

Experimenting with the PIP Radio
Platform

Presented by Ben Firner

A PIP is a small radio device

● Affectionately called a “Pipsqueak”
● Runs on a coin cell battery
● PIP = Persistent Identification Packets

PIPs are a flexible test platform

● There is a very low barrier to entry
– Code is in C (assembly can be used as well)

● We have already written the hard parts
– USB code on the PIP and on Linux readers

● Well set up to test power consumption
● The best way to learn about radio is to use it

Things you can observe directly

● RSSI
● Power consumption using the oscilloscope
● View packet formats and spectrum on the

network analyzer
– CC1100 does FSK, GFSK, MSK, and ASK/OOK

● Use the vector signal analyzer to get raw
packet data

Statistics you can gather

● Packet loss
– How well does radio work from car to car?

● Interference
– Should you have your router next to your

microwave?

● Signal attenuation
– Are tinfoil hats effective?

PIP Hardware

PIP Hardware
C8051 MCU

PIP Hardware

CC1100/2400

Tuning Network

Antenna

PIP Hardware
26MHz Oscillator (MCU clock)

PIP Hardware

100 μF
Capacitor

PIP Hardware

USB
(optional)

Comparison to Berkeley Motes

PIPs
● Coin cell battery

– Can be run with AA
batteries using a
special device.

● CC1100/2400 radio
● Programmed in C, use

Keil μVision to flash.

Berkeley Motes
● Many models
● AA batteries
● CC1100/2400 radio
● Programmed with

TinyOS and NesC

PIP Software

● Streamcollect
– Our data collecting code. This receives data from

multiple PIPs attached to a computer via USB.
Data is stored in a sqlite3 database and can be
printed to stdout.

● Analyze2
– Analysis code that gives many statistics about a

data set collected with Streamcollect.

● PIP codebase

The existing codebase is useful

● SendBeacon
– Sleep/Transmit/Sleep cycle with optional frequency

hopping

● Listen4Beacons
– Receives packets and prints them via USB.

● Jamming code
– Continuous transmission of random bits

● Code for ACK and CS protocols also exists

Rolling your own is easy

● Many parameters can be selected by changing
a register or calling a function
– Modulation format, Rx/Tx frequency, transmission

power, FEC, Data Whitening, transmission duty
cycle, etc

● It is easiest to start with existing code and
change it to suite your needs

How PIP programming works

● All of the default register values for the
CC1100 are set in RegSettings_X.c

● Change default register values or call
halSpiWriteReg to set register values.

● Look at the CC1100/2400 data sheets to see
what registers do:
– focus.ti.com/lit/ds/symlink/cc1100.pdf
– focus.ti.com/lit/ds/symlink/cc2400.pdf

Changing the frequency

● #include <Rollcall\tuning.h>
●
● setFreq(902100000.0)

Writing data to the USB FIFO

● #include “queue.h”

● #include “F32x_USB_Structs.h”

● #include “usb_init.h”

●

● //Initialize global USB queue

● host_queue_p = queue_init();

●

● queue_insert(host_queue_p, str, sizeof(str));

Sending variable length packets

● #include <Rollcall\rfsuite.h>

●

● //Data whitened, variable packet length

● halSpiWriteReg(CCxxx0_PKTCTRL0, 0x41);

● BYTE packet[] = {length,};

● rfSendPacketNonblock(packet, sizeof(packet));

Receiving variable length packets

● #include <Rollcall\rfsuite.h>

●

● //Data whitened, variable packet length

● halSpiWriteReg(CCxxx0_PKTCTRL0, 0x41);

● BYTE rx_buffer[psize];

● BYTE status[2];

● UINT8 len;

● rfReceive(rx_buffer, &len, status);

Transmitting random data

● #include <Rollcall\rfsuite.h>

●

● //Infinite length transmission with random data

● halSpiWriteReg(CCxxx0_PKTCTRL0, 0x22);

● halSpiStrobe(CCxxx0_STX);

● //Infinite loop so the packet never ends

● while(1);

Keep the PIP in mind

● The PIPs are perfect to doing quick tests
● A few measurements can verify your

assumptions before you do a large simulation
or test

● PIPs are also a great tool to use when trying to
gain experience using are measurement tools

