Experimenting with the PIP Radio
Platform

Presented by Ben Firner

s S\
%\\“‘
)l}ﬂlll
i

A PIP Is a small radio device

» Affectionately called a “Pipsqueak”
« Runs on a coin cell battery

» PIP = Persistent Identification Packets

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

PIPs are a flexible test platform

* There is a very low barrier to entry
- Code is in C (assembly can be used as well)
« We have already written the hard parts
- USB code on the PIP and on Linux readers
« Well set up to test power consumption

 The best way to learn about radio is to use it

<

H

&w
iﬁ\\“
\
Ji']}IIJ
Wi

Things you can observe directly

« RSS|
* Power consumption using the oscilloscope

* View packet formats and spectrum on the
network analyzer

- CC1100 does FSK, GFSK, MSK, and ASK/OOK

« Use the vector signal analyzer to get raw
packet data

<

H

&w
iﬁ\\“
\
Ji']}IIJ
Wi

Statistics you can gather

e Packet loss
- How well does radio work from car to car?
e Interference

- Should you have your router next to your
microwave?

 Signal attenuation
— Are tinfoil hats effective?

%
oW
o

)
2 Y
1)

%
&l
v

ABEE S ES
ﬂ (] ﬁ = e S
WIRELESS INFORMATION HETWORE LABORATOR

"

PIP Hardware

T ey

PIP Hardware

WIRELESS INFORMATION NETWORK LABORATORY

PIP Hardware

Antenna L AR Il = N = e T

PIP Hardware
26MHz Oscillator (MCU clock)

: E—‘~’~Y—- T - @ -
i ‘! V= -?‘T -ﬂﬁ?‘f (7

ArFpm== = ==
N

"

PIP Hardware

o Wu3.l
."“ "n_. r—
G‘ 0.’

13303

100 pF
Capacitor

PIP Hardware

| i

m”"’"‘

= ! o WUl

— m—

T.w_ S

s“l”’ 1::.: ey

(optional)

Comparison to Berkeley Motes

PIPs Berkeley Motes
« Coin cell battery « Many models
- Can bg run yvith AA e« AA batteries
ot ® + CC1100/2400 radio

CC1100/2400 radio » Programmed with
TinyOS and NesC

Programmed in C, use
Keil uVision to flash.

<

H

&w
iﬁ\\“
\
Ji']}IIJ
Wi

PIP Software

e Streamcollect

- Our data collecting code. This receives data from
multiple PIPs attached to a computer via USB.
Data Is stored in a sglite3 database and can be
printed to stdout.

Analyze?2

- Analysis code that gives many statistics about a
data set collected with Streamcollect.

PIP codebase

The existing codebase Is useful

« SendBeacon

- Sleep/Transmit/Sleep cycle with optional frequency
hopping
 Listen4Beacons
- Recelves packets and prints them via USB.
e Jamming code
— Continuous transmission of random bits
« Code for ACK and CS protocols also exists

Rolling your own Is easy

Many parameters can be selected by changing
a reqgister or calling a function

- Modulation format, Rx/Tx frequency, transmission
power, FEC, Data Whitening, transmission duty
cycle, etc

It Is easiest to start with existing code and
change it to suite your needs

How PIP programming works

All of the default register values for the
CC1100 are set in RegSettings X.c

Change default register values or call
nalSpiWriteReg to set register values.

e Look at the CC1100/2400 data sheets to see
what registers do:

- focus.ti.com/lit/ds/symlink/cc1100.pdf
- focus.ti.com/lit/ds/symlink/cc2400.pdf

Changing the frequency

» #include <Rollcall\tuning.h>

 setFreq(902100000.0)

"
S
Rw
:\\;\\\“
]
W

Writing data to the USB FIFO

#include “queue.h”
#include “F32x_USB Structs.h”
#include “usb_init.h”

//Initialize global USB queue
host queue p = queue_init();

queue_insert(host_queue p, str, sizeof(str));

Sending variable length packets

e #include <Rollcall\rfsuite.h>

 //Data whitened, variable packet length
 halSpiWriteReg(CCxxx0 PKTCTRLO, 0x41);

« BYTE packet[] = {length,};

« rfSendPacketNonblock(packet, sizeof(packet));

Receiving variable length packets

e #include <Rollcall\rfsuite.h>

 //Data whitened, variable packet length
 halSpiWriteReg(CCxxx0 PKTCTRLO, 0x41);
« BYTE rx_buffer[psize];

« BYTE status[2];

« UINTS len;

 rfReceive(rx_buffer, &len, status);

Transmitting random data

e #include <Rollcall\rfsuite.h>

* //Infinite length transmission with random data
 halSpiWriteReg(CCxxx0 PKTCTRLO, 0x22);
 halSpiStrobe(CCxxx0 _STX);

 //Infinite loop so the packet never ends

« while(1);

Keep the PIP in mind

The PIPs are perfect to doing quick tests

A few measurements can verify your
assumptions before you do a large simulation
or test

PIPs are also a great tool to use when trying to
gain experience using are measurement tools

<

H

%ﬂ'
E\\\“
\
',i']}ln
o

