Introduction to Data Mining

Dr. Hui Xiong Rutgers University

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS

Why Mine Data? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data, e-commerce
 - purchases at department/ grocery stores
 - Bank/Credit Card transactions

- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an *edge* (e.g. in Customer Relationship Management)

Why Mine Data? Scientific Viewpoint

- Data collected and stored at enormous speeds (GB/hour)
 - remote sensors on a satellite
 - telescopes scanning the skies
 - microarrays generating gene expression data
 - scientific simulations generating terabytes of data
- Traditional techniques infeasible for raw data
- Data mining may help scientists
 - in classifying and segmenting data
 - in Hypothesis Formation

Mining Large Data Sets - Motivation

- There is often information "hidden" in the data that is not readily evident
- Human analysts may take weeks to discover useful information
- Much of the data is never analyzed at all

Scale of Data

Organization	Scale of Data		
Walmart	~ 20 million transactions/day		
Google	~ 8.2 billion Web pages		
Yahoo	~10 GB Web data/hr		
NASA satellites	~ 1.2 TB/day		
NCBI GenBank	~ 22 million genetic sequences		
France Telecom	29.2 TB		
UK Land Registry	18.3 TB		
AT&T Corp	26.2 TB		

"The great strength of computers is that they can reliably manipulate vast amounts of data very quickly. Their great weakness is that they don't have a clue as to what any of that data actually means"

Why Do We Need Data Mining?

- Leverage organization's data assets
 - Only a small portion (typically 5%-10%) of the collected data is ever analyzed
 - Data that may never be analyzed continues to be collected, at a great expense, out of fear that something which may prove important in the future is missing.
 - Growth rates of data precludes traditional "manually intensive" approach

Why Do We Need Data Mining?

- As databases grow, the ability to support the decision support process using traditional query languages becomes infeasible
 - Many queries of interest are difficult to state in a query language (Query formulation problem)
 - "find all cases of fraud"
 - "find all individuals likely to buy a FORD expedition"
 - "find all documents that are similar to this customers problem"

What is Data Mining?

• Many Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

What is (not) Data Mining?

- What is not Data Mining?
 - Look up phone number in phone directory
 - Check the dictionary for the meaning of a word
- What is Data Mining?

– Certain names are more prevalent in certain US locations (O'Brien, O'Rurke, O'Reilly... in Boston area)

- Group together similar documents returned by search engine according to their context (e.g. Amazon rainforest, Amazon.com,)

Data Mining: Confluence of Multiple Disciplines

Data Mining Applications

- Market analysis
- Risk analysis and management
- Fraud detection and detection of unusual patterns (outliers)
- Text mining (news group, email, documents) and Web mining
- Stream data mining
- DNA and bio-data analysis

Fraud Detection & Mining Unusual Patterns

- Approaches: Clustering & model construction for frauds, outlier analysis
- Applications: Health care, retail, credit card service, ...
 - Auto insurance: ring of collisions
 - Money laundering: suspicious monetary transactions
 - Medical insurance
 - Professional patients, ring of doctors, and ring of references
 - Unnecessary or correlated <u>screening tests</u>
 - Telecommunications: phone-call fraud
 - Phone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm
 - Retail industry
 - Analysts estimate that 38% of retail shrink is due to dishonest employees
 - Anti-terrorism

Clustering

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

- Understanding
 - Group related documents for browsing
 - Group genes and proteins that have similar functionality
 - Group stocks with similar price fluctuations
- Summarization
 - Reduce the size of large data sets

Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres.

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN, Autodesk-DOWN, DEC-DOWN, ADV-Micro-Device-DOWN, Andrew-Corp-DOWN, Computer-Assoc-DOWN, Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN, Microsoft-DOWN, Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Clusters for Raw SST and Raw NPP

Clustering: Application 1

- Market Segmentation:
 - Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
 - Approach:
 - Collect different attributes of customers based on their geographical and lifestyle related information.
 - Find clusters of similar customers.
 - Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Clustering: Application 2

- Document Clustering:
 - Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
 - Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.

Notion of a Cluster can be Ambiguous + + + + \bigcirc ₹_ Six Clusters How many clusters? Δ Δ

Two Clusters

Four Clusters

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics
- Partial versus complete
 - In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
 - Clusters of widely different sizes, shapes, and densities

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - This is a derived measure, but central to clustering
- Sparseness
 - Dictates type of similarity
 - Adds to efficiency
- Attribute type
 - Dictates type of similarity
- Type of Data
 - Dictates type of similarity
 - Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Rules are used to find combination of patient symptoms and complaints associated with certain diseases

Association Rule Mining

•		
	TID	Items
	1	Bread, Milk
	2	Bread, Diaper, Beer, Egg
	3	Milk, Diaper, Beer, Coke
	4	Bread, Milk, Diaper, Beer
	5	Bread, Milk, Diaper, Coke

•	Protein Complex	Proteins
	c1	p_1,p_2
	c2	p_1,p_3,p_4,p_5
	c3	p_2, p_3, p_4, p_6

Pattern

- A collection of one or more items
 E.g. {Milk}, {Beer, Diaper}
- Support Count (σ)
 - Frequency of occurrence of a pattern.
 E.g. σ({Bread, Milk, Diaper}) = 2
- Support (Agrawal et al. 1993)
 - Fraction of transactions that contain a pattern.
 - ◊ E.g. supp({Bread, Milk, Diaper})= 2/5 =40%
- Confidence: its interpretation as conditional probability

Correlation Computing

- Various Applications of Correlation Analysis
 - i.e. Marketing Data Study, Web Search, Bioinformatics, Public Health
- A Gap between Association Rule Mining and Correlation Computing
 - A lack of precise relationship between support (or confidence) based association measures and correlation measures.
- Statistical Computing
 - Expect to apply statistical techniques more flexibly, efficiently, easily, and with minimal mathematical assumptions.

Application Deployment Challenge

- AMAZON.COM: Product Promotion
- Answer the question: Customers who bought this book also bought?

- Computing Challenge!
 - \diamond For a database of 10^6 items, 10^{12} possible item pairs
 - Several million transactions will make things worse!

Predictive Modeling: Classification

• Find a model for class attribute as a function of the values of other attributes Model for predicting credit

Class

				CIA33
Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes
••••				

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Undergrad	7	?
2	No	Graduate	3	?
3	Yes	High School	2	?

Classification Example

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace

Classification: Application 1

- Fraud Detection
 - **Goal:** Predict fraudulent cases in credit card transactions.
 - Approach:
 - Use credit card transactions and the information on its account-holder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.

Classification: Application 2

- Churn prediction for telephone customers
 - **Goal:** To predict whether a customer is likely to be lost to a competitor.
 - Approach:
 - Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what time-of-the day he calls most, his financial status, marital status, etc.
 - Label the customers as loyal or disloyal.
 - Find a model for loyalty.

System Event Logs/Job Logs

- Failure Prediction using Event Logs
- Significantly improve Fault Tolerance and Resource Management strategies

Web Usage Mining

User-directed Knowledge Discovery in Wireless Sensor Network

- Learning Active Users Behavior
 - Better Sensor Network Management
 - Identifying Sensor Spoofing
 E.g. Radio-frequency (RF) sensors are vulnerable to spoofing

the enemy can spoof as friendly forces

Wireless Sensor Networks

- Enemy are the passive users of the system.
- Learn the enemy's usage patterns

- Better Solutions?
 - Enemy Identification ?
 - Where is the enemy?
 - Historical Patterns, Joint Learning
 - What are the enemy's goal? (Semantic Constraints)

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Another Example of Decision Tree

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Deviation/Anomaly Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud
 Detection
 - Network Intrusion
 Detection

Anomaly Detection

- Challenges
 - How many outliers are there in the data?
 - Method is unsupervised
 - Validation can be quite challenging (just like for clustering)
 - Finding needle in a haystack
- Working assumption
 - There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data

Anomaly Detection Schemes

- General Steps
 - Build a profile of the "normal" behavior
 - Profile can be patterns or summary statistics for the overall population
 - Use the "normal" profile to detect anomalies
 - Anomalies are observations whose characteristics differ significantly from the normal profile

 \odot

- Types of anomaly detection schemes
 - Graphical & Statistical-based
 - Distance-based
 - Model-based

Graphical Approaches

- Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)
- Limitations
 - Time consuming
 - Subjective

Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

Intrusion Detection

- Intrusion Detection System
 - combination of software and hardware that attempts to perform intrusion detection
 - raises the alarm when possible intrusion happens

- Traditional intrusion detection system IDS tools (e.g. SNORT) are based on signatures of known attacks
- Limitations
 - Signature database has to be manually revised for each new type of discovered intrusion

- They cannot detect emerging cyber threats
- www.snort.org - Substantial latency in deployment of newly created signatures across the computer system

Data Mining for Network Intrusion Detection

Misuse detection

- Predictive models are built from labeled labeled data sets (instances are labeled as "normal" or "intrusive")
- These models can be more sophisticated and precise than manually created signatures
- Unable to detect attacks whose instances have not yet been observed

Anomaly detection

- Identifies anomalies as deviations from "normal" behavior
- Potential for high false alarm rate previously unseen (yet legitimate) system behaviors may also be recognized as anomalies

KDD Process

- Develop an understanding of the application domain
 - Relevant prior knowledge, problem objectives, success criteria, current solution, inventory resources, constraints, terminology, cost and benefits
- Create target data set
 - Collect initial data, describe, focus on a subset of variables, verify data quality
- Data cleaning and preprocessing
 - Remove noise, outliers, missing fields, time sequence information, known trends, integrate data
- Data Reduction and projection
 - Feature subset selection, feature construction, discretizations, aggregations

KDD Process

- Selection of data mining task
 - Classification, segmentation, deviation detection, link analysis
- Select data mining approach
- Data mining to extract patterns or models
- Interpretation and evaluation of patterns/models
- Consolidating discovered knowledge

Challenges of Data Mining

- Scalability
- Dimensionality
- Complex and Heterogeneous Data
- Data Quality
- Data Ownership and Distribution
- Privacy Preservation
- Streaming Data
- Data from Multi-Sources

Family Knowledge Set Decision Power

The Knowledge Set of Other people you know

Commercial and Research Tools

WEKA: http://www.cs.waikato.ac.nz/ml/weka/

SAS: http://www.sas.com/

Clementine: http://www.spss.com/spssbi/clementine/

Intelligent Miner

http://www-3.ibm.com/software/data/iminer/

Insightful Miner

http://www.insightful.com/products/product.asp?PID=26

Insightful

Textbooks

Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Springer

