
TCP Dynamics in 802.11 Wireless Local Area
Networks

Sumathi Gopal*
WINLAB, Rutgers University

671, Rt. 1 South,
North Brunswick, NJ 08902
sumathi@winlab.rutgers.edu

Sanjoy Paul
WINLAB, Rutgers University

671, Rt. 1 South,
North Brunswick, NJ 08902
sanjoy@winlab.rutgers.edu

Abstract— In 802.11 wireless links with disabled MAC retries,
data and ACK packets within a TCP session collide resulting in
packet losses. We show in this paper that in this situation, certain
popular optimizations of TCP (fast-recovery) worsen the
performance by causing deadlocks that terminate with timeouts.
We compare the performance of optimized TCP versions (Reno
and NewReno) with an earlier version of TCP (Tahoe) and
demonstrate the degradation during fast-recovery. TCP-Tahoe
gains 80% in throughput over TCP-Reno and more moderately
over TCP-NewReno. A key contribution of this paper is the
visualization of TCP dynamics to capture MAC layer collisions
between DATA and ACK packets of a TCP session, and the
differences in the behavior of protocols in that situation. This
case of poor TCP performance due to self-inflicted losses, makes
a sound case for decoupling error and flow control algorithms for
transport over 802.11 wireless networks.

Keywords-TCP, 802.11 wireless LANs, TCP-802.11 interaction,
interference

I. INTRODUCTION
It is now known that TCP does not perform well over

802.11 wireless networks [1][11]. In this paper we follow TCP
dynamics to explore the reasons for poor performance in noise-
free 802.11 wireless LAN environments. We show that the
commonly used TCP-Reno version does not perform well
because of several timeouts in the course of a flow. In fact the
earlier less-optimized version - TCP-Tahoe outperforms TCP-
Reno. NewReno which enhances Reno's congestion control
also demonstrates poor performance and Tahoe performs better
for some parameter settings.

Poor TCP performance in noise-free single-hop 802.11
links was identified in earlier papers [1][2]. In 802.11 wireless
networks, access to the wireless medium is shared between all
nodes transmitting within hearing range of each other. For a
TCP flow, this causes bandwidth sharing and collisions of TCP
data and ACKs, even if they are of the same flow. In the rest of
this paper, we shall refer to this phenomenon as self-
interference. The earlier papers primarily investigated bulk
TCP thoughput and proposed skipping TCP ACKs [1] or limit
congestion window size [11]. But the exact reasons for poor
protocol performance were not understood.

Our detailed analysis of TCP dynamics result in the
following insights:

 Poor Reno performance: Losses due to self-interference
often occur in quick succession (before the first loss is
perceived by TCP sender). This results in multiple losses in a
TCP congestion window. Reno's congestion-control is known
to deadlock in such situations [8]. In Figure 1, the six "flat
goodput" intervals result from deadlocks that end in timeouts.
 Poor NewReno performance: NewReno deadlocks when

retransmissions are lost. Self-interference increases this
likelihood, even during fast-recovery.
 Tahoe outperforms Reno, and in some cases, NewReno:

TCP Tahoe gains in throughput over Reno and NewReno
because of fewer deadlocks (that end in timeouts) in the self-
interference scenarios.

We explain these insights with figures depicting TCP-MAC
interaction, dynamics of various TCP flavors during congestion
control and the effect of some TCP parameters on overall
performance.

To maximize bandwidth utilization despite losses from self-
interference, we suggest use of a transport protocol that
separates error and flow control algorithms [10]. An example is
the new Cross Layer Aware transport Protocol (CLAP) that
achieves considerable gains over TCP in various wireless
scenarios (Section VI and [3]).

The rest of the paper is organized as follows. Simulation
setup is described in Section II. In Section III, we present TCP-
dynamics during self-interference and evaluate the throughput
cost incurred due to TCP-ACKs. In Section IV, we compare

0

1

2

3

4

5

6

0

0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

Time sequence (seconds)

R
ec

ei
ve

d
M

bp
s

TCP Reno
Available Bandwidth

Figure 1: Instantaneous goodput of TCP-Reno during a
1MB file transfer in an error-free 802.11 wireless LAN

__
*Supported by a student fellowship grant by Corporate
Research, Thomson Inc., Princeton NJ.

TCP-dynamics during congestion control in various TCP
flavors and explain reasons for poor Reno/NewReno
performance. In Section V we evaluate the effect of the
minimum retransmission timeout parameter (minrto_) on TCP
performance. In Section VI, we present the need for a novel
approach to transport over 802.11, followed by Conclusion in
Section VII.

II. SIMULATION SETUP
Results presented in this paper were obtained with NS2

simulations (version 2.1b9a). A wireless LAN topology was
used, comprising of an Access Point, a wireless node as TCP
sender, and a wired node as TCP receiver. A single duplex-link
with 10Mbps bandwidth and 2ms delay connected the wired
receiver node and the Access Point (AP).

The wireless LAN was operated in 802.11b DCF mode at
11Mbps channel rate (the net data rate at the transport layer is
about 5Mbps due to various overheads given in Table 1). The
basic rate was set at 1Mbps (Long Phy Preamble). Strictly
standard 802.11 MAC was used, disabling MAC retries and
RTS/CTS. While these enhancements are default in NS2, they
are suggestions in the 802.11 standard [9]. When MAC retries
are enabled, a lone TCP session in a noise-free link seldom
experiences lost packets. However there is still bandwidth
sharing with ACKs and possible delay-variance.

Default TCP parameter settings of NS-2.1b9a were used in
all the simulations, except for changes in the minimum
retransmission timeout (minrto_) setting. The instantaneous
link bandwidth was obtained by using a saturating UDP flow
between the same pair of nodes in the same wireless scenario.
The channel was error free, and there was no other interfering
traffic. Figures depicting dynamics of Reno and NewReno over
wireless LAN (Figures 3, 4, 5, 7) were drawn from simulation
traces. Figure 6 depicting TCP-Tahoe dynamics was drawn
anticipating possible Tahoe behavior in that situation.

III. THE COST OF TCP ACKNOWLEDGEMENTS

A. TCP-ACKs are expensive
In the shared medium of 802.11 wireless links, signals from

multiple transmitters could result in a collision at a receiver. To
minimize collisions, the MAC layer implements the CSMA/CA
protocol and nodes contend for channel access to send each
packet [9]. A packet is sent only when the channel is found to
be idle and after a random backoff.

A TCP-ACK comprises of 40 bytes of TCP header.
However various time overheads in MAC and Physical layers
causes it to consume a significant portion of channel time.
Table 1 specifies the various overheads for 11 Mbps channel
rate (802.11b). Following is the average time consumed
transmitting a TCP data/ACK (assuming previous transmission
was successful):

TPACKET = TDIFS + TPHY_PREAMBLE, HDRS + TMAC_BACKOFF, HDRS

 + TSIFS, MAC-ACK + TIP_HDR + TTCP_HDR
 + TDATA (1)

 = TACK + TDATA
where TACK is the total time taken to transmit a TCP-ACK,

given the same header size in TCP data and ACK packets.
DIFS and SIFS are the Distributed and Slot Inter-Frame-Spaces
respectively introduced by the MAC layer.

Each TCP packet (data/ACK) incurs an average overhead
of 806.37µs and constitute 99.7% of the channel time
consumed by a TCP-ACK packet.

The bandwidth consumed by n ACKs in a unit interval i, at
the expense of data packets may be calculated as follows:

 Number of data packets that could have been sent:
 k = n * TACK / (TDATA + TACK) (2)
Lost bandwidth = (k*1000*8) / i bits/sec (3)
The frequency of TCP-ACKs in each unit interval in the

course of the 1MB file transfer is depicted in Figure 2. At peak
operation, the number of returning ACKs is also at its peak - an
average of 40 ACKs in a 0.1 second interval. At this time, the
lost bandwidth from equations (2) and (3) is 1.47 Mbps. In
Figure 2 this number matches the difference between TCP's

Overhead Duration (µs)

DIFS 50
Average duration of random backoff for min. MAC

contention window 310

Physical layer: short Preamble(144bits/2Mbps) +
PLCP header (48bits/2Mbps) 96

MAC header + FCS duration (8*34bytes/11Mbps) 24.73

LLC + IP headers (8*(8+8)bytes/11Mbps) 11.64
Time taken by Additional SIFS + MAC-ACK, after

successful delivery of the Layer-4 packet
10 + 304 =

314

40-byte TCP Header duration (40*8 bits/11Mbps)
= 40 byte TCP-ACK duration 29.1

Total Overhead time for each Layer-4 packet (TACK) 835.47
Duration of 1000-byte TCP data segment (TDATA)

(1000*8 bits/11 Mbps) 727.28
Table 1: 802.11 overheads incurred by a TCP packet

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Time Sequence (secs)

R
ec

ei
ve

d
M

bp
s

0
5

10
15

20
25

30
35

40
45

50

N
um

be
r o

f A
ck

s

Available Bandwidth
TCP Reno
Number of TCP ACKs

Figure 2: Number of TCP-ACKs received compared to the

instantaneous data bytes

peak instantaneous throughput and the available bandwidth,
corroborating the ill-effects of self-interference on TCP
throughput. A more expensive effect however is packet loss
that triggers congestion control in TCP.

B. Packet loss due to self-interference
In Figure 2, when the throughput is at its peak, the number

of returning ACKs is also at its peak. Figure 3 captures the
dynamics of TCP and 802.11 MAC during this time. It
demonstrates the situations when self-interference results in
three MAC collisions in quick succession of each other
(instants A, B and C), before TCP-sender detects the first loss.
Hence all the losses occur within a single congestion window
(15 segments at this time).

A vertical cross section between a TCP and MAC process
(in Figure 3) shows how many packets are waiting in the MAC
queue (an indirect conclusion on the AP side). Clearly with a
consistent supply of TCP packets, the MAC operates in
saturation. From earlier papers, the collision likelihood in this
MAC situation is 3% [1].

TCP sender detects a loss (the first one) only when three
duplicate ACKs arrive. It then scales down the congestion
window (and hence the sending rate) despite a high bandwidth
availability in the wireless link at that instant. We show in the
next section that the situation of multiple losses in a congestion
window, often leads to timeouts in Reno and NewReno, that
are a lot more expensive.

IV. TAHOE OUTPERFORMS RENO IN 802.11 WIRELESS
LINKS

Tahoe, Reno and NewReno operate identically in the
normal operation mode (no losses), but differ in their
congestion control algorithms. Figures 4, 5 and 6 depict
congestion control algorithms of Reno, NewReno and Tahoe
respectively, triggered in response to multiple losses of Figure
3. All three versions implement fast-retransmit where the
segment is retransmitted upon three duplicate ACKs. (They
also implement limited-transmit (RFC 3042) [7], where the
first and second duplicate ACKs trigger transmission of up to
two data segments over the congestion window.). They differ
in how they adjust the congestion window after fast-retransmit.

Tahoe scales it down to 1 segment, forgetting all about
higher sequence number segments that were already sent (at
instant A in Figure 6). No more packets are sent until an ACK

arrives confirming the retransmitted packet. Normal operation
subsequently resumes in slow-start mode.

Reno and NewReno cut down congestion window in half
after fast-retransmit (at instant A in Figures 4 and 5) and "fill
the pipe" with new data packets until a new ACK arrives. This
is the fast-recovery mode of operation where the congestion
window is incremented by one segment for each duplicate
ACK. New packets are sent when congestion window exceeds
the number of already outstanding packets.

Reno exits fast-recovery and resumes normal operation
when the first non-duplicate ACK arrives recovering from the
first loss. In case of multiple losses (before instant A), Reno's
fast-recovery ends when there are more outstanding packets
than the congestion window (at instant B in Figure 4). The
congestion window is cut down further when recovering from
the subsequent losses. In Figure 4, Reno enters congestion
control to recover the 2nd loss at instant C, and exits at instant
D. Since the congestion window is small, no new packets are
sent between instants B and D. Subsequently there are no more
ACKs and the deadlock situation results at instant D. It ends in
a timeout.

To overcome the deadlock, NewReno [5] continues in fast-
recovery until all losses (that occurred before instant A in
Figure 5) are recovered. The segment is retransmitted when the
first ACK indicating it arrives (at instant B in Figure 5). The
congestion window is halved after each retransmission.
NewReno recovers all losses if and only if all retransmissions
are successful. A timeout occurs otherwise. In Figure 5 depicts
a deadlock situation that occurs in NewReno when a packet
retransmitted during fast-recovery is lost. (packet #102 at
instant C in Figure 5). Subsequent duplicate ACKs grow the
congestion window, but this not sufficient to send new data
packets. With no more data packets, no ACKs are triggered and
a deadlock situation occurs (at instant D in Figure 5).

The comparison of instantaneous goodputs of Tahoe, Reno
and NewReno in the course of the 1MB file transfer in the said
wireless scenario is depicted in Figure 8. Despite being the
least optimized version of TCP, Tahoe completes the file
transfer in a significantly shorter time compared to Reno and
NewReno. TCP dynamics reveal the following insights:
 Reno suffers multiple timeouts: With the frequent occurrence

of multiple losses in a TCP congestion window, Reno
deadlocks several times that end in timeouts. The 1-second
duration of each interval is due to the minimum retransmission
timeout setting (minrto_).

Figure 3: Self-interference during peak TCP operation when TCP congestion window = 15 segments

Figure 4: Congestion Control in TCP-Reno following multiple losses of Figure 3

Figure 5:Congestion control in NewReno following multiple losses of Figure 3

Figure 6:Tahoe's congestion control after multiple losses of Figure 3

 NewReno also suffers multiple timeouts: During fast-
recovery, NewReno sustains a "full transmission pipe" by
sending new packets. Thus the probability of self-interference
is still large during fast-recovery. In the example of Figure 8,
deadlock situations occur three times in the course of the 1MB
file transfer, and end in timeouts (after minrto_ of 1 sec). They
all occur due to loss of the first retransmission, or of one of the
packets sent during fast recovery.
 A low throughput is sustained in Reno/NewReno in some

timeout intervals: Figure 7 captures the dynamics of TCP
NewReno/Reno the scenario when the retransmission at the
start of congestion control is lost (at instant B in Figure 7).
Despite this, duplicate ACKs #333 sustain the growth of the
congestion window, and consistently trigger new data
segments. In the example of Figure 7, congestion window and
the number of outstanding packets reach 154 segments at the
end of fast-recovery. With a single packet in transit at a time,
the likelihood of self-interference diminishes to zero. But with
stop-and-wait approach during this interval, the goodput drops
to a minimum. In Figure 8, Reno starting at 4.4 seconds, and
NewReno at 1.9 and 3.3 seconds experience this situation.
 Tahoe outperforms Reno. Outperforms NewReno

considerably for minrto_ = 1 second. Tahoe operation
following multiple losses in a congestion window is depicted in
Figure 6. By not implementing fast-recovery and resuming
operation in slow-start soon after fast-retransmit (at instant A in
Figure 6), Tahoe reduces the loss likelihood due to self-
interference, improving the resilience to loss recovery. Several
duplicate transmissions of data segments could ensue. But
Tahoe does not deadlock and timeout as long as the
retransmission is successful. Hence the likelihood of a
deadlock in Tahoe is far lower than in Reno and NewReno.
Tahoe's gain in goodput during the additional timeout periods
of Reno and NewReno offsets the bandwidth wasted by
redundant retransmissions and the lack of "pipe-filling" during
loss recovery.

V. EFFECT OF MINRTO_ ON TCP PERFORMANCE
In the wireless LAN scenario considered here, the round-

trip time fluctuated 7 - 30 milliseconds. RFC 2988 [6]
stipulates a minimum timeout duration (minrto_ in NS2) of 1
second. This was to avoid spurious timeouts and
retransmissions in TCP in wired nets with large fluctuating
round trip times. In our scenario, Reno and NewReno waste
several 1-second intervals in a deadlock before the timeout
occurs and resumes the sending rate.

 More recent TCP implementations set minrto_ to 0.2
seconds. Figure 9 compares the net throughputs of Reno,
NewReno and Tahoe for various minrto_ settings. minrto_= 0
implies that the retransmission timeout duration is completely
based on the estimated round-trip time. With these settings,
Reno and NewReno still experience the same number of
timeouts but gain in throughput because of the shorter time
spent in deadlock, and Tahoe's gain over Reno and NewReno
diminishes.

Figure 7:Reno/NewReno congestion control when the first retransmission is lost following self-interference

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Time Sequence (seconds)

R
ec

ei
ve

d
M

bp
s

TCP Reno
TCP-New reno
TCP-tahoe
Available Bandw idth

Figure 8:Instantaneous goodputs of Tahoe, Reno and

NewReno during 1MB file transfers

VI. CASE FOR CROSS-LAYER AWARENESS
The self-interference problem is alleviated by separating

flow and error control and reducing feedback packets, as
demonstrated by the new CLAP protocol It also uses a rate
rate-based flow control algorithm that incorporates cross-layer
status information.

Earlier papers have found that skipping a single ACK
achieves considerable gain in the net throughput due to
reduction in self-interference [2]. Figure 10 compares the
performance of Tahoe, Tahoe with 1-ACK-skip and CLAP
(1MB file transfer). Since there are no out of order packets,
minrto_ is prudently set to 0. Hence only a small fraction of a
second is spent before a timeout. The gain with 1-ACK-skip, is
12%, while CLAP gains 95%. For more details of CLAP
performance in time-varying 802.11 scenarios, refer to [3].

VII. RELATED WORK
All TCP enhancements proposed for wireless networks, are

extensions of either TCP-Reno or TCP-NewReno. To the best
of our knowledge ours is the first attempt to investigate the
dynamics of operation of different TCP versions in an 802.11
scenario.

The enhancement protocols may be clearly categorized into
those for cellular networks and those for multi-hop 802.11
networks. Cellular networks however do not operate in a
shared medium, and hence do not suffer the MAC problem.
Some papers addressing TCP in multi-hop wireless have
proposed limiting the congestion window in decreasing
proportion to the number of hops, to reduce interference [11].
But this drastically limits TCP throughput in the multi-hop
scenario.

VIII. CONCLUSION
Although fast-recovery is an efficient congestion-control

algorithm widely used in wired nets, it often causes deadlock
situations in wireless links that end in a timeout. This paper has
examined TCP dynamics during congestion control of Tahoe,
Reno and NewReno versions that encounter in different
timeout situations. We have showed that less-optimized TCP-
Tahoe that forgets all outstanding packets after fast-retransmit

gains significantly over Reno and NewReno that use fast-
recovery.

Self-interference in TCP cannot easily be mitigated because
of its tightly intertwined error and flow control mechanisms.
The window-based flow control is heavily dependent on the
pace and quality of returning ACKs. TCP also suffers various
other challenges over wireless networks that primarily stem
from its layer-independent design. On the other-hand, lower-
layers, particularly in wireless nodes are equipped to provide
status information that can be used to supplement decision-
making processes in the transport protocol. An alternative is to
use the new CLAP protocol [3] for data transport in wireless
scenarios.

REFERENCES
[1] S. Gopal, S. Paul, D. Raychaudhuri," Investigation of the TCP

Simultaneous Send problem in 802.11 Wireless Local Area Networks",
IEEE ICC 2005, May 16-20, Seoul, South Korea.

[2] S. Gopal, D. Raychaudhuri, "Experimental Evaluation of the TCP
Simultaneous Sent problem in 802.11 Wireless Local Area Networks",
ACM SIGCOMM Workshop on Experimental Approaches to Wireless
Network Design and Analysis (EWIND-05), August 22nd 2005,
Philadelphia.

[3] S. Gopal, S. Paul, D. Raychaudhuri "Leveraging MAC-layer information
for single-hop wireless transport in the Cache and Forward Architecture
of the Future Internet", WILLOPAN Workshop,)held in conjunction
with COMSWARE 2007, Bangalore, INDIA, January 2007

[4] RFC 2581 : "TCP Congestion Control with Fast-Retransmit and Fast-
Recovery" http://www.ietf.org/rfc/rfc2581.txt

[5] RFC 2582: "NewReno modification to TCP's Fast Recovery"
http://www.ietf.org/rfc/rfc2582.txt , April 1999

[6] RFC 2988: "Computing TCP's Retransmission Timer",
http://www.ietf.org/rfc/rfc2988.txt

[7] RFC 3042: "Enhancing TCP's Fast-Recovery Using Limited
Transmit", http://www.ietf.org/rfc/rfc3042.txt

[8] J. C. Hoe, "Improving the start-up behavior of a congestion control
scheme for TCP", In Proceedings of the ACM SIGCOMM '96, pages
270 - 280, Stanford, CA, August 1996

[9] IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications

[10] D.D.Clark, M.L. Lambert, L. Zhang, "NETBLT: a High Throughput
Transport Protocol", ACM SIGCOMM 1987

[11] Fu, Z.; Zerfos, P.; Luo, H.; Lu, S.; Zhang, L.; Gerla, M., "The impact of
multihop wireless channel on TCP throughput and loss"
Proc. of INFOCOM 2003. Volume 3, 30 March-3 April 2003
Page(s):1744 - 1753 vol.3

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5
Time Sequence (seconds)

In
st

an
ta

ne
ou

s
Th

ro
ug

hp
ut

 (M
bp

s)

Tahoe
Tahoe 1-ACK-Skip
CLAP
Available BW

Figure 9: Comparison of CLAP with TCP-Tahoe

with/without ACK-skipping for minrto_ = 0

0

0.5

1

1.5

2

2.5

3

3.5

1 0.2 0
minrto_ setting (seconds)

Th
ro

ug
hp

ut
 fo

r 1
M

B
fil

e
tra

ns
fe

r

Reno
NewReno
Tahoe

Figure 10: Performance of various TCP flavors for

different values of minimum retransmission timeout
(i t)

