
 1

Abstract—This paper investigates the TCP simultaneous-send 
problem which arises in infrastructure mode 802.11 wireless local 
area networks. In particular it has been observed that for file 
transfer traffic, 802.11 wireless nodes have a sustained supply of 
packets to send and hence experience a relatively high rate of 
MAC contention. For TCP, this results in competition among 
data and ACK packets for channel access which causes the 
simultaneous-send problem that deteriorates flow throughput.  
This simultaneous-send problem can be alleviated by skipping 
TCP ACKs.  Detailed simulation results are presented to 
demonstrate the usefulness of ACK skipping in various network 
scenarios such as with MAC retries and multiple TCP flows. The 
largest improvement is seen for the case of a single TCP flow, and 
moderate gains are also achieved in cases with multiple streams. 
For the single TCP stream case with 1 ACK skip and no MAC 
retries, TCP throughput improves 30% for short-lived and 98% 
for long-lived TCP transmissions.   The paper concludes with 
potential cross-layer solutions that potentially provide further 
improvements, including the use of the point coordination 
function (PCF) to reduce contention between multiple TCP 
streams and returning ACK packets. 
 

Keywords— TCP, 802.11 MAC, DCF, skipped ACKs, delayed 
ACKs, simultaneous-send 

I. INTRODUCTION 
02.11 wireless networks are now widely deployed in 
offices, homes and hotspots, supporting channel rates up to 

54 Mbps. They operate in the Infrastructure mode where 
packets between any pair of nodes are relayed through an 
access point (AP). The Distributed Coordination Function 
(DCF) mode of MAC access is typically used in infrastructure 
networks, where all nodes including the AP have the same 
priority for channel access. Majority of the traffic in today’s 
networks constitute TCP flows employed by applications 
including email, file transfer, web browsing and database 
access that require reliable end-to-end transport. 

We evaluate TCP throughput in these networks under a 
variety of traffic scenarios such as single/multiple flows, 
with/without MAC retries, and short-lived/long-lived  
transmissions. It is shown in Section II that the bursty nature 
of TCP traffic causes the 802.11 MAC to often have a 
continuous supply of packets to send. This increases the 
likelihood of two or more nodes selecting the same backoff 
slot. For these reasons TCP data and ACK packets compete 
for channel access and cause MAC transmission failures. The 
problem is particularly significant with a single TCP flow. 
With reference to the network in Figure 1, the AP and TCP 

source node often transmit to each other in the same backoff 
slot. Neither node detects the packets, since the hardware 
implementation prevents them from sending and listening at 
the same time. This is the simultaneous-send problem. With 
no channel errors, disabled MAC retries and a single TCP 
flow, simultaneous-send is the sole cause of packet losses. For 
multiple nodes, the same-slot selection phenomenon also 
manifests as collisions where two or more nodes transmit in 
the same MAC backoff slot, and a third listener hears a 
combined garbed signal.   If MAC retries are enabled, 
simultaneous-send problem is not experienced at the transport 
layer. Instead, packet losses now occur due to MAC queue 
overflow from TCP bursts. 

This paper demonstrates how these problems can be 
alleviated at the transport layer, by skipping TCP ACKs. For 
no MAC retries, it reduces the number of ACK segments 
competing for channel access, and hence reduces MAC 
contention. When MAC retries are enabled, ACK skipping 
controls congestion window growth while in slow start,   
reducing packet bursts and minimizing MAC queue 
overflows. However, skipping too many consecutive ACKs 
has a detrimental effect on TCP throughput as less frequent 
cumulative ACKs may curtail the growth of the TCP 
congestion window.  This tradeoff is investigated in the rest of 
this paper, for the various traffic conditions mentioned earlier.   

Majority of the existing research on TCP over 802.11 focus 
on multihop ad-hoc scenarios. Few are modeling 
efforts[1],[10], while most examine effects of different 
parameters on TCP goodput. The latter include issues such as 
fairness/channel capturing[4],[5], instability problem with two 
or more simultaneous flows[12], performance variation with 
TCP packet sizes[5], upper limit on the congestion and 
receiver windows[3]-[7], effect of exposed/hidden nodes[6] 
and effect of different MAC retry limits[5].  

 [10], [11] and[13] and are most relevant.  In [10], Kherani 
and Shorey analytically show improved TCP throughput with 
1 ACK skip for a single TCP flow, in lieu of a geometric 
distribution for backoff slot selection in 802.11 MAC. Altman 
et. al[11] simulate TCP skipped ACKs in an ad-hoc multihop 
scenario for a linear topology with a single TCP flow and 
restricted congestion/receiver window sizes. With MAC 
retries, they conclude that delaying any number of ACKs is 
better than not delaying at all. Wu et. al[13] observe TCP data-
ACK competition for channel access in ad-hoc multihop 
networks and propose a DCF-MAC extension called DCF+ to 

Investigation of the TCP Simultaneous-Send 
Problem in 802.11 Wireless Local Area Networks 

          Sumathi Gopal                                       Sanjoy Paul                             Dipankar Raychaudhuri  
    WINLAB, Rutgers University              Bell Labs, Lucent Technologies               WINLAB, Rutgers University      
    Piscataway, NJ 08854-8058                    Holmdel, NJ 07733-3030                       Piscataway, NJ 08854-8058 
   sumathi@winlab.rutgers.edu                        sanjoy@lucent.com                              ray@winlab.rutgers.edu 

8 



 2

accommodate TCP ACKs.  Results in this paper differ from 
the above particularly due to the nature of the network 
considered and the assumptions made. 

The rest of this paper is organized as follows. Section II 
presents brief overviews of protocols and describes the TCP 
throughput problem in detail. Section III describes the set up 
of simulations. Results and their analysis are presented in 
Section IV. Finally, we conclude in Section V with directions 
for future work. 

II. PROBLEM DESCRIPTION WITH RELEVANT OVERVIEW OF 
PROTOCOLS 

A. 802.11 DCF-MAC overview 
Distributed Coordination Function (DCF) mode of 802.11  

Medium Access Control (MAC) uses Carrier Sense Multiple 
Access with Collision Avoidance (CSMA/CA)[15]. Even in 
the infrastructure mode with a central Access Point (AP), all 
entities have equal priority for channel access. Channel 
contention happens on a per-packet basis. A  node waiting to 
transmit a packet, first senses the channel to be idle for a 
certain duration (called DIFS [15]), then selects a backoff slot 
randomly based on a uniform distribution in [0,CW-1], where 
CW is the contention window. The packet is transmitted if the 
channel is still idle in the selected slot. If not, the node waits 
till the channel is idle again, backs off only for the requisite 
slots before attempting to transmit. The node learns of a 
successful transmission  when it receives an acknowledgement 
(MAC-ACK) from the destination.   

Throughput derivations of 802.11 MAC have typically 
assumed Poisson packet arrival per backoff slot [1]. Instead, 
suppose there are (N+1) nodes with a continuous supply of 
packets that causes them to contend for the channel far more 
consistently. A transmission is successful only if no other 
node transmits in the same backoff slot.  This likelihood of all 
nodes selecting independent slots is 

 





 −







 −






 −

CW
NCW

CW
CW

CW
CW …21*1  









−−

−= NCWNCW
CW

)(*)!1(
)!1(

 

Hence the likelihood of at least two nodes selecting the 
same slot is 









−−

−− NCWNCW
CW

)(*)!1(
)!1(1                (1) 

This is the likelihood of a failed transmission for nodes 
having a consistent supply of packets to send.  

B. TCP overview 
TCP is a reliable sliding window protocol.  It allows several 

packets to be transmitted before an acknowledgement (TCP 
ACK) is received.  Unacknowledged data packets are 
maintained in a congestion window (cwnd).  In steady state, 
cwnd is expected to be equal to the delay-bandwidth product 
of the network. TCP ACKs are cumulative. Hence it is not 

necessary to have separate ACKs for each packet.  TCP 
operates in either of slow-start or congestion-avoidance 
modes. In slow-start, cwnd grows exponentially, increasing by 
one packet for every ACK received, while in congestion 
avoidance, cwnd increases linearly (one packet per round-trip-
time) in proportion to the number of data segments 
acknowledged.  

In case of a packet loss TCP reduces cwnd assuming 
network congestion. With TCP Reno, three or more duplicate 
ACKs trigger a fast-retransmit and cwnd drops to ½ its 
previous value. Then, cwnd grows conservatively in 
congestion avoidance mode. The situation is much worse in 
case of a timeout, when cwnd drops to 1. Then, TCP backs off 
exponentially before trying to send the next first packet. The 
backoff duration can be as high as 64 seconds. Venkatraman 
et. al[14] explain the derogatory effect of timeouts on TCP 
throughput.  

C. TCP dynamics over 802.11 DCF MAC 
Now we explain why TCP traffic causes nodes to have a 

consistent supply of packets to send. TCP generates data in 
bursts due to the sudden increase in cwnd  resulting from 
cumulative ACKs. With an ethernet link, these packets are 
transmitted immediately. On the contrary, 802.11 DCF-MAC 
transmits packets sequentially after channel contention for 
each packet.  The MAC may make several attempts before the 
TCP packet is successfully sent or eventually giving up. 
Hence the new burst of TCP packets could remain in the MAC 
queue, for a long time before being transmitted, causing a 
sustained occupation in the send queue.  

The condition can be explained similarly at the Access 
Point (AP). For the traffic flow depicted in Figure 1, AP 
contends for the channel only to relay TCP ACKs to 
respective wireless TCP data sources. We assume the default 
TCP sink implementation where 1 TCP-ACK is generated for 
every data packet. Hence for a single TCP flow in the 
network, the AP contends almost as often as the TCP source 
node and the AP MAC queue occupancy is similar to that at 
the TCP source node. Following the same argument for N 
TCP flows, the AP will have N times more queue occupancy 
than any of the other wireless nodes, resulting in a consistent 
supply of packets to MAC layer in the AP.  

When there is a single TCP flow, the likelihood of same slot 
selection is simply (1/CW)*(1/CW)*CW. If the previous 
transmission was not a failure, CW=CWmin=32 and the 
likelihood is 3%.  Otherwise, CW doubles (binary random 
backoff) and that likelihood halves to 1.5%.  For N=3 (3 TCP 
flows), and CW=32, likelihood of same slot selection, and 
hence MAC failures is 17.6% from Equation (1). 

With these observations, we differ from Kamerman and 
Aben[1] in their conclusion that with TCP traffic, the 
likelihood of two nodes selecting the same slot is miniscule. 
This assertion is corroborated by results from simulations.  

D. Alleviating the problem with TCP ACK skipping 
Observations made in earlier subsections motivate traffic 

reduction in the 802.11 wireless LAN. It is straight-forward to 



 3

do so by skipping TCP ACKs at the TCP sink. Just skipping 
alternate ACKs reduces traffic load at the AP by a factor of 
two and the AP contends half as much for channel access.  
This reduces interference with data packets, hence improving 
TCP throughput.  With MAC retries enabled, ACK skipping 
regulates cwnd growth in slow start and hence reduces loss of 
packets from MAC queue overflows. However, TCP 
throughput is directly related to the growth of TCP congestion 
window, which in turn depends on regular arrival of TCP 
ACKs. Thus skipping too many ACKs impedes cwnd growth 
and curtails TCP throughput. Experiments and results 
explained in Section IV corroborate this insight. 

III. EXPERIMENTAL SETUP 
All experiments are simulations in NS version 2.1b9a with 

minor modifications in TCP code. Figure 1 depicts the 
network under consideration. Each node caters to a single TCP 
flow. DSDV is used as wireless routing protocol although 
there is no need for one in the infrastructure mode. 
Experiments were conducted with various link delays ranging 
from 2ms to 15ms. 

Channel data rate of 11Mbps and channel basic rate of 
1Mbps are selected along with the two ray ground channel 
model. All wireless nodes are within hearing range of each 
other.  

MAC queue length in wireless nodes (including AP) are 

retained at the default NS value of 50. The effect of this is 
explained in Section IV.A. 802.11 MAC standard suggests 
RTS/CTS disabled (dot11RTSThreshold = 3000; while 
Maximum MAC MTU = 2304). Our experiments with 
RTS/CTS in this network, showed reduced TCP throughput 
from additional overhead per packet. Hence RTS/CTS is 
disabled in all simulations.  For experiments with MAC 
retries,  the default values suggested in the 802.11 std.[15] are 
used (dot11ShortRetryLimit=7; dot11LongRetryLimit=4). 

TCP receiver advertised window is chosen large to ensure 
that instantaneous TCP throughput is only paced by the TCP 
congestion window. To allow the congestion window to 
stabilize, ACK skipping is set to start only after TCP sequence 
number crosses a threshold (chosen as 50 here by trial and 
error).  Long-lived (short-lived) TCP connections are set up 
with 10MB (1MB) file transfers using the File Transfer 
Protocol (FTP). Each TCP throughput value published here is 
an average of 5 runs, obtained by varying FTP start times.  
TCP Reno is used in all experiments with the duplicate ACK 
parameter set to 3. 

  Maximum duration of simulations was 1000 seconds. Some 
experiments, particularly with multiple skipped ACKs did not 
complete file transfers in this duration. In these cases, TCP 
goodput (net data transferred successfully in 1000s) was 
substituted for throughput.   

IV. RESULTS AND ANALYSIS 
Figures 2-6 (and more in the Appendix) present results from 

various simulations. Skipping TCP ACKs is found to indeed 
improve TCP throughput for most scenarios, corroborating our 
hypothesis. All scenarios gain from skipping at least 1 ACK. 
Figure 2 compares TCP throughput of long-lived TCP 
connections in the absence of MAC retries for different link 
delays with increasing ACK skips. This and other figures 
provided in the appendix show that there isn’t a significant 
change in results with different link delays.  Hence it suffices 
to explain results obtained with any one of them. All 
subsequent graphs depict results with 2ms link delay.  

Figures 3-6 present the main results. The significant gains 
achieved with a single TCP flow, are explained in Section 
IV.A., followed by the explanation for multiple flows. Long-
lived TCP connections test the stability of the protocol 
adaptation and confirm its validity, while short-lived TCP 
connections supply a transient view of operation. Both lengths 
of connections are important for different applications and 
results with respect to them are explained in Section IV.C.  
Situations with and without MAC retries are compared in each 
of the subsections. 

A. Case with a Single TCP flow 
With no traffic in the network other than the single TCP 

flow, the AP contends for the channel to relay TCP ACK 
packets, while the wireless TCP source node contends to send 
TCP data packets. With no MAC retries, the results show 
meager throughputs of around 1Mbps with both short-lived 
and long lived TCP connections. This is because of the 3% 
likelihood of simultaneous-send that causes MAC failures, 
explained in Section II.C. Figures 3 & 4 show significant 
throughput improvement with 1 ACK skip. It improves by up 
to 30% for short-lived (1MB FTP) and up to 98% for long-
lived (10MB) TCP connections. This is because the reduced 
MAC traffic simply cuts MAC failures by half! For higher 
ACK skips, many sessions failed to complete. This can be 
explained from a combination of two effects – TCP congestion 

 

Many source 
TCP ACKs 

N2 

N1 

N3 W3 

W2 

W1 

TCP data 

TCP data

TCP data 

TCP ACK

TCP ACK 

TCP ACK

AP 

 
Figure 1: Network setup 

0

0.5

1

1.5

2

2.5

3

0 1 2 3
Skipped ACKs

TC
P 

Th
ro

ug
hp

ut
 (M

bp
s)

Link_delay: 15m s
Link_delay: 10m s
Link_delay: 5m s
Link_delay: 2m s

 
Figure 2: Variation of TCP throughput with number of skipped ACKs ; 
     link delay is a parameter;  
     Single TCP flow; Long-lived TCP connection; NO MAC retries 
  



 4

window starving from lack of regular TCP ACKs as well as 
the loss of cumulative ACKs due to MAC failures. Multiple 
timeouts severely reduce TCP throughput because of TCP’s 
exponential backoff. 

In the case with MAC retries, NS trace files confirmed that 
TCP throughput degradation resulted from overflow of MAC 
interface queues,  Here the simultaneous-send problem is 
handled by the MAC itself by multiple retransmissions.  

Results depicted in figures 5 & 6 show consistent 
throughput gain with ACK skipping. Curiously, the reason 
behind this is TCP dynamics itself. The default operation in 
NS, does not restrict congestion window growth to a 
maximum slow start threshold (max_ssthresh). Thus cwnd 
remains in slow start until there is a packet loss, after which 
exponential backoff and congestion avoidance set in. With no 
ACK skipping, large bursts of data packets arriving at the 
MAC cause queue overflows. When ACKs are skipped, cwnd 
experiences slower growth because of the reduced number of 
incoming ACK segments. Hence TCP sends smaller bursts of 
packets, reducing or even eliminating  MAC queue overflows. 
This is why we see upto 30% gain in TCP throughput with 
ACK skipping.  

B. Situation with multiple TCP flows 
Contention among multiple wireless nodes causes collisions 

in addition to simultaneous-send.  Simulations showed that the 
most common cause of packet loss is a combination of both 
problems. Referring Figure 1, Node N1 transmits a TCP data 
packet to the AP at the same time when the AP transmits a 
packet to node N2. N2 sees a garbled signal due to 
simultaneous signals from N1 and the AP (collision), while 
the AP fails to detect N1’s transmission (simultaneous-send). 
Thus the AP is found to contend for channel access far more 
often than other nodes. This corroborates our hypothesis that 
the AP will have many more packets to transmit than any one 
of the other wireless nodes. With MAC retries, ACK skipping 
results in throughput gains for the same reasons explained in 
the case of a single TCP flow.  

C. Short-lived and Long-lived TCP connections 
Comparing Figures 3 with Figure 4 and Figure 5 with 

Figure 6, it is clear that the pattern of throughput improvement 
is very similar for short-lived and long-lived TCP connections. 
They differ only in the extent of their gains. It may be inferred 
that longer the TCP connection, more will be the gain from 
ACK skipping. TCP congestion window achieves steady-state 
in the long run, when its size is close to the delay-bandwidth 
product of the network between source and destination. For 
the network setup here, it would be the product of the average 
RTT and the net bandwidth available.  However, NS trace 
files show that with packets lost due to MAC contention and 
queue overflows,  the congestion window seldom reaches this 
steady state.   

V. CONCLUSION AND DIRECTIONS FOR FUTURE WORK 
We end this paper with the conclusion that MAC 

transmission failures caused by competing TCP data and ACK 
packets, is a significant cause of TCP throughput degradation 
in 802.11 DCF infrastructure networks. We have explored the 
viability of ACK skipping for various scenarios with 
simulations and explanation of results. While skipping 
alternate TCP ACKs (1-ACK skip) does reduce MAC 
contention and improves TCP throughput, skipping too many 
has a detrimental effect due to less frequent cumulative ACKs 
that slow down growth of the TCP congestion window.  

The ACK skipping mechanism presented here may be 
regarded as a rudimentary form of cross-layer adaptation, 
where the TCP sink statically adapts to transmission over 
802.11, by skipping requisite ACKs. A better adaptation 
would be to dynamically select the number of ACKs to skip 
depending on MAC layer feedback on congestion in the 
wireless link. Additionally if the TCP layer is informed by its 
underlying MAC layer of a failed transmission, it may adapt 
proactively and prevent a retransmission timeout. If the packet 
loss was caused due to physical channel error, TCP may freeze 
the congestion window from reducing its size, thus conserving 
overall throughput.  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th
ro

ug
hp

ut
 (M

bp
s)

1 flow 2 flows 3 flows
 

Figure 6: Long-lived TCP flow with MAC retries 

0

0.5

1

1.5

2

2.5

Th
ro

ug
hp

ut
 (M

bp
s)

1 f low 2 f low s 3 f low s

0  A C K skip
1 A C K skip
2  A C K skip
3  A C K skip s

 
Figure 4: Long-lived TCP flow with NO MAC retries 

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Th
ro

ug
hp

ut
 (M

bp
s)

1 flow 2 flows 3 flows

0 ACK skip
1 ACK skip
2 ACK skips
3 ACK skips

 
Figure 3: Short-lived TCP flow with NO MAC retries

0

0.5

1

1.5

2

2.5

3

Th
ro

ug
hp

ut
 (M

bp
s)

1 flow 2 flows 3 flows

0 ACK skip
1 ACK skip
2 ACK skips
3 ACK skips

 
Figure 5: Short-lived TCP flow with MAC retries 



 5

Finally, the MAC contention and transmission failures may 
be alleviated significantly by migrating to the Point 
Coordination Function (PCF) mode of 802.11. Here the AP 
polls nodes for data to send and allocates contention-free slots 
for transmission.  The PCF mechanism can also be used to 
prevent contention between TCP data packets and returning 
ACKs.  

ACKNOWLEDGEMENTS 
We would like to thank Ivan Seskar and Hongbo Liu of 

WINLAB, Rutgers University, for their valuable insights in 
the analysis of results.  

REFERENCES 
[1] Kamerman, A.; Aben, G., “Net throughput with IEEE 802.11 wireless 

LANs”, IEEE WCNC. Sept 2000. Volume 2 
[2] R de Oliveira and T. Braun, “TCP in wireless mobile ad hoc networks”, 

Tech. Report IAM-02-003, univ. of Bern, Switzerland, July, 2002. 
[3] K. Chen, Y. Xue, and K. Nahrstedt “On Setting TCP’s Congestion 

Window Limit in Mobile Ad Hoc Networks”. ICC’03. 
[4] Pilosof, S.   Ramjee, R.,   Raz, D.   Shavitt, Y. ,  Sinha, P.,   

“Understanding TCP fairness over wireless LAN”, IEEE INFOCOM 
2003. 30 March-3 April 2003  

[5] Rui Jiang; Gupta, V.; Ravishankar, C.V., “Interactions between TCP and 
the IEEE 802.11 MAC protocol”,  Proceedings of  DARPA Information 
Survivability Conference and Exposition, April 2003. Volume: 1 

[6] Kanth, K.   Ansari, S.   Melikri, M.H. ,   “ Performance enhancement of 
TCP on multihop ad hoc wireless networks”,  IEEE International 
Conference on Personal Wireless Communications, Dec 2002  

[7] Xu, S.; Saadawi, T., “Revealing and solving the TCP instability problem 
in 802.11 based multi-hop mobile ad hoc networks”,  54th Vehicular 
Technology Conference, 2001. Volume: 1 

[8] Qixiang Pang; Liew, S.C.; Cheng Peng Fu; Wei Wang; Li, V.O.K.; 
“Performance study of TCP Veno over WLAN and RED router”, IEEE 
GLOBECOM '03. , Volume: 6 Pages:3237 – 3241. 

[9] Garcia, M.   Choque, J.   Sanchez, L.   Munoz, L.   “An experimental 
study of Snoop TCP performance over the IEEE 802.11b WLAN”, The 
5th International Symposium on Wireless Personal Multimedia 
Communications, Oct 2002. 

[10] Kherani, A.A.; Shorey, R.; “Performance improvement of TCP with 
delayed ACKs in IEEE 802.11 wireless LANs”, Wireless 
Communications and Networking Conference,  March 2004, Volume 3 

[11] Eitan Altman, Tania Jiménez “Novel Delayed ACK Techniques for 
Improving TCP Performance in Multihop Wireless Networks” Personal 
Wireless Communications 03, Venice Italy. 

[12] Shugong Xu; Tarek Saadawi; Myung Lee; “On TCP over wireless multi-
hop networks”, IEEE Military Communications Conference, Oct 2001. 

[13] Wu, H.;  Peng, Y.; Long, K.;  Cheng, S.; Ma, J; “Performance of reliable 
transport protocol over IEEE 802.11 wireless LAN: analysis and 
enhancement”, INFOCOM 2002. 

[14] Sinha P., Venkitaraman N., Sivakumar R. and Bharghavan V., “WTCP: 
A Reliable Transport Protocol for Wireless Wide-Area Networks”, 
Wireless Networks, March 2002, Volume 8 Issue 2/3. 

[15] IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) Part 11: Wireless 
LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications 

 

APPENDIX 

0

0.5

1

1.5

2

2.5

0 1 2 3
Skippe d ACKs

TC
P 

th
ro

ug
hp

ut
 (M

bp
s)

Link_delay : 5m s
Link_delay : 2m s
Link_delay : 10m s

 
Figure A3:  3 TCP flows; Long-lived TCP connection(10MB)  

with MAC retries 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 1 2 3
Skipped ACKs

TC
P

 T
hr

ou
gh

pu
t

Link_delay: 15ms
Link_delay: 10ms
Link_delay: 5ms
Link_delay: 2ms

 
Figure A1: 1 TCP flow; Long-lived TCP connection 

(10MB) with MAC retries 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3
Skipped ACKs

TC
P

 T
hr

ou
gh

pu
t (

M
bp

s)

Link_delay: 15ms
Link_delay: 10ms
Link_delay: 2ms

 
Figure A2: 3 TCP flows; Long-lived TCP connection 

(10MB); no MAC retries 

0

0.5

1

1.5

2

2.5

0 1 2 3
Skipped ACKs

Th
ro

ug
hp

ut
 (M

bp
s)

Link_delay: 15ms

Link_delay: 10ms

Link_delay: 5ms

Link_delay: 2ms

 
Figure A4:  1 TCP flow; Short-lived TCP connection (1MB)  

 No MAC retries 

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

0 1 2 3
S k ippe d ACKs

Th
ro

ug
hp

ut
 (M

bp
s)

Link_delay : 15m s
10m s
5m s
2m s

 
Figure A5:  3 TCP flows; Short-lived TCP connection (1MB)  

No MAC retries 


