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Abstract— In 802.11 wireless links with disabled MAC retries, 
data and ACK packets within a TCP session collide resulting in 
packet losses. We show in this paper that in this situation, certain 
popular optimizations of TCP (fast-recovery) worsen the 
performance by causing deadlocks that terminate with timeouts. 
We compare the performance of optimized TCP versions (Reno 
and NewReno) with an earlier version of TCP (Tahoe) and 
demonstrate the degradation during fast-recovery. TCP-Tahoe 
gains 80% in throughput over TCP-Reno and more moderately 
over TCP-NewReno. A key contribution of this paper is the 
visualization of TCP dynamics to capture MAC layer collisions 
between DATA and ACK packets of a TCP session, and the 
differences in the behavior of protocols in that situation. This 
case of poor TCP performance due to self-inflicted losses, makes 
a sound case for decoupling error and flow control algorithms for 
transport over 802.11 wireless networks. 

Keywords-TCP, 802.11 wireless LANs, TCP-802.11 interaction, 
interference 

I.  INTRODUCTION 
It is now known that TCP does not perform well over 

802.11 wireless networks [1][11]. In this paper we follow TCP 
dynamics to explore the reasons for poor performance in noise-
free 802.11 wireless LAN environments. We show that the 
commonly used TCP-Reno version does not perform well 
because of several timeouts in the course of a flow. In fact the 
earlier less-optimized version - TCP-Tahoe outperforms TCP-
Reno. NewReno which enhances Reno's congestion control 
also demonstrates poor performance and Tahoe performs better 
for some parameter settings.  

Poor TCP performance in noise-free single-hop 802.11 
links was identified in earlier papers [1][2].  In 802.11 wireless 
networks, access to the wireless medium is shared between all 
nodes transmitting within hearing range of each other. For a 
TCP flow, this causes bandwidth sharing and collisions of TCP 
data and ACKs, even if they are of the same flow. In the rest of 
this paper, we shall refer to this phenomenon as self-
interference. The earlier papers primarily investigated bulk 
TCP thoughput and proposed skipping TCP ACKs [1] or limit 
congestion window size [11]. But the exact reasons for poor 
protocol performance were not understood.  

Our detailed analysis of TCP dynamics result in the 
following insights: 

 Poor Reno performance: Losses due to self-interference 
often occur in quick succession (before the first loss is 
perceived by TCP sender). This results in multiple losses in a 
TCP congestion window. Reno's congestion-control is known 
to deadlock in such situations [8]. In Figure 1, the six "flat 
goodput" intervals result from deadlocks that end in timeouts.  
 Poor NewReno performance: NewReno deadlocks when 

retransmissions are lost. Self-interference increases this 
likelihood, even during  fast-recovery. 
 Tahoe outperforms Reno, and in some cases, NewReno:  

TCP Tahoe gains in throughput over Reno and NewReno 
because of fewer deadlocks (that end in timeouts) in the self-
interference scenarios.  

We explain these insights with figures depicting TCP-MAC 
interaction, dynamics of various TCP flavors during congestion 
control and the effect of some TCP parameters on overall 
performance.  

To maximize bandwidth utilization despite losses from self-
interference, we suggest use of a transport protocol that 
separates error and flow control algorithms [10]. An example is 
the new Cross Layer Aware transport Protocol (CLAP) that 
achieves considerable gains over TCP in various wireless 
scenarios (Section VI and [3]). 

The rest of the paper is organized as follows. Simulation 
setup is described in Section II. In Section III, we present TCP-
dynamics during self-interference and evaluate the throughput 
cost incurred due to TCP-ACKs. In Section IV, we compare 
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Figure 1: Instantaneous goodput of TCP-Reno during a 
1MB file transfer in an error-free 802.11 wireless LAN 
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TCP-dynamics during congestion control in various TCP 
flavors and explain reasons for poor Reno/NewReno 
performance. In Section V we evaluate the effect of the 
minimum retransmission timeout parameter (minrto_) on TCP 
performance. In Section VI, we present the need for a novel 
approach to transport over 802.11, followed by Conclusion in 
Section VII. 

II. SIMULATION SETUP 
Results presented in this paper were obtained with NS2 

simulations (version 2.1b9a). A wireless LAN topology was 
used, comprising of an Access Point, a wireless node as TCP 
sender, and a wired node as TCP receiver. A single duplex-link 
with 10Mbps bandwidth and 2ms delay connected the wired 
receiver node and the Access Point (AP).  

The wireless LAN was operated in 802.11b DCF mode at 
11Mbps channel rate (the net data rate at the transport layer is 
about 5Mbps due to various overheads given in Table 1). The 
basic rate was set at 1Mbps (Long Phy Preamble). Strictly 
standard 802.11 MAC was used, disabling MAC retries and 
RTS/CTS. While these enhancements are default in NS2, they 
are suggestions in the 802.11 standard [9].  When MAC retries 
are enabled, a lone TCP session in a noise-free link seldom 
experiences lost packets. However there is still bandwidth 
sharing with ACKs and possible delay-variance.  

Default TCP parameter settings of NS-2.1b9a were used in 
all the simulations, except for changes in the minimum 
retransmission timeout (minrto_) setting.  The instantaneous 
link bandwidth was obtained by using a saturating UDP flow 
between the same pair of nodes in the same wireless scenario. 
The channel was error free, and there was no other interfering 
traffic. Figures depicting dynamics of Reno and NewReno over 
wireless LAN (Figures 3, 4, 5, 7) were drawn from simulation 
traces. Figure 6 depicting TCP-Tahoe dynamics was drawn 
anticipating possible Tahoe behavior in that situation.  

III. THE COST OF TCP ACKNOWLEDGEMENTS 

A. TCP-ACKs are expensive 
In the shared medium of 802.11 wireless links, signals from 

multiple transmitters could result in a collision at a receiver. To 
minimize collisions, the MAC layer implements the CSMA/CA 
protocol and nodes contend for channel access to send each 
packet [9]. A packet is sent only when the channel is found to 
be idle and after a random backoff.  

A TCP-ACK comprises of 40 bytes of TCP header. 
However various time overheads in MAC and Physical layers 
causes it to consume a significant portion of channel time. 
Table 1 specifies the various overheads for 11 Mbps channel 
rate (802.11b). Following is the average time consumed 
transmitting a TCP data/ACK (assuming previous transmission 
was successful): 

TPACKET = TDIFS + TPHY_PREAMBLE, HDRS + TMAC_BACKOFF, HDRS  

                          + TSIFS, MAC-ACK + TIP_HDR + TTCP_HDR  
                             + TDATA                                                                    (1) 
 

                = TACK + TDATA 
where TACK is the total time taken to transmit a TCP-ACK, 

given the same header size in TCP data and ACK packets. 
DIFS and SIFS are the Distributed and Slot Inter-Frame-Spaces 
respectively introduced by the MAC layer.   

Each TCP packet (data/ACK) incurs an average overhead 
of 806.37µs and constitute 99.7% of the channel time 
consumed by a TCP-ACK packet.  

The bandwidth consumed by n ACKs in a unit interval i, at 
the expense of data packets may be calculated as follows:  

         Number of data packets that could have been sent:  
                          k    = n * TACK / (TDATA + TACK)                (2) 
Lost bandwidth       = ( k*1000*8)  / i  bits/sec                  (3) 
The frequency of TCP-ACKs in each unit interval in the 

course of the 1MB file transfer is depicted in Figure 2. At peak 
operation, the number of returning ACKs is also at its peak - an 
average of 40 ACKs in a 0.1 second interval. At this time, the 
lost bandwidth from equations (2) and (3) is 1.47 Mbps. In 
Figure 2 this number matches the difference between TCP's 

Overhead Duration (µs)

DIFS 50 
Average duration of random backoff for min. MAC 

contention window 310 

Physical layer: short Preamble(144bits/2Mbps) +     
PLCP header (48bits/2Mbps) 96 

MAC header + FCS duration (8*34bytes/11Mbps) 24.73 

LLC + IP headers (8*(8+8)bytes/11Mbps) 11.64 
Time taken by Additional SIFS + MAC-ACK, after 

successful delivery of the Layer-4 packet 
10 + 304 = 

314 

40-byte TCP Header duration (40*8 bits/11Mbps) 
= 40 byte TCP-ACK duration  29.1 

Total Overhead time for each Layer-4 packet (TACK) 835.47 
Duration of 1000-byte TCP data segment (TDATA) 

(1000*8 bits/11 Mbps) 727.28 
Table 1: 802.11 overheads incurred by a TCP packet 
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Figure 2: Number of TCP-ACKs received compared to the 

instantaneous data bytes  



peak instantaneous throughput and the available bandwidth, 
corroborating the ill-effects of self-interference on TCP 
throughput. A more expensive effect however is packet loss 
that triggers congestion control in TCP. 

B. Packet loss due to self-interference 
In Figure 2, when the throughput is at its peak, the number 

of returning ACKs is also at its peak. Figure 3 captures the 
dynamics of TCP and 802.11 MAC during this time. It 
demonstrates the situations when self-interference results in 
three MAC collisions in quick succession of each other 
(instants A, B and C), before TCP-sender detects the first loss. 
Hence all the losses occur within a single congestion window 
(15 segments at this time). 

A vertical cross section between a TCP and MAC process 
(in Figure 3) shows how many packets are waiting in the MAC 
queue (an indirect conclusion on the AP side). Clearly with a 
consistent supply of TCP packets, the MAC operates in 
saturation. From earlier papers, the collision likelihood in this 
MAC situation is 3% [1].  

TCP sender detects a loss (the first one) only when three 
duplicate ACKs arrive. It then scales down the congestion 
window (and hence the sending rate) despite a high bandwidth 
availability in the wireless link at that instant. We show in the 
next section that the situation of multiple losses in a congestion 
window, often leads to timeouts in Reno and NewReno, that 
are a lot more expensive.    

IV. TAHOE OUTPERFORMS RENO IN 802.11 WIRELESS 
LINKS 

Tahoe, Reno and NewReno operate identically in the 
normal operation mode (no losses), but differ in their 
congestion control algorithms. Figures 4, 5 and 6 depict 
congestion control algorithms of Reno, NewReno and Tahoe 
respectively, triggered in response to multiple losses of Figure 
3. All three versions implement fast-retransmit where the 
segment is retransmitted upon three duplicate ACKs. (They 
also implement limited-transmit (RFC 3042) [7], where the 
first and second duplicate ACKs trigger transmission of up to 
two data segments over the congestion window.). They differ 
in how they adjust the congestion window after fast-retransmit.  

Tahoe scales it down to 1 segment, forgetting all about 
higher sequence number segments that were already sent (at 
instant A in Figure 6). No more packets are sent until an ACK 

arrives confirming the retransmitted packet. Normal operation 
subsequently resumes in slow-start mode. 

Reno and NewReno cut down congestion window in half 
after fast-retransmit (at instant A in Figures 4 and 5) and "fill 
the pipe" with new data packets until a new ACK arrives. This 
is the fast-recovery mode of operation where the congestion 
window is incremented by one segment for each duplicate 
ACK. New packets are sent when congestion window exceeds 
the number of already outstanding packets.  

Reno exits fast-recovery and resumes normal operation 
when the first non-duplicate ACK arrives recovering from the 
first loss. In case of multiple losses (before instant A),  Reno's 
fast-recovery ends when there are more outstanding packets 
than the congestion window (at instant B in Figure 4). The 
congestion window is cut down further when recovering from 
the subsequent losses. In Figure 4, Reno enters congestion 
control to recover the 2nd loss at instant C, and exits at instant 
D. Since the congestion window is small, no new packets are 
sent between instants B and D. Subsequently there are no more 
ACKs and the deadlock situation results at instant D. It ends in 
a timeout. 

To overcome the deadlock, NewReno [5] continues in fast-
recovery until all losses (that occurred before instant A in 
Figure 5) are recovered. The segment is retransmitted when the 
first ACK indicating it arrives (at instant B in Figure 5). The 
congestion window is halved after each retransmission. 
NewReno recovers all losses if and only if all retransmissions 
are successful. A timeout occurs otherwise. In Figure 5 depicts 
a deadlock situation that occurs in NewReno when a packet 
retransmitted during fast-recovery is lost. (packet #102 at 
instant C in Figure 5).  Subsequent duplicate ACKs grow the 
congestion window, but this not sufficient to send new data 
packets. With no more data packets, no ACKs are triggered and 
a deadlock situation occurs (at instant D in Figure 5).  

The comparison of instantaneous goodputs of Tahoe, Reno 
and NewReno in the course of the 1MB file transfer in the said 
wireless scenario is depicted in Figure 8. Despite being the 
least optimized version of TCP, Tahoe completes the file 
transfer in a significantly shorter time compared to Reno and 
NewReno. TCP dynamics reveal the following insights:  
 Reno suffers multiple timeouts: With the frequent occurrence 

of multiple losses in a TCP congestion window, Reno 
deadlocks several times that end in timeouts. The 1-second 
duration of each interval is due to the minimum retransmission 
timeout setting (minrto_ ).   

 
Figure 3: Self-interference during peak TCP operation when TCP congestion window =  15 segments 



 
Figure 4: Congestion Control  in TCP-Reno following multiple losses of Figure 3 

 
Figure 5:Congestion control in NewReno following multiple  losses of Figure 3 

 
Figure 6:Tahoe's congestion control after multiple  losses of Figure 3 



 NewReno also suffers multiple timeouts: During fast-
recovery, NewReno sustains a "full transmission pipe" by 
sending new packets. Thus the probability of self-interference 
is still large during fast-recovery. In the example of Figure 8, 
deadlock situations occur three times in the course of the 1MB 
file transfer, and end in timeouts (after minrto_ of 1 sec).  They 
all occur due to loss of the first retransmission, or of one of the 
packets sent during fast recovery. 
 A low throughput is sustained in Reno/NewReno in some 

timeout intervals: Figure 7 captures the dynamics of TCP 
NewReno/Reno the scenario when the retransmission at the 
start of congestion control is lost (at instant B in Figure 7). 
Despite this, duplicate ACKs #333 sustain the growth of the 
congestion window, and consistently trigger new data 
segments. In the example of Figure 7, congestion window and 
the number of outstanding packets reach 154 segments at the 
end of fast-recovery. With a single packet in transit at a time, 
the likelihood of self-interference diminishes to zero. But with 
stop-and-wait approach during this interval, the goodput drops 
to a minimum.  In Figure 8, Reno starting at 4.4 seconds, and 
NewReno at 1.9 and 3.3 seconds experience this situation.   
 Tahoe outperforms Reno. Outperforms NewReno 

considerably for minrto_ = 1 second. Tahoe operation 
following multiple losses in a congestion window is depicted in 
Figure 6. By not implementing fast-recovery and resuming 
operation in slow-start soon after fast-retransmit (at instant A in 
Figure 6), Tahoe reduces the loss likelihood due to self-
interference, improving the resilience to loss recovery. Several 
duplicate transmissions of data segments could ensue. But 
Tahoe does not deadlock and timeout as long as the 
retransmission is successful. Hence the likelihood of a 
deadlock in Tahoe is far lower than in Reno and NewReno. 
Tahoe's gain in goodput during the additional timeout periods 
of Reno and NewReno offsets the bandwidth wasted by 
redundant retransmissions and the lack of "pipe-filling" during 
loss recovery. 

V. EFFECT OF  MINRTO_ ON TCP PERFORMANCE 
In the wireless LAN scenario considered here, the round-

trip time fluctuated 7 - 30 milliseconds. RFC 2988 [6] 
stipulates a minimum timeout duration (minrto_ in NS2) of 1 
second. This was to avoid spurious timeouts and 
retransmissions in TCP in wired nets with large fluctuating 
round trip times.  In our scenario, Reno and NewReno waste 
several 1-second intervals in a deadlock before the timeout 
occurs and resumes the sending rate.  

 More recent TCP implementations set minrto_ to 0.2 
seconds. Figure 9 compares the net throughputs of Reno, 
NewReno and Tahoe for various minrto_ settings. minrto_= 0 
implies that the retransmission timeout duration is completely 
based on the estimated round-trip time.  With these settings, 
Reno and NewReno still experience the same number of 
timeouts but gain in throughput because of the shorter time 
spent in deadlock, and Tahoe's gain over Reno and NewReno 
diminishes.  

 
Figure 7:Reno/NewReno congestion control when the first retransmission is lost following self-interference  
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Figure 8:Instantaneous goodputs of Tahoe, Reno and 

NewReno during 1MB file transfers 



VI. CASE FOR CROSS-LAYER AWARENESS 
The self-interference problem is alleviated by separating 

flow and error control and reducing feedback packets, as 
demonstrated by the new CLAP protocol It also uses a rate 
rate-based flow control algorithm that incorporates cross-layer 
status information.   

Earlier papers have found that skipping a single ACK 
achieves considerable gain in the net throughput due to 
reduction in self-interference [2]. Figure 10 compares the 
performance of Tahoe, Tahoe with 1-ACK-skip and CLAP 
(1MB file transfer). Since there are no out of order packets, 
minrto_ is prudently set to 0. Hence only a small fraction of a 
second is spent before a timeout. The gain with 1-ACK-skip, is 
12%, while CLAP gains 95%. For more details of CLAP 
performance in time-varying 802.11 scenarios, refer to [3].  

VII. RELATED WORK 
All TCP enhancements proposed for wireless networks, are 

extensions of either TCP-Reno or TCP-NewReno. To the best 
of our knowledge ours is the first attempt to investigate the 
dynamics of operation of different TCP versions in an 802.11 
scenario.   

The enhancement protocols may be clearly categorized into 
those for cellular networks and those for multi-hop 802.11 
networks. Cellular networks however do not operate in a 
shared medium, and hence do not suffer the MAC problem. 
Some papers addressing TCP in multi-hop wireless have 
proposed limiting the congestion window in decreasing 
proportion to the number of hops, to reduce interference [11]. 
But this drastically limits TCP throughput in the multi-hop 
scenario.   

VIII. CONCLUSION   
Although fast-recovery is an efficient congestion-control 

algorithm widely used in wired nets, it often causes deadlock 
situations in wireless links that end in a timeout. This paper has 
examined TCP dynamics during congestion control of Tahoe, 
Reno and NewReno versions that encounter in different 
timeout situations. We have showed that less-optimized TCP-
Tahoe that forgets all outstanding packets after fast-retransmit 

gains significantly over Reno and NewReno that use fast-
recovery.  

Self-interference in TCP cannot easily be mitigated because 
of its tightly intertwined error and flow control mechanisms. 
The window-based flow control is heavily dependent on the 
pace and quality of returning ACKs. TCP also suffers various 
other challenges over wireless networks that primarily stem 
from its layer-independent design. On the other-hand, lower-
layers, particularly in wireless nodes are equipped to provide 
status information that can be used to supplement decision-
making processes in the transport protocol. An alternative is to  
use the new CLAP protocol [3] for data transport in wireless 
scenarios.  

REFERENCES 
[1] S. Gopal, S. Paul, D. Raychaudhuri," Investigation of the TCP 

Simultaneous Send problem in 802.11 Wireless Local Area Networks", 
IEEE ICC 2005, May 16-20, Seoul, South Korea.  

[2] S. Gopal, D. Raychaudhuri, "Experimental Evaluation of the TCP 
Simultaneous Sent problem in 802.11 Wireless Local Area Networks", 
ACM SIGCOMM Workshop on Experimental Approaches to Wireless 
Network Design and Analysis (EWIND-05), August 22nd 2005, 
Philadelphia. 

[3] S. Gopal, S. Paul, D. Raychaudhuri "Leveraging MAC-layer information 
for single-hop wireless transport in the Cache and Forward Architecture 
of the Future Internet", WILLOPAN Workshop, )held in conjunction 
with COMSWARE 2007, Bangalore, INDIA, January 2007 

[4] RFC 2581 : "TCP Congestion Control with Fast-Retransmit and Fast-
Recovery" http://www.ietf.org/rfc/rfc2581.txt 

[5] RFC 2582: "NewReno modification to TCP's Fast Recovery" 
http://www.ietf.org/rfc/rfc2582.txt , April 1999 

[6] RFC 2988: "Computing TCP's Retransmission Timer", 
http://www.ietf.org/rfc/rfc2988.txt 

[7] RFC 3042: "Enhancing TCP's Fast-Recovery Using Limited 
Transmit", http://www.ietf.org/rfc/rfc3042.txt 

[8] J. C. Hoe, "Improving the start-up behavior of a congestion control 
scheme for TCP", In Proceedings of the ACM SIGCOMM '96, pages 
270 - 280, Stanford, CA, August 1996  

[9] IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) Part 11: Wireless 
LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications 

[10] D.D.Clark, M.L. Lambert, L. Zhang, "NETBLT: a High Throughput 
Transport Protocol", ACM SIGCOMM 1987 

[11] Fu, Z.; Zerfos, P.; Luo, H.; Lu, S.; Zhang, L.; Gerla, M., "The impact of 
multihop wireless channel on TCP throughput and loss" 
Proc. of INFOCOM 2003. Volume 3,  30 March-3 April 2003 
Page(s):1744 - 1753 vol.3 

 

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5
Time Sequence (seconds)

In
st

an
ta

ne
ou

s 
Th

ro
ug

hp
ut

 (M
bp

s)

Tahoe
Tahoe 1-ACK-Skip
CLAP
Available BW

 
Figure 9: Comparison of CLAP with TCP-Tahoe 

with/without ACK-skipping for minrto_ = 0 
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Figure 10: Performance of various TCP flavors for 

different values of minimum retransmission timeout 
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