
WINLAB, Rutgers University 1

ECE544: Communication
Networks-II, Spring 2005

Transport Layer Protocols
Sumathi Gopal
Feb 25th 2005

WINLAB, Rutgers University 2

Lecture Outline

Introduction to end-to-end protocols
UDP
RTP
TCP
Programming details

WINLAB, Rutgers University 3

End-To-End Protocols

Enable communication between 2 or more
processes (which may be on different hosts in
different networks)

The Transport Layer is the lowest Layer in the
network stack that is an end-to-end protocol

WINLAB, Rutgers University 4

Transport Layer Protocols

Connectionless protocols considered here

Basic Function:
Enable process-to-process communication via virtual
process-hooks called ports.

A transport protocol may provide several features in
addition.

4-Tuple Connection Identifier:
< SrcPort, SrcIPAddr, DestPort, DestIPAddr >

WINLAB, Rutgers University 5

Most popular transport protocols

User Datagram Protocol (UDP):
Provides the process identification functionality via ports
Option to check messages for correctness with CRC check

Transmission Control Protocol (TCP):
Ensures reliable delivery of packets between source and destination
processes
Ensures in-order delivery of packets to destination process
Other options

Real Time Protocol (RTP):
Serves real-time multimedia applications
Header contains sequence number, timestamp, marker bit etc
Runs over UDP

WINLAB, Rutgers University 6

User Datagram Protocol (UDP)

Src Port Dest Port Checksum Length
2 bytes 2 bytes2 bytes2 bytes

UDP Header

Application

 UDP

Data bytes

Data bytesUDP
Header

Socket call

Header Fields:
Src Port: Unique identification number assigned to the source process by the kernel
in source node.
Dest Port: The Unique Identification number assigned to the destination process by
the kernel in the destination node.
Checksum: Filled on source side. Checked on receiver side to ensure message
correctness. Calculated over <Data, UDP hdr, portion of IP hdr>
Length: Total number of bytes in (UDP header + data bytes)

WINLAB, Rutgers University 7

Example of an application using UDP

My application called Network Performance Monitor (NPM) needs to measure the
pattern of packet losses in a network.
Application needs sequence numbers and timestamps in each packet
UDP does not provide this facility; So NPM adds its own header to each packet

Seq Num Send Timestamp
4 bytes 8 bytes

NPM Header

Data BytesNPM

UDP NPM BytesUDP Header

WINLAB, Rutgers University 8

Application requirements

Like NPM, most applications need much more from a transport
protocol than the basic functionality
Multimedia applications require tracking of packet loss, delay and
jitter.
Most other applications such as HTTP, Database Management, FTP
etc, require reliable data transport

TCP, UDP and RTP satisfy needs of the most common applications
Applications requiring other functionality usually use UDP for
transport protocol, and implement additional features as part of the
application

WINLAB, Rutgers University 9

Introduction to TCP

The TCP/IP protocol suite has enabled computers of all sizes, from
different vendors, different OSs, to communicate with each other.

Forms the basis for the worldwide Internet that spans the globe.

Reliably delivers data between two processes
Assumes unreliable, non-sequenced delivery

Divides data passed to it from application process into appropriate sized
chunks for the network layer below

Acknowledges received packets

Sets timeouts to ensure other end acknowledges packets set

Application can ignore details of reliability

WINLAB, Rutgers University 10

A top-level view of TCP operation

4-Tuple Connection Identifier:
< SrcPort, SrcIPAddr, DestPort, DestIPAddr >

Application Application

TCP

Send Buffer

TCP

Receive Buffer

Segment

Write
Bytes

Transmit Segments

Read
Bytes

Segment Segment

WINLAB, Rutgers University 11

TCP Header Format

Flags: SYN
FIN
RESET
PUSH
URG
ACK

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdr len Flags0

Checksum Urgent pointer

Options (variable)

Data

0 15 16 31

TCP Header
Atleast 20 bytes

Application Byte Stream

TCP Data Data Data Data
TCP segment

WINLAB, Rutgers University 12

Summary of TCP’s Operation Sequence

All Operations are sender driven; TCP protocol completely implemented at
the ends

Start:
Connection Establishment by a Three-Way Handshake algorithm
Consensus on Initial Sequence Number (ISN)

Data Transfer:
An enhanced sliding-window protocol is the core of TCP operation
Operate in slow-start and congestion-avoidance modes
Receiver acknowledges successful reception of every segment
Sender continuously estimates round-trip time and maintains several dependent
timers to ensure reliability of data transfer

Finish:
Connection tear-down by a Three-Way Handshake algorithm
Both sides independently close their half of the connection

WINLAB, Rutgers University 13

A simple File Transfer Application

Receiver process waits for connection and data from
sender
Sender process requests receiver for a connection
Once the two processes are “connected”, the sender
process transfers the file and closes.

Receiver should be started first
Receiver port Id should be known to the sender

WINLAB, Rutgers University 14

Programming Viewpoint

Data Sending Application

TCP

Send bytestream to
connected Socket of
type SOCK_STREAM

Kernel Space
Handles communication

details

User Space
Handles Application details

• Sender application process only needs to provide a bytestream to the kernel
• Kernels on sending and receiving hosts operate TCP processes
• Receiver application process only needs to read received bytes from the
assigned TCP buffers

WINLAB, Rutgers University 15

Connection Establishment

SYN, Sequence Num = x

SYN+ACK, Sequence Num = y

Acknowledgement = x + 1

ACK, Acknowledgement = y + 1

Sender Receiver

Figure 5.6 from text book

Three-Way Handshake Algorithm
SYN and ACK flags in the header used
Initial Sequence numbers x and y selected at random
Required to avoid same number for previous incarnation on the same
connection

WINLAB, Rutgers University 16

Connection Establishment

WINLAB, Rutgers University 17

Connection Tear-down

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

Each side closes its half of the connection independently

WINLAB, Rutgers University 18

Connection Tear-down State Diagram

Observe that a connection in the TIME_WAIT state can move to CLOSED state
only after waiting for 2*Max-TTL

WINLAB, Rutgers University 19

TCP Data Transfer Operation

Goal of TCP:
Deliver data reliably and in order while maximizing end-to-end throughput
(Throughput = bytes delivered/ time taken)

Flow Control:
On sender side with congestion window; On receiver side with advertised
window
Saturate network ‘pipe’: (delay X bandwidth) bytes

If more bytes sent: packets lost due to overflows
If fewer bytes sent: Network resources underutilized

Ensure receiver is not flooded with data

Error Control or Congestion Control:
Lost ACK for a packet => lost packet
Packet loss interpreted as due to congestion => overflow of a queue in
some router along the way.

WINLAB, Rutgers University 20

The Reliability Mechanism

Receiver generates ACKs every time a segment is received
ACKs are cumulative

Sender Receiver
1
2

3

4

Ack 2

data

lost ack 3

ack 4

5
6

WINLAB, Rutgers University 21

TCP’s Congestion Window

The Congestion Window (cwnd) is TCP’s main tool of operation

A sliding window used for both Flow control and Error Control

Error Control:
cwnd maintains all packets not-yet acknowledged

Flow control:
Size of cwnd is the burst size that can be sent at one time

Higher the size of cwnd, better the net throughput

Sequence numbers maintained in bytes (remember, TCP serves a
byte stream!)

WINLAB, Rutgers University 22

cwnd Operation

Sent but not ACKed Bytes in TCP buffer;
Not yet sent

congestion window

Sequence numbersAll bytes ACKed
n m

Receive (ACK n+k) => Receiver has received all bytes upto (not incl.) n+k

ACKed
Bytes

expunge

New Bytes
sent

NEW congestion window

Sequence numbers
All bytes ACKed

n mn+k m+k m+k+"

Sent but not
ACKed

Not yet
sent

" depends on mode of operation

WINLAB, Rutgers University 23

Modes of Operation
Slow-start mode:

cwnd growth in this mode when
cwnd size < slow-start-threshold AND
No congestion has been detected

cwnd increases by a segment with every incoming ACK
Exponential increase
cwnd incremented by the number of ACKs received in one round-trip-
time

congestion-avoidance mode
cwnd growth in this mode in all other cases
cwnd incremented by (1/cwnd)* number of bytes acked

with each incoming ACK
Additive increase
cwnd incremented by at most one segment in each round-trip-time

WINLAB, Rutgers University 24

Visualization of slow-start and congestion
avoidance

Courtesy: TCP/IP Illustrated, Vol 1 by W.R.Stevens

Assumes:
• ssthresh = 16

• All segments are
ACKed and there
are no packet losses

cwnd size
(segments)

0 1 2 3 4 5 6 7

round-trip times

2

4

6

8

10

12

14

16

18

20

ssthresh

slow-start
congestion-avoidance

WINLAB, Rutgers University 25

Receiver-side flow control

Avoid flooding receiver with data
Notifies sender of number of bytes it can accept in advertisedWindow field in
ACK header.

Sender bytes sent = MIN(cwnd, advertisedWindow)

Receiver delivers bytes in correct order to application process by
maintaining a receive window

Acked but not
delivered to user

Not yet
acked

Receive buffer

Sequence numbers
Gap window

WINLAB, Rutgers University 26

TCP’s Error Control Mechanism

Data segments and ACKs may get lost in transit; Losses interpreted
as due to network congestion

TCP sender sets deadlines for ACK arrival using timers;
Deadlines a function of estimated RTT

If deadlines not met:
cwnd scaled down

Segment(s) retransmitted

Accurate Round-trip Time estimation critical for efficient TCP
operation

Premature timeouts and retransmissions place huge toll on the net
throughput

WINLAB, Rutgers University 27

Round-trip time (RTT) Estimation

Two important timers : Retransmission Timer and RTO Timer depend on
accurate RTT estimation

Round-trip time is variable. Smoothed RTT estimator:
R = "R + (1- ")M

R: smoothed RTT

M: new RTT measurement

": smoothing factor (typically = 0.9)

RTO = function of(smoothed RTT, RTT variance) (look in the book for
expression)

A single RTT estimator active at a time. Cumulative ACKs also considered

Karn’s Algorithm: Retransmitted segments not considered for RTT
estimation because of retransmission ambiguity problem

WINLAB, Rutgers University 28

Timeout and Retransmission

RTT Timer Expiry:
Duplicate ACKs arrive, but the ACK for a specific segment does not arrive
TCP interprets this as loss of a single segment, and a transient network
congestion
RTT Timer expires and triggers an immediate retransmission of the segment
requested in the duplicate ACKs.

RTO Timer Expiry:
No ACKs arrive at all before RTO timer expires
TCP interprets this as heavily congested network
Exponential Backoff triggered when no segment is transmitted and network is
given time to recover from congestion
After the backoff duration, the first unacknowledged segment is retransmitted
subsequent resumption of data flow only after Backoff duration

Expiration of either timer sets cwnd=1, and slow-start mode

WINLAB, Rutgers University 29

Timeout impact on Throughput

A timeout reduces cwnd size to 1 => Just 1 segment transmitted in 1
RTT.

cwnd subsequently grows very cautiously in slow-start mode

Bad for lossy high bandwidth-delay paths

All segments following the lost segment are also retransmitted: even if
they have been successfully received (out of order) at the receiver

A possible bulk retransmission of a large portion, may further contribute
to network congestion

WINLAB, Rutgers University 30

Ideal behavior of TCP Tahoe

At t2, t3, t4:
• Duplicate ACKs arrive
• Retransmission timer expires
• Single packet retransmitted in slow-start mode at cwnd=1
• Next segments sent based on cumulative ACKs received

time

cwnd
size

ssthresh(0)

0 t t+RTO

ssthresh(t)

t2 t3 t4

Exponential backoff

WINLAB, Rutgers University 31

Optimizations in various TCP flavors

Several optimizations for better TCP throughput
in the past 30 years.
Most important among them:

Fast Retransmit
Fast Recovery
Selective Acknowledgement (SACK)
Delayed ACKs

WINLAB, Rutgers University 32

Fast Retransmit

Don’t wait for retransmission timer to expire that causes cwnd to
drop to 1

React to duplicate ACKs instead
Don’t know if duplicate ACKs are because of packet loss or reordering.
Threshold set to 3 duplicate ACKs

On receiving 3 duplicate ACKs:
Requested segment retransmitted cwnd growth continues

Set ssthresh = (½ *MIN(cwnd, rcvr_adv_window)) bytes

Set cwnd = (ssthresh + num-dup-ACKs*segment_size) bytes

cwnd continues to grow with arriving dup-ACKs
Each duplicate ACK implies that a segment has left the network and reached
the receiver

New segment transmitted if cwnd size permits

WINLAB, Rutgers University 33

Fast Recovery

When ACK for retransmission received cwnd growth resumes in congestion
avoidance mode with cwnd=ssthresh rather than starting in slow-start mode
with cwnd=1

For an example of Fast Retransmit and Fast Recovery refer “TCP/IP Vol 1, W.R.Stevens”, section
21.8, Figures 21.10 & 21.11, Page 315

WINLAB, Rutgers University 34

TCP Reno

Most popular TCP flavor; implemented in most operating
systems
Implements Fast Retransmit and Fast Recovery in
addition to default TCP congestion control and flow
control mechanisms.

time

cwnd
size

network delay-bandwidth product

WINLAB, Rutgers University 35

Programming
viewpoint

socket(SOCK_STREAM,.....)

assign socket

Open a TCP flow

details.set_dest_port
details.set_dest_IPAddr

connect(TCPsock,...)

details.set_local_port
details.set_local_IPAddr

connected socket

send(bytes, Buffer)

return success/failure

send(bytes, Buffer)

close(s)
Done sending all data;
indicate finish to kernel

SENDING
PROCESS KERNEL

Establish connection
with destination

connect(TCPsock,)

Fill Buffer with
bytes to send

Kernel handles all
data transfer

procedures of TCP

int TCPsock = returned socket id

Fill Buffer with
more bytes to send

Kernel initiates
connection teardown

bind(TCPsock, details,...)
bound

Sender side

WINLAB, Rutgers University 36

Programming
viewpoint

socket(SOCK_STREAM,...)

assign socket

Open TCP Socket

listen(rTCPsock,..)

rTCPsock.set_local_port
rTCPsock.set_local_IPAddr

OK

recv(rTCPsock, Buffer)

connected

Indicate to kernel you're expecting
a connection on this socket

Now wait for a
connection

request accept(rTCPsock,...)

Now wait and read
bytes when available

return numBytes

recv(rTCPsock, Buffer)

return -1

Close connection
request by sender

close(s)

RECVING
USER PROCESS

KERNEL

int rTCPsock = returned socket id

A connection
request received

Save received bytes;
read more data

recv(rTCPsock, Buffer)

Interpret as data
finished from sender

Kernel handles
connection teardown

Kernel maintains
TCP recv process;
Receive data for
connected socket

Store in SOCKBUF;
fill Buffer and notify

user process

bind(TCPsock, details,...)

bound

Receiver side

WINLAB, Rutgers University 37

TCP is not the ideal for all applications

TCP optimized for wired networks

Performance is poor in wireless networks

Applications with stringent delay requirements do not
use TCP, because of possible unbounded delays

WINLAB, Rutgers University 38

Real-Time Protocol

Quality of Service (QoS) factors: Reliability, Delay and Jitter

Because of possibly unbounded retransmissions in TCP, large delay and
jitter may ensue.

Applications prefer UDP instead.

RTP protocol operates over UDP, and with header containing
timestamp

sequence number

A marker bit

Packet concatenation etc

RTP provides no other correction strategies like in TCP; Applications handle
all aspects themselves.

RTP modules run in user-space. RTP libraries included in the application.

WINLAB, Rutgers University 39

Summary

Numerous transport protocols proposed
TCP sustained because of its distributed
nature and because of the TCP/IP protocol
suite that enabled computer systems to
connect across boundaries
Ample scope exists for new transport
protocols given proliferation of
heterogeneous networks and devices

WINLAB, Rutgers University 40

Homework!

5.23
5.29
5.35
5.36
5.39

	ECE544: Communication Networks-II, Spring 2005
	Lecture Outline
	End-To-End Protocols
	Transport Layer Protocols
	Most popular transport protocols
	User Datagram Protocol (UDP)
	Example of an application using UDP
	Application requirements
	Introduction to TCP
	A top-level view of TCP operation
	TCP Header Format
	Summary of TCP’s Operation Sequence
	A simple File Transfer Application
	Programming Viewpoint
	Connection Establishment
	Connection Establishment
	Connection Tear-down
	Connection Tear-down State Diagram
	TCP Data Transfer Operation
	The Reliability Mechanism
	TCP’s Congestion Window
	cwnd Operation
	Modes of Operation
	Visualization of slow-start and congestion avoidance
	Receiver-side flow control
	TCP’s Error Control Mechanism
	Round-trip time (RTT) Estimation
	Timeout and Retransmission
	Timeout impact on Throughput
	Ideal behavior of TCP Tahoe
	Optimizations in various TCP flavors
	Fast Retransmit
	Fast Recovery
	TCP Reno
	Programming viewpoint
	Programming viewpoint
	TCP is not the ideal for all applications
	Real-Time Protocol
	Summary
	Homework!

