
Towards Large-Scale Mobile Network Emulation Through
Spatial Switching on a Wireless Grid

Kishore Ramachandran, Sanjit Kaul, Suhas Mathur, Marco Gruteser, Ivan Seskar
WINLAB / Electrical and Computer Engineering Department

Rutgers, The State University of New Jersey
94 Brett Rd

Piscataway, NJ 08854

{kishore,sanjit,suhas,gruteser,seskar}@winlab.rutgers.edu

ABSTRACT
Experimentation with large mobile networks is notoriously tedious
and expensive. We present the architecture and work-in-progress
implementation of the m-ORBIT testbed, a mobility emulator us-
ing spatial switching, which facilitates mobile system experiments
with 802.11a/b/g wireless network interfaces. The emulator does
not require any physically moving parts—it emulates mobility by
switching over an array of 128 spatially distributed radios. Instead
of using hardware antenna switches, we implement spatial switch-
ing in software over Gigabit Ethernet links to the radio nodes. Pre-
liminary results support the scaling of this approach to a large num-
ber of radios at relatively low cost. Packet error rate measurements
also indicate that an experimenter can create multi-hop topologies
by injecting additive white Gaussian noise into the environment.
We demonstrate through an Ad hoc On Demand Distance Vector
routing case study how this emulator enables mobile systems ex-
periments and plan to make the emulator available for remote ac-
cess by the research community.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques; C.2.1
[Computer-Communication Networks]: Network Architecture
and Design–wireless communication

General Terms
Design, Experimentation

Keywords
Mobility emulation, testbed, spatial switching, noise injection

1. INTRODUCTION
Several factors make experimental research with mobile systems

particularly tedious. Mobile systems inherently require node mo-
bility, which is difficult to achieve without organizing a team of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05 Workshops, August 22–26, 2005, Philadelphia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008 ...$5.00.

human assistants [1]. Radio interfaces based on the IEEE 802.11
standard, often the radio of choice for a mobile network, have a
range of up to several hundred feet. Therefore, experiments must be
conducted in an area large enough to allow nodes to move beyond
each others radio range. Moreover, changing radio channel charac-
teristics over time lead to poor reproducibility of results. Even in
a controlled radio environment, the exact movements of different
nodes may be hard to repeat.

Understandably, the community heavily relies on a simulation-
based research methodology, even though Allman and Falk [2] have
persuasively argued for the importance of carefully choosing be-
tween different methodologies. While they referred to wired net-
works, the need for validating and improving simulation models
has also been recognized by colleagues in the mobile networking
field [3, 4]. These efforts could intensify if researchers had easier
access to experimental capabilities.

Mobile network emulators facilitate access to experimentation.
They can provide a middle ground between pure simulation and
laborious full-scale experiments [5, 1] with increased realism but
still acceptable reproducibility of results. Perhaps, the most widely
used emulation strategy—probably due to its ease of deployment—
is based on software MAC filtering (e.g., [6]), which controls the
topology of a network without moving nodes. It provides an em-
ulation environment at the network layer and above but carries the
same disadvantages as network simulators at the link and physical
layer. The “Testbed on a Desktop” [7] exemplifies an approach that
uses a more realistic physical and link layer. It requires, however, a
carefully planned hardware setup involving antenna shielding and
attenuation. Especially, if topologies should change during an ex-
periment, variable attenuators must be strategically placed into the
setup, as illustrated by RAMON [8]. EWANT [9] eliminates vari-
able attenuators through a hardware switch to connect a radio to
different antennas over time. This number of antennas is limited by
the antenna switch and does not scale to larger networks.

This paper presents the design and implementation of M-ORBIT,
a mobility emulator that uses spatial switching and noise gener-
ation. To our knowledge, this is the first mobility emulator im-
plementation that provides—without a team of human assistants—
repeatable large scale experimentation and a network stack with
most of the physical and link layer intricacies. We have built the
emulator on the stationary ORBIT indoor wireless network research
testbed, which is described elsewhere [10]. The emulator is fully
software controlled, allowing us to make it remotely accessible for
the research community.

Key contributions include an implementation of spatial switch-

ing in software and noise generation to create larger topologies.
Spatial switching relies on a large number of static radio interfaces,
whose antennas are arranged in a grid topology. To emulate mov-
ing nodes, the system will select sending and receiving radios from
the grid that best represent the positions of the moving nodes as
given by a mobility scenario. To emulate large-scale networks the
system can raise the noise floor in the environment, which emulates
a greater distance between transmitter and receiver.

The remainder of this paper is organized as follows. Section 2
reviews the goals that influenced our system design and lists key
design choices. Section 3 describes our implementation of spa-
tial switching using virtual MAC addresses. The implementation
is based on the Click Modular Router [11] framework. The eval-
uation in section 4 concentrates on a case study to test an AODV
routing protocol implementation on M-ORBIT.

2. DESIGN CONSIDERATIONS
M-Orbit’s design is driven by the following key design goals:

Large-Scale Multi-Hop Experimentation. The testbed should sup-
port tens of mobile nodes. In addition, it should be able to
create topologies where not all nodes are in direct communi-
cation range, so that experimentation with multi-hop routing
protocols is possible.

Include link layer properties. The results should reflect realistic
link layer interactions and mobile nodes should be able to run
arbitrary network layer protocols and PC-level applications
to generate network traffic.

Repeatability. In a radio-based testbed slight changes in the ra-
dio environment can significantly affect reproducibility of
results. The emulator should allow full automation to enable
experimenters to conduct a large number of trials to obtain
statistically significant and reproducible results.

The mobility emulator design and implementation is based on
a stationary indoor testbed that is part of the Open Access Re-
search Testbed for Next-Generation Wireless Networks (ORBIT)
infrastructure. The indoor testbed currently comprises 128 IEEE
802.11a/b/g radio interfaces attached to 64 static nodes arranged on
an 8 by 8 grid, as shown by Fig. 1. The antennas are mounted on
the sides of crates, at 45 and 225 degree positions when looking at
the topside of a node. The antennas are connected through shielded
cables to the Atheros-based wireless cards. Every node is a small
form factor PC with 1GHz Via C3 CPU, 512 MB RAM, and 20
GB hard disk. The nodes also have two 1000BaseT Ethernet ports,
which are connected to each other and to external servers through
a 2-layer hierarchy of switches. Raychaudhuri and colleagues de-
scribe the stationary testbed in more detail [10, 12].

2.1 Spatial Switching
We believe that, at reasonable expense, a software spatial switch-

ing approach best meets these goals. It emulates mobility by switch-
ing a moving node to different radio and antenna positions as time
progresses. Thus, the emulated path of a moving node comprises
a number of discrete steps that approximate the actual path a mov-
ing node would take. Figure 1 illustrates this concept. Note that at
any position packets are transmitted over real radio interfaces, thus
this emulator can be used to evaluate the effect of interference or
other physical and link layer effects on higher layer protocols. We
implement spatial switching in software using the Gigabit Ethernet
connections available on the ORBIT testbed, because it allows us

Figure 1: Spatial Switching. The path shows an actual path of a
mobile node, which the system emulates by choosing the radio
node that best approximates the current position. The testbed
comprises currently 64 nodes with two 802.11 a/b/g interfaces
each.

to scale to a large number of nodes at much lower cost than using
hardware antenna switches.

This approach is more flexible than modulating the signal-to-
noise ratio (SNR) by attenuating the signal at the transmitter or
receiver. Continuously changing the level of attenuation could also
simulate the effect of mobility without moving any nodes. How-
ever, emulating multiple moving nodes would require extensive
synchronization between transmitter and attenuation controller to
control attenuation on a per packet basis. For example, SNR must
be modulated separately at the receivers to accurately emulate broad-
cast frames. Each receiver’s SNR controller must then be aware of
frame start, frame duration, and frame source to apply the correct
SNR modulation. We avoid these complexities by instead influenc-
ing the path loss through real changes in position.

2.2 Split-stack Architecture
The software spatial switching system uses a split-stack archi-

tecture, as illustrated in Fig. 2. Throughout an experiment the ap-
plication and network layer of a mobile node reside on the same
machine, denoted as a virtual mobile node. As time progresses, it
uses the link and physical layers of different grid nodes by reconfig-
uring the tunnel. The virtual mobile node can be either a dedicated
grid node or a server that is on the same local area network as the
grid nodes. The network stacks of the virtual mobile nodes and
the grid nodes are tied together by spatial switching components.
On the virtual mobile nodes, they provide a virtual network inter-
face, fake0, which is associated with a grid node radio interface.
This means that most applications can be integrated with this sys-
tem by changing the routing table to point to this virtual interface.
We are also planning to implement cross-layer interfaces to access
radio properties on the grid node such as signal-to-noise ratio, and
a dynamic mobility interface to control the (virtual) movement of a
node during run-time. To date, we have completed a spatial switch-
ing implementation that relies on a static predefined path.

Consider the scenario where one mobile node sends a packet to
a second mobile node. The emulator would represent the mobiles
through two virtual mobile nodes and two grid nodes, let us refer
to them as VMN1 and VMN2, and GN1 and GN2, respectively.
The packet will be created by an application running on VMN1
and processed by its regular network stack. However, instead of
sending the packet over a wireless interface, VMN1 will tunnel the
packet over the wired gigabit Ethernet interface to GN1. GN1 will

Packet Size Gb Crossover Gb Switch 802.11 11Mbps Relative
(byte) RT Latency (µs) RT Latency (µs) Latency (µs) Overhead w/ 2 Switches

60 48 5 609 9.5%
1000 129 20 2035 8.3%

Table 1: Latency overhead through tunneling, measured at low load. In the ORBIT testbed setup with two layers of switches,
tunneling packets to and from the virtual mobile nodes increase packet latencies by less than 10% for 11Mbps radios.

Applications

Network Layer

F
a

k
e

0
In

te
rfa

c
e

D
y
n

a
m

ic
M

o
b

ility
A

P
I

C
ro

s
s

L
a

y
e

r
A

P
I

Spatial Switching

Virtual Mobile Node Grid Node

E
th

0
In

te
rfa

c
e

W
la

n
0

In
te

rfa
c
e

W
la

n
1

In
te

rfa
c
e

Tunnel

Spatial Switching

Figure 2: Split-stack architecture. The network stack of a sin-
gle mobile node is split between a virtual mobile node and a
grid node. For every additional mobile node in the experiment,
the emulator requires an additional virtual mobile node and
grid node.

then transmit the packet over the wireless interface to GN2, who
will tunnel the packet to VMN2. At VMN2 it is again handed to
the network layer and, if destined for this host, to an application.
When one of the nodes moves, only the associated grid node will
change.

This approach guarantees minimal latency overhead when switch-
ing among nodes but every packet transmitted over the wireless
network must first traverse two tunnels. On an uncongested net-
work, this approach therefore adds a constant latency overhead to
every packet. This overhead amounts to less than 10% in our setup.
This number includes operating system delays, packet transmission
durations, and store-and-forward switch latencies. To obtain these
values, we have measured the total duration of reflecting a packet
10000 times (round-trip) between the grid nodes and then calculat-
ing the mean packet latency. This was implemented using the same
Click modular router framework [11] that we also use in the spatial
switching implementation.

2.3 Radio Range Scaling Through Noise Gen-
eration

To contain facilities cost, the radio nodes are deployed with three
feet spacing—thus, the current grid occupies a 24ft by 24ft area.
The path loss in this area is to small to create a multi-hop network,
the nodes are fully connected even at 1mW transmit power setting.

Figure 3 shows the received signal power at each of the 63 nodes
positions, while the node at the corner position 1-1 was emitting
beacons. These measurements were conducted with the Yellow-
jacket handheld 802.11b/g protocol analyzer, whose signal mea-
surements are, according to the specifications, accurate within 1
dB [13]. The graph shows that the dynamic range of our environ-
ment is approximately 25 db. At the edges on the far side from
the transmitter the signal power varies between -65 and -75 dBm,
wheres the receive threshold of most 802.11 cards lies at approx-

Figure 3: Signal power measured at each grid node’s position
with a signal analyzer. Even at 1mW transmit power the dy-
namic range in the ORBIT environment is not large enough–all
radios are withing communication range.

imately -90 dBm. The graph also shows that radio propagation
in our indoor environment exhibits multi-path effects. As such it
differs substantially from the free space propagation models com-
monly used in ns-2 simulations and provides an interesting alterna-
tive evaluation environment.

The system can emulate different node spacings by injecting ad-
ditive white gaussian noise (AWGN) into the environment. In the
absence of interference, the bit error rate of a wireless receiver is a
function of the signal-to-noise ratio (SNR). According to wireless
communication theory, greater distance between transmitter and re-
ceiver will lead to lower SNR (and increased bit errors) through in-
creased path loss, when transmit power and noise floor remain con-
stant. The same SNR can be achieved by generating an increased
level of AWGN, which will reduce the SNR by raising the noise
floor at the receiver. The same concept is commonly used in testing
wireless systems such as cell phones in a laboratory environment.

We placed four antennas about 3ft inward from the corners of
the grid. The antennas are attached, through a 4-way splitter, to a
AWGN waveform generator. Four antennas more evenly distribute
the noise level over the grid. Using only one antenna to inject noise
would create highly asymmetric links.1

1Consider the SNR at different positions between two radios A
and B at opposite corners of the grid, with a noise source next
to A. Signal S and noise N power are inversely proportional to the
square of the distance d from the transmitter. Therefore, when A

transmits a packet the SNR =
S
d2
N
d2

= S
N

remains constant across

all receivers, in this idealized model. When B replies to A (or just
acknowledges the frame), however, the noise source is colocated

with the receiver. Then, SNR =
S
d2
N

(x−d)2
, where x is the distance

between the transmitter and receiver. As d approaches x the SNR
falls of sharply, therefore the packet cannot be received even at
much lower noise levels than in the previous case. By generating
noise near both receivers, SNR levels will be symmetric on this link

2.4 Experimenter’s Interface
An experimenter has to perform two main tasks to configure a

mobility experiment: Configuration of the virtual mobile nodes and
defining the paths of mobile nodes.

First, the experimenter designates one ORBIT node as virtual
mobile node for each mobile node that should be emulated.2 On
these nodes, the experimenter installs applications and perhaps net-
work layer software as appropriate for the experiment. The only
constraint, that we are aware of, is that the routing layer must be in-
structed to use the virtual fake0 interface for communications with
mobile nodes—we have added a default routing table entry for this
interface.

In the second step the experimenter defines a path for each vir-
tual mobile node. This requires creating a configuration file for
each mobile node that contains (time, node name) tuples. The first
tuple should contain emulation time 0 and define the grid node that
belongs to the virtual mobile at the beginning of the experiment.
Nodes are named according to their coordinates in the grid. Each
consecutive tuple marks a change in the grid node that is associated
with the virtual mobile. By coordinating the time intervals with the
AWGN level, emulation of different speeds is possible. The con-
figuration tool translates these configuration files into Click config-
uration files for each node that is part of the experiment.

We use the ORBIT NodeHandler infrastructure to start an exper-
iment. It provides a scripting language to execute shell commands
in parallel on a group of ORBIT nodes, and allows remote booting
and shutdown of nodes. Starting the experiment involves execut-
ing the applications and installing the click configurations on the
nodes. Changing the associated grid nodes is controlled through a
timer on each node. This timer starts as soon as the click scripts are
installed. NodeHandler uses multicast to send the commands, thus
it also achieves a high degree of synchronization among the nodes.
Ott and colleagues [12] provide more information on the NodeHan-
dler scripting as well as a measurement collection infrastructure.

3. IMPLEMENTATION
We have implemented the spatial switching concept on the OR-

BIT Testbed through MAC address translation using the Click mod-
ular router framework [11]. Click runs on a Linux 2.4.26 kernel and
is integrated with the madwifi stripped driver3 for wireless cards
with Atheros chipsets. Every grid node and virtual mobile node
requires a custom Click configuration, which includes the map-
pings between the virtual mobiles’ MAC addresses and the MAC
addresses of the corresponding grid node. A configuration tool au-
tomatically generates these scripts from path descriptions of the
mobile nodes.

The VMN scripts contain most of the switching logic, while the
grid nodes just forward packets from their VMN to the wireless
interface and vice versa. Conceptually, a VMN script maintains
an set of Ethernet headers, which change over time. These head-
ers define the source and destination grid node over which packets
are switched, depending on their destination. The VMN scripts
install the virtual network interface fake0 and intercept all packet

and SNR falls of with distance.
2Our current implementation uses ORBIT nodes as virtual mobile
nodes. In future versions, we expect to make external servers avail-
able for this purpose.
3Available from http://www.pdos.lcs.mit.edu/
˜jbicket/madwifi.stripped/. The madwifi stripped
driver is a fork from the regular madwifi driver that provides
integration with Click. It also provides a pseudo-ibss mode that we
used for our experiments because the ad-hoc mode implementation
in the standard madwifi driver is not stable.

FromHost (fake0 , 1 9 2 . 1 6 8 . 1 0 0 . 2 / 2 4)

/ / S p l i t i n t o s t r e a m s based on d s t MAC
−> whichVM cl : : C l a s s i f i e r (

0 /000 FEA4D9510 , 0 / 0 0 0 FEA4A8AF0 ,
0 /000 FEA4CB750 , 0 / FFFFFFFFFFFF) ;

/ / add doub le E t h e r n e t header
whichVM cl [0] / / 1 . s t r eam
−> S t r i p (1 4) / / remove header
−> ee VM73 VM43 / / add w i r e l e s s header
−> ee Own / / add wired e t h e r n e t header
−> Q; / / s end t o o u t p u t queue

/ / S i m i l a r l y , hand le p a c k e t s f o r
/ / o t h e r d e s t i n a t i o n and b r o a d c a s t s .
whichVM cl [1]
−> S t r i p (1 4)
−> ee VM73 VM53
−> ee Own
−> Q;

whichVM cl [3]
−> S t r i p (1 4)
−> ee VM73 ALLVM
−> ee Own
−> Q;

/ / Send o u t g o i n g p a c k e t s t o e t h 0
Q : : Queue −> ToDevice (e t h 0) ;

/ / Forward r e c e i v e d p a c k e t s t o h o s t
fd : : FromDevice (e t h 0)
−> S e t P a c k e t T y p e (HOST)
−> ToHost (f a k e 0) ;

/ / Change t h e e n c a p s u l a t i o n h e a d e r s
/ / when emula ted node moves
PokeHand le r s (
w a i t 12 ,
w r i t e ee Own . d s t 00 :0 F :EA: 4C : A6 : BE ,
w r i t e ee VM73 VM43 . s r c 0 0 : 6 0 : B3 : 2 5 : BF : E9 ,
w r i t e ee VM73 VM53 . s r c 0 0 : 6 0 : B3 : 2 5 : BF : E9 ,
w r i t e ee VM73 ALLVM . s r c 0 0 : 6 0 : B3 : 2 5 : BF : E9 ,
w a i t 3 ,
w r i t e ee VM73 VM83 . d s t 0 0 : 6 0 : B3 : 2 5 : C0 : 1 1
)

Figure 4: Fragment of the click configuration script for a vir-
tual mobile node.

sent to this interface. On every packet, the VMN script changes the
source and destination addresses in the packets’ Ethernet header to
the wireless interfaces of the grid nodes that are associated with the
source and destination VMNs. We will refer to this header as the
wireless header. It then double encapsulates the scripts the packet
with a second Ethernet header that contains the source and desti-
nation addresses to send the packet to the VMN’s associated grid
node. We will refer to this second header as the wired header. To
account for this double encapsulation the maximum transfer unit
on fake0 must be reduced to 1486 octets). Finally, click sends the
packet directly to the eth0 interface.

Listing 3 shows the key parts of a VMN configuration file. For
brevity, this configuration describes a small scenario with three
nodes, only one of whom moves a step. Also, we have omitted
the handling of ARP request that the local host sends to the fake0
interface. The first part of the script defines a graph of packet pro-
cessing elements that a packet traverses. The encapsulation head-

ers that the script generates are dependent on the destination VMN.
Therefore, a classifier elements divides the incoming packets into
three streams (two for the other VMNs, one for broadcast) based on
their destination MAC address. In each stream Ethernet encapsu-
lation elements replace the headers to send the packet via two grid
nodes to the destination VMN. All streams converge on the eth0
interface.

When a node moves, the VMN needs to update its Ethernet head-
ers with new MAC addresses. The PokeHandlers command exe-
cutes such updates at predefined times (this relies on time synchro-
nization between nodes). The wait times are relative to each other,
and zero represents the start of the experiment. At time 12, in the
example, the VMN switches to a different grid node. Therefore,
it must update the wired header with the new destination address,
and all wireless headers with the new source address. Simultane-
ously, all other VMNs must change the destination address in one
of their wireless headers. This is illustrated at absolute time 15 in
the script. The destination address in the header for VMN 8-3 is
updated, because this VMN has moved to a new grid node.

Double encapsulating in the VMN scripts means that a GN node
only has to keep track of its associated VMN. When it receives a
double encapsulated packet on the wired interface, it removes the
wired header and transmits the remaining packet over the wireless
interface. Whenever a broadcast or unicast packet is received on the
wireless interface, however, it has to add another Ethernet header to
forward the packet to its current VMN. Similar to the VMN script,
a PokeHandler command changes this header when a VMN moves
away or a new VMN arrives at the grid node. The madwifi stripped
driver only accepts packets with 802.11 headers as opposed to other
network drivers that expect 802.3 headers. Therefore, we integrated
the GN script with the pseudo-ibss script supplied with the madwifi
stripped driver. This script handles the header conversion and im-
plements a pseudo ad-hoc mode.

4. CASE STUDY: AD-HOC ON DEMAND
DISTANCE VECTOR ROUTING

The following case study illustrates how the emulator can be
used for mobile systems experiments and how noise generation can
create multi-hop topologies on the testbed. To this end we measure
goodput on a multi-hop network running the Ad-hoc On Demand
Distance Vector (AODV) protocol.

The case study required installing an AODV implementation and
a goodput measurement application on the nodes, and generating a
random-walk mobility scenario. The first step was straightforward:
We chose the Ad-hoc On-demand Distance Vector routing imple-
mentation from Uppsala University (AODV-UU).4 After recompil-
ing our kernel with netlink support and invoking the aodv daemon
with a command line parameter AODV was up and running. The
crucial command line parameter instructs it to use our virtual inter-
face fake0. Similarly, we could use a variety of different throughput
measurement applications. This shows how our spatial switching
implementation at the network device driver level allows the use of
unmodified routing protocol implementations.

To create mobility scenario, we implemented a perl script that
generates a 2D random-walk pattern. To allow easier interpreta-
tion of the results, we defined a 5min experiment with only one
mobile node conducting a random walk over the full grid and two
stationary VMN assigned to grid nodes 1-3 and 8-3. We have raised
the noise level so that communications between the two stationary
nodes must be routed over the mobile node, because the stationary

4Available at http://user.it.uu.se/˜henrikl/aodv/

 0

 200000

 400000

 600000

 800000

 1e+06

 0 50 100 150 200 250 300

U
D

P
T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

Switching times

Figure 5: UDP goodput over a 2-hop AODV route. The two
endpoint nodes are stationary. Goodput changes over time
as the intermediary node moves between areas with different
packet error rates. The markers show the times at which the
intermediary node moves to a different grid node. The changes
in throughput appear well correlated.

nodes are out of each other’s communication range. The mobile
node switches its position on average every 20 seconds.

Figure 5 shows the UDP goodput between the two stationary
nodes as measured with the Rude & Crude tools.5 Five repetitions
within one hour showed low variance. In the graph we have also
marked the times at which the position of the mobile node changes.
All 802.11 radios were configured to a bitrate of 1Mbps, therefore
the theoretical maximum goodput over a two-hop route protocol
overhead is about 400Kbps. The graph shows how the throughput
varies between zero and the maximum at different positions of the
mobile node.

The high throughput variance of the AODV experiment can be
explained with the different link qualities that the mobile node ex-
periences at different positions. To this end, we measured packet
error rates between different sender and receiver pairs to charac-
terize the network topology created by noise generation. For this
experiment we configured one radio to transmit access point bea-
cons and one radio on each of the other 63 nodes as receivers that
log the RSSI and sequence number for each received beacon.6 This
was implemented in Click with the madwifi stripped driver.

Figure 6 shows for each receiver the percentage of beacons re-
ceived at the noise setting used for the AODV experiment. Each ex-
periment duration was one minute, during which the node marked
with tx transmitted 600 beacons. Many nodes have high PERs, but
have not completely lost communication. This means some nodes
will sporadically receive packets from a transmitter even though
the PER is too high for most applications. This does not match
well the network topologies commonly used in simulator evalua-
tions. However, it is consistent with experimental observations by
other researchers [5].

The transmitter positions correspond to the endpoints of the AODV
measurement. Referring back to figure 5 we can interpret the vari-
ations in goodput. The mobile VMN is initially assigned to grid
node 7-5. From the left packet reception graph, we can see that

5Available from http://rude.sourceforge.net/
6iwpriv ath0 setrxhdr 1 configures the madwifi stripped
driver to prepend prism headers to each received packet, which con-
tain RSSI.

0

10

20

30

40

50

60

70

80

90

100

Tx

0

10

20

30

40

50

60

70

80

90

100

Tx

Figure 6: Packet reception rate with raised noise floor. The transmitter is at positions 1-3 (left) and 8-6 (right). Some nodes receive
no packets, which allows the creation of multi-hop topologies.

this grid node has good packet reception rate on the uplink as well
as the downlink, which explains the corresponding goodput value
around 200 Kbps. About 7 seconds later, the VMN switches to
grid node 6-8 and the goodput drops to zero. This drop can be ex-
plained by the 100% packet loss that grid node 6-8 experiences. In
another 17 seconds, the mobile VMN switches to grid node 7-6 and
there is no change in the goodput because this grid node also expe-
riences 100% packet loss. About 41 seconds into the experiment,
the VMN switches to grid node 8-4 and we see a rise in the goodput
value shortly afterwards. This increase in goodput correlates with
the packet reception rate for grid node 8-4.

These measurements substantiate that raising the noise floor in
the emulator environment can be used to place some nodes out of
the communication range of a transmitter. As such, this mechanism
allows creating multi-hop topologies in ad-hoc networks.

4.1 Future Work
A continuously moving radio experiences physical effects such

as multipath fading, shadowing and, the doppler effect, which af-
fect the received SNR and packet error rate. The constructive or de-
constructive summation of several reflections of a signal can cause
the signal strength to rise or fall sharply at different points in space
and time. In addition, moving into the “shadow” of an obstruc-
tion lets the overall signal envelope drop and at high velocity the
doppler effect causes frequency shifts.

Thus, the mobility emulator provides the most accurate results
in discrete mobility scenarios, where nodes occasionally change
position but do not move at high speed while they are communi-
cating. This corresponds well with typical laptop or PDA usage in
office and conference environments. More research is needed, how-
ever, to accurately emulate the fading and frame error patterns that
continuously moving nodes experience. One approach would drop
packets in the network stack to emulate frame error rate patterns
that are dependent on a mobile node’s speed. A second approach,
would use more fine-grained variable noise controls on each re-
ceiver in conjunction with spatial switching to more accurately em-
ulate movement.

5. CONCLUSIONS
We have presented the design and current implementation status

of a mobility emulator based on software spatial switching. This

emulator allows experimentation with a sizable number of nodes
while using real physical and link layers. Through an ad hoc rout-
ing case study we have shown that this emulator can support ex-
periments with mobile nodes that traverse zones of varying con-
nectivity. These first results also indicate that noise generation can
emulate larger sized areas on a small testbed, which is necessary
for creating single-channel multi-hop topologies.

6. REFERENCES
[1] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom̈, and C. Tschudin. A

large-scale testbed for reproducible ad hoc protocol evaluation. In IEEE WCNC,
2002.

[2] M. Allman and A. Falk. On the effective evaluation of TCP. ACM SIGCOMM
Computer Communication Review, 29(5):59–70, Oct 1999.

[3] A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri. Towards
realistic mobility models for mobile ad hoc networks. In ACM MobiCom ’03,
pages 217–229. ACM Press, 2003.

[4] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott. Experimental
evaluation of wireless simulation assumptions. In ACM/IEEE MSWiM, pages
78–82, October 2004.

[5] D. Maltz, J. Broch, and D. Johnson. Experiences designing and building a
multi-hop wireless ad hoc network testbed. Technical Report CMU-CS-99-116,
Carnegie Mellon University, Mar 1999.

[6] Y. Zhang and W. Li. An integrated environment for testing mobile ad-hoc
networks. In ACM MobiHoc, Jun 2002.

[7] J. T. Kaba and D. R. Raichle. Testbed on a desktop: strategies and techniques to
support multi-hop manet routing protocol development. In ACM MobiHoc,
pages 164–172. ACM Press, 2001.

[8] E. Hernandez and A. Helal. RAMON: Rapid-mobility network emulator. In
IEEE LCN, Nov 2002.

[9] S. Sanghani, T.X. Brown, S. Bhandare, and S. Doshi. EWANT: The emulated
wireless ad hoc network testbed. In IEEE WCNC, volume 3, pages 1844–1849,
Mar 2003.

[10] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh. Overview of the ORBIT radio grid testbed
for evaluation of next-generation wireless network protocols. In IEEE WCNC,
2005.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Transactions on Computer Systems, 18(3):263–297, Aug
2000.

[12] M. Ott, I. Seskar, R. Siracusa, and M. Singh. Orbit testbed software
architecture: Supporting experiments as a service. In IEEE Tridentcom, Feb
2005.

[13] Berkeley Varitronics Systems. Yellowjacket 802.11b/g data sheet.
http://www.bvsystems.com/Products/WLAN/YJ802.11bg/
YJ802.11bg.htm, Dec 2004.

