percentage of correct
DDTW and the actual speed was strong with a correlati@mowdown predictions and it is defined as the total duration
coefficient of 0.75, whereas the correlation between thie esif true positives divided by the sum of total duration of true
mated speed of Localization and the actual speed is poor wjtbsitives and false positives. The higher is the Precision,

a correlation coefficient of just 0.11. more accurate an algorithm’s estimations are. Recall captu

Figure 6(b) plots the CDF of the error between the actutile percentage of actual slowdowns that were detected and it
and the estimated speeds for both DDTW and Localizatigs defined as the total duration of true positives divided by
algorithms for all testing traces combined. The resultsashdhe sum of true positives and false negatives. The higher the
that DDTW performs significantly better than LocalizationRecall, the more actual instances of a slowdown an algorithm
achieving the median error of 5.2 mph, which is more thdmas predicted correctly. F-measure is used to estimate the
twice lower than 13 mph achieved by the Localization aPrecision/Recall tradeoff and it is defined as follows:

—e—DDTW
—e— Localization
—e— Norm. Euc. Dist




an alignment error results in applying DDTW on training

~ (6) and testing traces that are shifted in time by the value of
precision + recall the alignment error. Note that although we study the effect

The higher the F-measure, the better is an algorithnp$ alignment error of up to 500m, a typical GSM based
slowdown detection accuracy. In our case, it is possiblesidet localization system has a median localization error of less
off Precision for Recall by changing the smoothing intervathan 100m [5]. Therefore, it is reasonable to assume that, in
as defined in Section 1lI-B. Figure 7 plots the F-measure fgractice, DDTW would achieve speed estimation accurady tha
different smoothing intervals for the DDTW, Localizationch is equivalent to the one obtained with a 100m alignment error
Normalized Euclidean Distance algorithms.

Fog. precision - recall

The figure illustrates that the F-measure for DDTW is Allgnmen: Error(m) | Wedian Eror (meh)
almost twice as high as the F-measure for Localization and 100 65
Normalized Euclidean Distance algorithms across the entir 200 7.12
range of smoothing intervals. This indicates that the DDTW 500 8.57

has higher Precision and Recall compared to the other al- TABLE Il
gorithms. We ple the Smoothing interval that achieved the EFFECT OF ALIGNMENT ERROR ON SPEED ESTIMATION ACCURACY

highest recall value for each algorith_m, _which in this case, Taple 11l summarizes the median error in miles per hour
was 50, 90 and 100 for DDTW, Localization and Norm. Eugq, gifferent alignment errors. When a localization syssem

Dist respectively. provides an accurate location estimate, DDTW suffers from
no alignment errors and has a median speed estimation error

Precision | Recall . :
DDTW ’8%2"’” Ofgj of 5.2 mph. When an alignment error of 100m is present,
Localization 0.38 0.63 the accuracy of DDTW degrades slightly to 6.5 mph. Even in
Normalized Euclidean Distanc¢  0.39 0.59 this case, DDTW performs much better than the Localization

TABLE Il algorithm that achieves the median speed estimation acgura
SLOWDOWN DETECTIONPERFORMANCE OFDDTW, LOCALIZATION AND of 13 mph.

NORMALIZED EUCLIDEAN DISTANCEALGORITHMS. . .
E. Indoor WiFi-based Experiment

Table 1l summarizes the Precision and Recall values forwe finally verify if DDTW technique can be used across a
DDTW, Localization and Normalized Euclidean Distancgifferent wireless technology and a different environmient
algorithms for their respective optimal smoothing intdésvathe same purpose of speed estimation. To this end, we use the
derived from their F-Measure in Figure 7. DDTW significantlywi-Fi data in which we performed 9 indoor Wi-Fi experiments
outperforms the other two algorithms achieving Precisibn @/here the experimenter moved between the given two points in
0.68 and Recall of 0.84. Its Precision is 94% higher thagn long(228ft) corridor thrice at three different speedsnaly
that of Localization and 74% higher than that of Normalized1ft/sec(0.68mph), 2ft/sec(1.36mph), 4ft/sec(2.72mphijle
Euclidean Distance. Its Recall is 40% higher than that of L@ending out packets at the rate of 2 pkts/sec. We had three

calization and 42% higher than that of Normalized Euclideawi-Fi receivers, each recording the RSS from this tranemitt
Distance.

Next, we study the impact of the duration of a slowdown o 6 ‘ ‘ ‘ ‘ ‘
the ability of the algorithms to detect it. The intuitionlgethat —— Ground Truth
it should be easier to detect slowdowns of a longer duratic - - - Estimated Speed
The duration of a slowdown is defined in Section IV as th
total time the speed remains below the thresholg afiph.

Figure 8 plots a histogram of the number of slowdowr L
of a given length that appear in the trace and the number '
slowdowns that are correctly detected by each of the thr
algorithms. Although all algorithms can correctly detelit a 0 200 400 600 800 1000 1200
slowdowns of 120 seconds or more, only DDTW detects <. Sample Number
slowdowns that are longer than 30 Secon_ds' The algorlthm& 9. Speed estimates from DDTW on indoor environmentgi&8S from
cannot detect slowdowns of a short duration because of agsiver-1
smoothing that is applied to average out the oscillations in
speed predictions, which in turn results in smoothing out We can see from Figure 9 that the estimated speed closely
abrupt speed changes that last for short durations. follows the ground truth. The median error for this receiver

] o is 0.1527mph. The median errors on receiver-2 and rec8iver-

D. Effect of Alignment Error on Speed Estimation Accuracy  \ere 0.1388mph and 0.1527mph. This result is encouraging

In this section, we study the effect of the alignment err@ince this proves the generality of the proposed mechanism
between the training and testing traces on the speed estimagcross different wireless technologies and shows that it is
accuracy of DDTW. Recall from Section Il that introducingeffective at detecting even very small speed changes isdoor
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VI. CONCLUSION [9]

In this paper, we exploit received signal strength from
mobile phones to track vehicular speed variations and prrediLo]
bottlenecks on road segments. Our speed tracking mechanism
is grounded on Derivative Dynamic Time Warping (DDTW}ll]
operating between traces of mobile phone signal strenGiins.
approach makes use of the stability of signal strength mé#&?
surements over time on any given road segment to optimally
align the training and testing signal strength traces. Kirac
of the speed variations, e.g., slowdowns, is then enablsedall3l
on the alignment produced by DDTW. We experimentaIIM4]
evaluated our mechanism on real signal strength measutemen
captured with mobile phones through various road drives aH§!
showed that our speed tracking has a very high correlation
with the ground-truth speed reported by the GPS and exhibits
a median error withint 5mph across the.4 hours of driving [16]
traces. Moreover, our approach achieves a precisio8&f
and a recall of84% when predicting bottlenecks in road
segments in terms of vehicular slowdowns. Additionally, tﬁlf
demonstrate the generality of our proposed speed track é
technique, we applied our approach on experimental traces
from an indoor environment with walking people carrying Wi-
Fi (802.11b) radios and succesfully showed the effectisenélg]
of our mechanism across different environments and differg19]
radios.
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