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Abstract—This paper presents the design and evaluation of a
novel distributed shared hosting approach, DMap, for managing
dynamic identifier to locator mappings in the global Internet.
DMap is the foundation for a fast global name resolution
service necessary to enable emerging Internet services such as
seamless mobility support, content delivery and cloud computing.
Our approach distributes identifier to locator mappings among
Autonomous Systems (ASs) by directly applying K>1 consistent
hash functions on the identifier to produce network addresses of
the AS gateway routers at which the mapping will be stored. This
direct mapping technique leverages the reachability information
of the underlying routing mechanism that is already available
at the network layer, and achieves low lookup latencies through
a single overlay hop without additional maintenance overheads.
The proposed DMap technique is described in detail and specific
design problems such as address space fragmentation, reducing
latency through replication, taking advantage of spatial locality,
as well as coping with inconsistent entries are addressed. Eval-
uation results are presented from a large-scale discrete event
simulation of the Internet with ∼26,000 ASs using real-world
traffic traces from the DIMES repository. The results show that
the proposed method evenly balances storage load across the
global network while achieving lookup latencies with a mean
value of ∼50 ms and 95th percentile value of ∼100 ms, considered
adequate for support of dynamic mobility across the global
Internet.

I. INTRODUCTION

The concept of separating identifiers from routable ad-

dresses or locators has been advocated by a number of authors

in the networking community [1], [2], [3], [4]. Separation of

names from addresses makes it possible to avoid implicit or

explicit binding of sources and destinations to the network’s

actual topology. Using existing terminology, the identifier

names a communicating object, such as a particular mobile

phone, while the locator identifies an address the network can

use to route messages. For example, a phone connecting to

different 3G, 4G, and WiFi networks would get a separate

locator for each network. However, the identifier, which in

this case could be the International Mobile Subscriber Identity

(IMSI) number, would remain the same. The goal of this work
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is to explore the feasibility of identifier based communication

under the assumption of large-scale dynamic mobility of

named objects. In the above example, programmers should

be able to send messages to a particular phone based on its

IMSI number rather than to an IP address. We take the position

that identifiers can also be used to name abstract entities and

services; they need not to be tied to a particular device.

Identifier based communication has many advantages, in-

cluding simplified implementation session management, multi-

homing, mobility, disconnection, authentication and secu-

rity [1], [2], [3], [4]. When there is a high degree of dynamism

between the communicating entities and the network (as in

most mobile service, content retrieval and cloud computing

scenarios), using identifiers to define network-attached objects

is more appropriate than using locators. Intuitively, it is

easier to work with networking primitives based on identifiers

when the locator changes faster than the timescales of the

communication session. For example, a voice call may last

30 minutes, but a mobile device in a vehicle may change its

network attachment points many times during this period.

Realizing an identifier based protocol stack has several

challenging aspects; the key design issue we address in this

work is the dynamic binding of identifiers to locators. That is,

when the user presents the networking stack with an identifier,

the networking subsystem must quickly return a set of locators,

or network addresses (NAs) back to the user. We address the

challenge of providing a fast global name resolution service

at Internet scale in this paper, and describe and evaluate

a specific Direct Mapping (DMap) scheme for achieving a

good balance between scalability, low update/query latency,

consistency, availability and incremental deployment.

We take note of two trends in the Internet community

that have significant bearing on the design of a global name

resolution scheme. First, a flat identifier space is preferred to

the hierarchical domain names currently used in the Internet.

The use of flat, location independent identifiers is a central

tenet of a number of clean slate proposals such as AIP [5],

HIP [3], ROFL [6] and MobilityFirst [7]. The key advantage

of flat labels lies in their use for direct verification of the
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Fig. 1. Distributed global identifier to locator mapping service

binding between the name and an associated object (see [8] for

a detailed discussion). As a result, name resolution schemes

that rely on the hierarchical structure of the name such as

the Domain Name System (DNS) or LISP-TREE [9] are not

suitable for supporting such a flat identifier space.

The second trend is that due to its separation from the

network attachment point, global names or identifiers will tend

to belong to end-users or application providers rather than to

the network, as is currently the case with IP. Hosts and other

network-attached objects (content, computing services, etc.)

are not owned by any Internet Service Provider (ISP), but

they just happen to be connected to a particular Autonomous

System (AS). Most name resolution schemes propose to store

the mappings of the identifiers belonging to an AS inside that

AS only [10]. The same rationale, however, does not work

for a host-based identifier space because hosts (or content)

do not belong to any particular AS, especially with the

increasing number of mobile hosts which often have multiple

simultaneous points of network attachment. Thus we challenge

the assumed constraint of ownership based storage and design

a scheme with network-wide sharing of the identifier-locator

mappings independent of the AS boundaries.

Motivated by these trends, we propose a dynamic identifier

to locator mapping management scheme called DMap which

supports a flat space of a identifiers, referred to as Globally

Unique Identifiers, or GUIDs. A GUID is a long bit sequence,

such as a public key, that is globally unique and long enough

that the chance of a collision is infinitesimally small. Each

end host, such as laptops, mobile phones, servers and virtual

machines can have a GUID. In addition, even abstract objects,

such as a piece of content or a particular context, can have

GUIDs. Each GUID is associated with one or more network

addresses (NAs) that it attaches or belongs to. For example,

the NAs of a multi-homed laptop in Figure 1 includes the NA

of its 3G service provider and the NA of the network that its

WiFi interface attaches to. We denote the identifier to locator

mapping as the GUID→NA mapping.

To perform the mapping service for a given GUID, DMap

applies K(K > 1) hashing functions onto it to produce

a list of K network addresses, which are IP addresses in

today’s Internet, and stores the GUID→NA mapping in the

ASs that announce those network addresses. By doing so,

DMap spreads the GUID→NA mappings amongst ASs, such

that an AS will host mappings of other ASs, as well as

have its mappings hosted by others. A key advantage of

this shared hosting approach is that it allows the hosting

ASs to be deterministically and locally derived from the

identifier by any network entity. DMap is simple yet efficient.

It leverages the routing infrastructure to reach the hosting AS

in a single overlay hop; it does not require a home agent, unlike

mobile IP and existing cellular networks. Further, the potential

shortcoming of the direct mapping scheme, lack of locality, is

addressed by having multiple copies of the mappings that are

stored in multiple locations. We further improve the design by

including a local copy of the mapping within the AS that the

GUID is residing in (this AS may change as the host moves).

Through detailed simulation studies, we show DMap

achieves a 95th percentile round trip query response time of

below 100ms, which is important to support the fast growing

class of mobile devices connected to the Internet. Our results

also show that DMap can proportionally distribute GUID→NA

mappings among ASs, which is critical to scale our system to

support billions of GUIDs and NAs associated with a global

scale network.

The rest of paper is organized as follows. In Section II,

we provide the background and motivation for DMap. The

working of DMap and how DMap addresses several technical

challenges are discussed in Section III. We present detailed

simulation evaluation results in Section IV, and an analytical

model in Section V. Finally, we have the related work in

Section VI and the concluding remarks in Section VII.

II. BACKGROUND AND MOTIVATION

A. Identifier and Locator Separation

While there is broad agreement on identifier locator separa-

tion [1], [11], implementation proposals vary widely along two

main design dimensions: (i) what does an identifier correspond

to? and (ii) how is it mapped to a locator? There are two main

approaches. In the router-based proposals such as LISP [12],

Six/One [13] and APT [14], the identifiers identify the network

endpoints, and hosts can be reached by specifying the endpoint

through which they are connected to the network. Thus a host

has to acquire a different endpoint identifier every time it

changes its network attachment point (though patches to work

around this problem have been proposed [15]). In contrast,

there is an alternative host-based approach in which identifiers

are designated to end hosts, resulting in each host maintaining

its identifier irrespective of changes in its point of attachment

to the network. HIP [3], MILSA [4] and MobilityFirst [7]

proposals have shown the distinct benefits of having host-

based identifiers in terms of mobility support, multi-homing

support and security, evidently at the cost of requiring changes

in the host-side protocol stack.



B. Requirements of Host-Based Identifiers

We believe that a host-based mapping scheme must meet

the following requirements:

• Flat Identifiers: The mapping architecture needs to sup-

port structure-less, flat identifiers.

• Low Latency: Since mobility is directly handled using

dynamic identifier to locator mapping, latency require-

ments are much stricter in host-based schemes.

• Low Staleness: Fast mobility support also requires that

the identifier-locator mappings be updated at a time-scale

smaller than the inter-query time.

• Storage Scalability: Since flat identifiers would lead to

substantially more number of identifier to locator entries,

the mapping scheme needs to scale to the order of billions

of entries instead of thousands [16].

The above requirements call for a fundamental shift from

traditional mechanisms such as MobileIP, DNS and DHT.

While it is applicable at small scale, the mapping scheme of

MobileIP incurs high overhead since all mappings are resolved

by the home agent regardless of its distance to correspondents.

A home agent acting as a relaying node on the data plane

in tunnelling mode makes MobileIP not scalable to global

Internet scale. On the other hand, since it relies on extensive

caching, DNS cannot deal with fast updates. In addition,

to store the mappings of billions of hosts and handle their

updates/queries, a much larger dedicated infrastructure than

the current DNS would be required. Traditional Distributed

Hash Table (DHT) schemes and their optimized variations,

e.g., [17], [18], aim to solve the problems of centralized solu-

tions but invariably introduce a fundamental tradeoff between

service latency and table/maintenance overhead. A detailed

discussion of other existing mechanisms along with their pros

and cons are presented in Section VI.

C. Incentive for Shared Hosting

To address the problems above, in this work, we propose

DMap which is built on the principle of shared hosting

of the locator to identifier mappings among all the ASs

in the network. A concern that may arise naturally with

shared hosting is incentive: why would Network Operator

A store and manage Network Operator B’s identifiers? As

we argued above, with host-based identifiers, the concept of

site-dependent or provider-dependent identifiers are diluted

specially in the case of mobile hosts. For fixed legacy hosts,

we assert that just like peer-to-peer file sharing systems and

TCP congestion control, cooperative schemes that result in

a common good with a small individual cost have a natural

incentive mechanism for deployment as long as the individual

cost of participation is reasonable. In particular, the incentives

for foul-play, i.e., not storing or answering mapping requests in

this case, would depend on the benefit vs. possible penalty of

non-compliance. Both technical solutions (such as reputation

management in peer-to-peer systems) and non-technical policy

bindings (analogous to Network Neutrality arguments) can

be invoked to force/persuade ASs to fairly participate in the

scheme. However, in this paper, we focus on the architectural

and performance aspects of the scheme and leave the design

of the incentive mechanisms open.

III. DIRECT MAPPING (DMAP)

In DMap, each GUID→NA mapping is stored in a set

of ASs. Each GUID is directly hashed to existing network

addresses and its mapping is thus stored within the ASes

corresponding to these network addresses.

A. Overview of DMap

In designing our mapping method, we strive to minimize

update/lookup latencies as well as the amount of state in-

formation that needs to be maintained. We achieve these

goals by leveraging the globally available BGP reachability

information to distribute the GUID→NA mappings among

all the participating ASs. In our scheme, DMap first hashes

a GUID to an existing network address, and then stores

its GUID→NA mapping within the AS that announces this

network address. This results in exactly a single overlay hop

for all the update/lookup requests without introducing any

additional state information on each router. Next, we look at

an example to illustrate this approach. In this example, we

assume the usage of the existing IP address space, but we

note that the same technique can be easily extended to any

future addressing scheme such as IPv6, AIP [5] or HIP [3].

Let us suppose host X , with GUID Gx, is attached to NA

Nx. X first sends out a GUID Insert request, which is captured

by the border gateway router in its AS. The border gateway

router then applies a predefined consistent hash function on Gx

and maps it to a value IPx in the IP space. Based upon the IP

prefix announcements from its BGP table, the border gateway

router finds out which AS owns IPx and sends the Gx → Nx

mapping to that AS. Later, suppose host Y wishes to look up

the current locator for GUID Gx. Y sends out a GUID Lookup

request. After the request reaches Y ’s border gateway router,

the border gateway runs the same hash function to identify the

AS that stores the mapping. Every time when X changes its

association and connects to a different AS, it needs to update

its mapping by sending out a GUID Update request. Update

requests are processed similarly as insert and lookup requests.

Using the above approach, a GUID’s mapping is hashed

to a random AS, without considering the locality between

the GUID and its lookup requests. This lack of locality may

potentially lead to unnecessarily long lookup latencies. Thus,

instead of storing a mapping at only one AS, we consider

having K replicas of the same mapping stored at K random

ASs. Having K replicas can significantly reduce the lookup

latency as the requesting node can choose the closest replica

(e.g., based upon the hop count between itself and the hosting

ASs). Meanwhile, it will not have a big impact on the update

latency as we can update the replicas in parallel. With K
mapping replicas, the lookup latency becomes the shortest

latency among the K ASs, while the update latency becomes

the largest among the K ASs. Figure 2 illustrates an example

update and lookup process with K = 3. Finally, we note that
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Fig. 2. DMap with K=3 independent hash functions

important DMap parameters, such as which hash functions to

use and the value of K, will be agreed and distributed before

hand among the Internet routers.

Compared to other mapping schemes, one distinct feature

of DMap is the direct participation of network routers in

storing GUID→NA mappings and in responding to updates

and lookups. DMap does not require any additional state

information as the IP reachability information is already made

available by the BGP routing protocol. In addition, we note

that unlike many recent proposals [19], [20], [9], [10], DMap

does not distribute GUID mappings based on the assumption

of the aggregate-ability of the GUID space. Our scheme is

suitable for flat address spaces, which has been pointed out as

a desirable feature for the Future Internet [5], [3].

B. Handling Unallocated Network Addresses

DMap hashes a GUID to an IP address, and stores the GUID

mapping in the AS that announces this IP address. Due to

fragmentation in the IP address space, it is possible that the

hashed IP address is not announced by any AS. This problem

is referred to as the IP hole problem. To understand the extent

of this problem, we take a close look at today’s IP address

space. At present, 86% of the 232 IP addresses available in

IPv4 are allocated to various entities [21]; the rest are reserved

for other purposes including multicast, limited multicast, loop-

back address, broadcast, etc. Among the allocated addresses,

63.7% of them are announced by one of the ASs. This leads

to an overall 55% announcement ratio over the entire IPv4

address space, which results in a 45% chance that a randomly

hashed IPx will belong to the set of unannounced addresses.

We address the IP hole problem by finding a deputy AS

through rehashing if the IP address after the first hash falls

into a hole. After M −1 rehashes, if the resulting address still

falls into an IP hole, we pick the deputy AS as the one that

announces the IP address that has the minimum IP distance

to the current hashed value. Given two k-bit addresses, A and

B, their IP distance is defined as:

IP distance[A,B] =

k−1
∑

i=0

|Ai − Bi| ∗ 2i.

We further define the IP distance between an address and

an address block as the minimum IP distance between that

address to all addresses in the block. In this way, we can

guarantee that a deputy AS can always be found.

There is a concern that the above method may introduce

load imbalance among ASs: the AS that announces an IP

address that is adjacent to a large set of reserved addresses

(thus unannounced) may become a popular deputy AS and

needs to store a large number of mappings. Fortunately, the

probability of reaching an IP hole after M hashes decreases

rapidly with increasing M . For instance, this probability is as

low as 0.034% for M = 10. As a result, the chances that we

need to resort to the ASs that announce the IP addresses with

the minimum IP distances to the holes are very low.

Algorithm 1 summarizes the steps taken by the border

gateway to deal with the IP hole problem. Since hashing,

rehashing and prefix matching processes are done locally by

the border gateway, these operations introduce very little delay

to the network.

Algorithm 1: Hashing GUID to address space

input : GUID - the GUID to be hashed
M - maximum number of rehashing

output: An address guaranteed to be found in prefix table

1 number of tries← 0;

2 result← hash(GUID);

3 while (number of tries < M ) do
4 if Longest_Prefix_Matching(result) > 0 then
5 return result; //ended here if found

6 // no prefix was found
7 result← hash(result );

8 number of tries← number of tries + 1;

9 //No match found after M hashes
10 nearestPrefixID = findNearestPrefix(result);

11 return An address in nearestPrefixID;

When extending DMap to other network address schemes,

such as IPv6, we need to rethink how we deal with the IP

hole problem as these network address spaces may have sub-

stantially more holes than used address segments. To address

such sparse address spaces, we propose to use a two-level

indexing method to index each announced address segment:

bucket ID and segment ID within that bucket. Suppose we have

N buckets, each with a capacity of S segments. We make N
large so that S can be kept small. Given a GUID, we run

two hash functions, the first one mapping the GUID to bucket

ID, and the other one mapping the GUID to the segment ID.

Figure 3 illustrates the bucketing scheme.
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C. Spatial Locality and Local Replication

The main advantage of DMap lies in its simplicity: hashing

a GUID to a random AS. However, this random placement

ignores locality, and so may degrade performance. Having

multiple replicas partially addresses this problem, but it still

has the inherent problem of a direct hashing scheme: the

GUID mappings are stored at faraway ASs when the host

and requestor are close to each other. Thus, we enhance the

baseline DMap for an expected common case of when a

requesting node is attached to the same AS as the GUID that

it is resolving. To leverage this spatial locality, DMAP stores

an additional replica of a GUID mapping at its attached AS.

When a host registers/updates its GUID, it creates/updates a

local copy (at its attached AS) in addition to creating/updating

the K “global” copies. When a node needs to lookup a GUID,

it sends out a local and a global lookup simultaneously. When

the host and the requester are from the same AS, the local

request should lead to significantly reduced lookup latency.

D. Inconsistent GUID→NA Mappings

1) BGP Churn: Since a change in the prefix announce-

ments directly influences DMap, we analyze the potential

effects of BGP churn. A long term study of BGP churn

evolution [22] shows that a major reason for churn in the

BGP tables is router configuration mistakes or other anoma-

lies. Changes in prefix announcements occur when an AS

withdraws a previously announced prefix or announces a new

prefix. The actual rate of new prefix announcement and prefix

withdrawal is small, with the former dominating the latter.

When an AS withdraws a certain prefix, all the mappings

previously hosted by the AS whose GUIDs are hashed to the

withdrawn IP addresses will become unaccessible, resulting

in what we call orphan mappings. To address this problem,

we let the withdrawing AS run the IP hole protocol to find a

deputy AS for these mappings before withdrawing. It sends a

GUID insert messages to the deputy AS and deletes its own

copy of the mapping. Subsequent queries will then hit an IP

hole. Following the same IP hole protocol, they will reach the

deputy AS and find the mapping.

Announcing new prefixes can also result in orphan map-

pings. The GUIDs that were originally hashed to these IP ad-

dresses had followed the IP hole procedure to a “deputy” AS,

and announcing these addresses now can make the mappings

on the deputy AS orphan mappings. As a result, queries that

reach the announcing AS will not find the mappings, while the

mappings on the deputy AS become inaccessible. To solve this

problem, when the announcing AS receives a query and finds

the mapping missing, it sends a GUID migration message to

the deputy AS to relocate the mapping to itself. This operation

could cause a negligible one-time overhead, which only occurs

for the first query after the announcement.

2) Mobility: Mobility can also lead to inconsistencies in

DMap. Suppose host X , with GUID Gx, is connected to AS

A. As a result, DMap has the mapping (Gx : A). Then suppose

X moves to AS A′ at time t0, and its mapping will be updated

to (Gx : A′) at time t1. While we expect t1 − t0 to be small,

it is possible for a querying node to get the old mapping right

after X has moved. The querying node will then be unable to

communicate with X . In this case, the querying node should

mark the mapping as obsolete, and keep checking until it

receives an updated one.

3) Router Failure: An AS can lose part or all of its

mappings due to router failure. This is a rare event, but

we need to address the resulting complication. If a lookup

request reaches an AS, but cannot find the mapping due to

this problem, the requestor will wait for a timeout. Following

the timeout, the requestor will contact the next mapping replica

(remembering we have K replicas in total). We note that the

probability for K Internet routes to fail at the same time is

extremely low, and thus our replication strategy also improves

system resilience and reliability.

IV. EVALUATION

In this section, we present the results from a detailed

performance evaluation of the DMap scheme using a mix of

qualitative reasoning and event-based simulation.

A. Storage and Traffic Overhead

To analyze the storage requirements in absence of spec-

ifications about the GUID/NA lengths and related headers,

we make the following assumptions. We assume flat GUIDs

of length 160 bits, each associated with a maximum of 5

NAs (accounting for multi-homed devices) of length 32 bits

each. 32 bits of additional overhead per mapping entry is

assumed which could include type of service, priority and

other meta information. Each mapping entry thus has a size

of 160 + 32x5 + 32 = 352 bits. We assume a total of 5

billion GUIDs, roughly equal to the present number of mobile

devices, and a replication factor of K = 5. Based on the

average prefix announcement by individual ASs as determined

from a current snapshot of the BGP table [21], the storage

requirements per AS, assuming proportional distribution, is

only 173 Mbits. This storage requirement is quite modest,

even if it is multiplied several times to include non-mobile

devices as well as future growth.

The update traffic overhead is also a key parameter of inter-

est in ensuring scalability. The DMap technique reduces the

traffic overhead in comparison to other mapping schemes by:

(a) Ensuring a single overlay-hop path to a storage location,

(b) Not adding any table maintenance traffic as required in

DHT schemes. Using a broad estimate of the 5 Billion GUIDs

being those of mobile hosts which update their GUID→NA

mapping at an average rate of 100 updates/day, the world-

wide combined update traffic would be ∼10 Gb/s, a minute



fraction of the overall Internet traffic of ∼ 50x106 Gb/s as of

2010 [16].

B. Query Response Time and Load

The round trip response time of a query is composed of:

(i) K longest prefix matchings at the local gateway router,

(ii) network latency between the query source and the chosen

destination AS, (iii) the queuing and processing delay of the

mapping server at the destination AS and (iv) the return

network latency between the destination AS and the query

source. Since routers use fast longest prefix match algorithms,

requiring on order of 100 instructions per lookup, i.e. ∼30

nanoseconds on a 3 GHz processor [23], we ignore this

component in our evaluation. Also sufficient resources are

assumed at the mapping server to make the queueing and

processing delay very small compared to the round trip latency.

Note that this process does not add any delays to the normal

data packets as the steps described above are only applied

to GUID query packets and are assumed to be handled at a

separate compute layer at the gateway router.
1) Simulation and Workloads: We develop a discrete-event

simulator consisting of ∼26000 nodes, each emulating an AS.

The connectivity graph of the network, inter-AS and intra-AS

connectivity latencies, and the announced IP prefix list are

derived from measurement driven data as described below. We

consider three types of events: GUID inserts, GUID updates

and GUID lookups.1

We use the AS-level topology of the current Internet as our

network model by extracting the following real-measurement

data from the DIMES database [25]: (i) Connectivity graph

containing 26,424 ASs and 90,267 direct links between them,

(ii) Average end-to-end latencies between each pair of AS

and within each AS. The DIMES database provides end-to-

end median latency for about 9 million pairs of hosts which

are either within the same AS or in different ASs. From this

dataset, we extract the average inter-AS and intra-AS latency

since we only work with an AS-level network topology in our

simulation. Due to the inherent incompleteness of real-trace

data, intra-AS latency numbers are not available for about 6%

of the ASs that are involved in the storage or transit of the

mapping data. For these ASs, we use the median value (3.5

ms) of the set of available intra-AS latencies as a working

solution.

Since our scheme allocates GUIDs to ASs according to the

prefix announcements, we use a complete list of IP prefixes

advertised in the Internet default free zone (DFZ), as seen

by APNIC’s router at DIX-IE in Tokyo, Japan [21]. This

dataset consists of roughly 330,000 prefixes spanning close

to 52% of the 32 bit IP address space which is consistent with

recent estimates [22] about the size of the prefix tables in DFZ

routers. We confirm our results with two other prefix tables

taken from BGP routers in the continental USA and Europe

respectively and observe similar trends.

To discard any location bias and to incorporate the global

scale of operation, we use another dataset from DIMES

1The source code for our simulator is available at [24]
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Fig. 4. Round trip query response times

that contains the number of end-nodes connected to ASs to

characterize the distribution of the source of GUID insert

and query. Each GUID in our simulation originates from a

randomly picked source AS, where the probability of choosing

a certain AS is weighted in proportion to the number of end-

nodes found in that AS.

The number of queries for any GUID depends on its

popularity amongst Internet hosts. In order to capture the

effects of the wide variations in host popularity, we use a

Mandelbrot-Zipf distribution [26], [27] to model the varying

host popularity. The Mandelbrot-Zipf distribution defines the

probability of accessing an object at rank k out of N available

objects as:

p(k) =
H

(k + q)α
, (1)

where H = 1/
∑N

k=1 1/(k + q)α, with α determining the

skewness and q affecting the “flatness” of the peak. We use a

value of α = 1.02, q = 100 following the arguments in [27].

2) Results: We present two sets of results that characterize

the query response time and the load distribution of our

scheme respectively.

a) Query Response Time: We evaluate the query re-

sponse time for DMap by inserting 105 GUIDs and generating

106 queries according to the popularity model. By repeated

trials with increasing number of GUIDs/queries, we verified

that the response times converged after reaching the above

configuration and larger numbers are not necessary. When we

store a mapping at multiple locations, i.e., K > 1, in the

results below, we assume that the querying node has sufficient

information to choose the location with the lowest response

time. We note that in today’s Internet, this information is only

partially available, but at the least, each AS has hop count

information for reaching all other ASs through the routing

protocol. Using least hop count instead of lowest response

time leads to similar results albeit with marginally increased

latencies. We would also emphasize that many techniques are

being proposed to better estimate the response times [28].

Figure 4 plots the cumulative distribution function (CDF)

of the round trip query response times with varying K values.

We make two observations. First, with K = 5, 95% of the

queries complete within 86ms. This is well within the range
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Fig. 5. Effect of BGP Churn on query response times.

needed for voice call handoffs [29]. Indeed, given that many

WiFi and IP handoff protocols are often on the order of 0.5-

1 second [30], [31], DMap updates would not introduce an

undue additional burden. Second, storing each GUID mapping

in multiple locations can significantly reduce query response

times, as it allows a querying node to choose the replica

that is “closest” to itself, thus addressing the locality of the

requests. The effect of increasing K can be clearly seen with

the leftward shift of the CDF curve as we increase the value of

K. In particular, the mean, median and 95th percentile query

latencies of K = 1 and K = 5 cases are tabulated in Table I,

which shows a marked decrease in the tail of the response

time distribution.

However, even the curve for K = 5 has a relatively long tail.

This long tail arises from a few queries originating from those

ASs with unusually long intra-AS response times, according

to the DIMES dataset. For example, the 18 queries with the

longest response times all originated from AS 23951, a small

AS registered in Indonesia with a one-way latency of more

than 2.3 seconds on each of its outgoing links.

b) Impact of BGP Churn: The above study assumes that

the BGP table at the query origin exactly reflects the current

state of the Internet. However, BGP tables at different places

in the Internet can be inconsistent because of new prefix

announcements or prefix withdrawals. This inconsistency may

have an adverse impact on the overall query response times as

the query may reach an AS which does not host the requested

mapping. In this situation, the AS will then reply with a

“GUID missing” message, and the querying node will have

to contact another replica. Thus, a query may require multiple

round-trips to different ASs for each resolution. We note that

the probability of two churns occurring at the same time

for the same GUID is negligible. Here, we conduct a set of

experiments to quantify the impact of this inconsistency caused

by BGP churn. In the experiments, we vary the percentage of

prefixes that are newly announced or withdrawn from 0 to

K Round Trip Query Response Time (ms)
Mean Median 95th percentile

1 74.5 57.1 172.8

5 49.1 40.5 86.1

TABLE I
QUERY RESPONSE TIME STATISTICS FOR K = 1, 5
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10%. Figure 5 plots the CDF of the query response times

for K = 5 and 0% to 10% lookup failures. A 5% failure

rate, which already seems pessimistic according to [32], [33],

shifts the median and 95th percentile from 40.5ms and 86.1ms

to 41.3ms and 129.1ms, respectively.

c) Storage Distribution: We next study the distribution

of GUID→NA mappings amongst ASs to evaluate DMap’s

ability to spread the storage load proportional to the size of

the ASs. We measure storage load using the Normalized Load

Ratio (NLR) at each AS, which is defined as the ratio of

the percentage of GUIDs assigned to an AS divided by the

percentage of IP addresses advertised by that AS. For example

if an AS announces a /8 prefix, corresponding to 0.39% of

the 32 bit IP space and is assigned 20,000 out of a total of 1

Million GUIDs, i.e., 2% of GUIDs, then its normalized load

would be 2/0.39 ≃ 5. Ideally, each AS’s NLR would be 1.

Figure 6 plots the CDF of the NLR when we inserted from

105 to 107 GUIDs, with K = 5. We observe that for 107

GUIDs, 93% of the ASes had NLRs between 0.4 and 1.6.

Further, we observe that as the number of GUIDs increases

from 105 to 107, the CDF becomes much sharper around NLR

equal to 1 (with a shorter tail). This suggests that DMap can

distribute the storage load better when the system scales. These

results show that DMap does a very good job of spreading out

the storage load proportional to the percentage of the IP space

that an AS claims.

Interestingly, the median NLR value is 1.16. The fact that

the median NLR value is greater than 1 is expected since

in addition to its fair share of GUIDs, many ASs are also

allocated a portion of the GUIDs that has hashed values after

M retries falling in the IP holes as described in Section III-B.

V. ANALYTICAL MODEL FOR QUERY RESPONSE TIME

In this section we present an analytical model for an upper

bound on the query response time and parametrically study

its dependence on the Internet topology and replication factor

K. While the simulation framework of Section IV shows the

response time performance of DMap based on the current

Internet topology, this analytical model allows us to estimate

its performance based on a predicted future Internet model.



A. The Jellyfish Model

An accurate parametric model of the Internet topology

is known to be a difficult endeavor due to the inherent

complexities in routing policies, detour paths and limited

visibility of the intra-AS structure [34]. The Jellyfish model,

however, has been found to closely follow the evolution of the

Internet topology at a relatively coarse scale [35]. In this paper,

we build a Jellyfish model based on the PoP-level Internet

topology. We first label the node with the highest degree as

the root v0 and the maximal clique1 containing v0 as the core,

denoted as Shell-0. Let v be a non-root node and j a non-

negative integer. The smallest path length2 from v to a node in

the core is its distance to the core. We use Shell-j to denote

the set of nodes whose degree is more than 1 (intermediate

nodes) and whose distance to the core is j. We use Hang-j
to denote the set of nodes whose degree is 1 (leaf nodes)

and whose distance to the core is j + 1. These are standard

notations in the Jellyfish model [34]. Then we have

Layer(j) = Shell-j ∪ Hang-(j − 1) for j ≥ 1,

and Layer(0) = Shell-0. We further denote the total number

of layers in the Internet PoP topology as N and the percentage

of nodes in layer j by rj ; if n is the total number of nodes

in G, then rj = |Layer(j)| /n. The separation of one degree

nodes at each layer distinguishes between stub connections

and transit connections which makes the model much closer

to the Internet topology than a standard tree structure.

B. Upper Bound for Query Response Times

Following the above model, if we assume no peer links

between the nodes inside each layer, then the distance between

any two nodes s and t (in layers js and jt respectively),

d(s, t), is at most js + jt + 1. Note that since the core

forms a completely connected graph, all hops in the core

are of length one. To drive a simple parametric upper bound

for the query response time, we assume that the network

address space is uniformly distributed among the PoPs and

all addresses within a PoP behave in an identical fashion.

Following the algorithm described in Section III, let the source

of a GUID query belong to PoP s and let t1, t2, . . . , tK be

the destination PoPs for the query determined by the K hash

functions h1, h2, . . . , hK applied on the GUID G. Assuming

a linear relationship between PoP path length and response

time, the query response time τ(s,G), is thus given by

τ(s,G) = c0 · min
1≤i≤K

d(s, ti) + c1, (2)

where c0 and c1 are constants. In order to average over all

possible source and destination PoPs, we treat d(s, ti) as a

random variable and find its probability distribution based

on the rj values defined in the previous subsection. In the

analysis, we use the standard notations Pr(·) and Pr(· | ·) for

1clique: a completely connected subgraph of G.
2path length: the number of edges in the path, i.e., that of the involved

PoPs in the path minus 1.

the probability and conditional probability of argument events,

and E(·) for the expected value of a random variable.

Given a uniformly selected source PoP, we have Pr(s ∈
Layer(j)) = rj . Note that since DMap actually chooses a

network address uniformly over all possible addresses, the

jth layer could include a different number of addresses than

the ratio rj . Our analysis assumes the uniform distribution of

addresses among PoPs but the model can be easily extended

to non-uniform distributions by considering weights ws pro-

portional to the number of addresses in PoP s. Since accurate

estimates of such a distribution is not directly available through

any of the Internet measurement frameworks, we assume

ws = 1 for all s. Based on the same assumptions, we have

Pr(ti ∈ Layer(ji)) = rji
for each i = 1, 2, . . . ,K and

ji = 0, 1, 2, 3, 4, . . . , N − 1. Thus the conditional probability

of d(s, ti) ≥ l + 1 given that s ∈ Layer(j) is at most the

percentage of nodes in Layer(l− j)∪Layer(l + 1− j) · · · ∪
Layer(N − 1). (Since s is in Layer(j), d(s, ti) = l + 1
when ti is in Layer(l − j), d(s, ti) = l + 2 when ti is in

Layer(l+1− j) and so on in the worst case). In other words,

Pr
(

d(s, ti) > l
∣

∣ s ∈ Layer(j)
)

≤ pj,l,

where pj,l
def
= rl−j + rl+1−j + rl+2−j · · ·

⇒Pr

(

min
1≤i≤K

d(s, ti) > l
∣

∣ s ∈ Layer(j)

)

≤ pK
j,l,

⇒Pr

(

min
1≤i≤K

d(s, ti) ≤ l
∣

∣ s ∈ Layer(j)

)

> 1 − pK
j,l,

⇒Pr

(

min
1≤i≤K

d(s, ti) ≤ l

)

>
N−1
∑

j=0

rj(1 − pK
j,l).

This provides an upper bound for the CDF of average

distance from the source to the closest destination. Thus the

probability that min1≤i≤K d(s, ti) > l is at most 1−ql, where

we define ql as:

ql
def
=

N−1
∑

j=0

rj

(

1 − pK
j,l

)

,

Finally, noting that the diameter of our PoP graph is (N −
1) + (N − 1) + 1 = 2N − 1 or less,

E

(

min
1≤i≤K

d(s, ti)

)

<

2N−1
∑

l=1

(1 − ql)

⇒ E (τ(s,G)) < c0

(

2N−1
∑

l=1

(1 − ql)

)

+ c1.

(3)

C. Analytical Results

We use the formulation derived above to study the response

time upper bound in three different scenarios with varying

number of replicas K. The first scenario reflects the current

Internet topology, for which we use measured data from

the iPlane project [36] for setting the parameters rj , j =
1, 2, . . . , N . The data set shows a graph of 193,376 nodes

within 8 layers and more than 60% of the nodes residing in

layers 3 and 4. The next two scenarios model the medium-term
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Fig. 7. Analytical upper bound of query response times with the Internet
topology evolution.

and long-term future Internet topologies. In order to come up

with models for the future Internet, we leverage the following

two distinct trends observed from the widely regarded CAIDA

measurement framework [37]: (i) The number of nodes are

growing almost linearly with time, (ii) The topology graph is

getting flatter with time, i.e. ASs are obtaining more direct

paths to the core. Extrapolating these trends, we model the

medium-term (5-10 years) future Internet as having 20% more

nodes than present contained in 6 layers. Similarly, the long-

term (25-30 years) future Internet model contains double the

number of nodes contained in 4 layers. Figure 7 shows the

analytical upper bound of average query response time for

the three scenarios using the measured least squared error

values for c0, c1 = 10.6, 8.3. The plot shows that based on

the predicted future Internet topology, response time upper

bounds for DMap queries become smaller with the evolution.

Also, the analysis clearly indicates that increasing the replica

number results in diminishing returns beyond a few replicas.

We note that actual values for the query response upper

bound will typically be smaller than the ones obtained in this

analysis, since we did not consider the presence of peering

links between nodes in the same layer.

VI. RELATED WORK

Given the importance of locator/identifier separation

schemes in both current and future networks, various architec-

tures for mapping identifiers to locators have been proposed

and studied. Most of the early mapping schemes [19], [20],

[9], [10] assumed aggregatable identifier spaces and proposed

ideas based on that vantage point. However, this assumption

is too restrictive making such schemes not applicable to many

recent mainstream proposals such as HIP [3], AIP [5] and

MobilityFirst [7] which propose flat identifiers. Our approach,

in contrast, targets a flexible resolution service by not making

any assumptions about identifier hierarchy or locator structure.

There are some recent mapping architecture proposals that

incorporate flat identifier space such as DHT-MAP [38],

SLIMS [39]. However these approaches either incur high

lookup latency, making it not applicable to highly mobile

environment, or high management overhead which limits

scalability. For example, the DHT based scheme in [38] can

entail up to 8 logical hops introducing an average latency of

about 900ms as per their assumptions.

In contrast, our scheme aims for much lower latencies

by employing the one-hop hashing approach and ensures

minimum management overhead for feasible deployment on

a global scale. We argue that making use of network entities

and the IP reachability information already available through

the underlying routing infrastructure provides a practical and

scalable approach to realize mapping resolvers. Reference [40]

uses a similar in-network hashing scheme to target the different

but related problem of name-based routing.

This work also focuses on a global-scale simulation to

validate the design, which has been neglected in most of

the prior works referenced above. Reference [9] is a recent

exception which presents a trace based simulation using the

iPlane dataset [36]. Our simulation approach is more realistic

than that of [9] on two counts: (a) We use a larger dataset from

DIMES [25] to extract AS level connectivity and latency infor-

mation. The DIMES dataset is based on measurements from

∼1000 vantage points compared to ∼200 for iPlane, resulting

in information for about twice the number of ASs as compared

to iPlane; (b) To generate resolution lookup events, [9] uses

DNS lookup traces from two particular source locations which

introduces a significant locality bias in their results. In contrast,

we globally distribute lookup source locations by weighting

the chances of choosing a particular source location (source

AS) in proportion to the available data on number of end nodes

near that location. The basic intuition here is to mimic realistic

deployment where more lookup requests will be generated

from more densely populated areas.

VII. CONCLUDING REMARKS

In this paper, we presented the concept, design and eval-

uation of DMap, a scheme for low latency, scalable name

resolution service in the future Internet. DMap distributes

name to address mappings amongst Internet routers using

an in-network single-hop hashing technique that derives the

address of the storage router directly from a flat, globally

unique identifier. In contrast to other DHT-based techniques,

DMap does not require any table maintenance overhead since

we use network level reachability information already avail-

able through existing routing protocols. In addition, DMap

supports arbitrary name and address structures making it more

widely applicable than prior techniques. Through a large-scale

discrete-event simulation, we show that the proposed DMap

method achieves low latencies with a mean value of ∼50

ms and 95th percentile value of ∼100 ms and good storage

distribution among participating routers.

In further work, we plan to consider other variations of the

proposed DMap distribution scheme - for example GUIDs can

be hashed directly to AS numbers or allocation sizes can be

varied to reflect economic incentives at ASs. We also plan to

extend the scope of this work by studying a feasible in-network

caching methods that builds on top of the basic DMap scheme.

Since our scheme interacts with the hosts, the inter-domain

routing protocol and the Internet routers, security is a critical



requirement at each level. The MobilityFirst project [7], takes

a holistic approach towards self certification based security,

which tie in well into the relevant aspects of our scheme.

Our future work plan also includes incorporating the transient

effects of BGP updates, misconfigurations and router failures.

On the validation and evaluation front, there is an ongoing

effort to implement a proof-of-concept global scale DMap

system using the GENI (global environment for network inno-

vation) framework. A first DMap prototype was demonstrated

at the GENI Engineering Conference-12 in Kansas City and

efforts are currently under way to fully instrument the latency

and overhead measurements necessary to evaluate scalability

and performance. If the GENI experiments successfully con-

firm DMap performance, there are also further plans to use

the proposed technique as part of a complete identifier-based

protocol stack in the MobilityFirst future Internet architecture

project.
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