
MF-IoT: A MobilityFirst-Based Internet of Things
Architecture with Global Reach-ability and

Communication Diversity

Sugang Li∗, Jiachen Chen∗, Haoyang Yu∗, Yanyong Zhang∗, Dipankar Raychaudhuri∗,
Ravishankar Ravindran†, Hongju Gao‡, Lijun Dong†, Guoqiang Wang†, and Hang Liu§

∗WINLAB, Rutgers University, NJ, U.S.A. Email: {sugangli, jiachen, hy214, yyzhang, ray}@winlab.rutgers.edu
†Huawei Research Center, CA, U.S.A. Email: {ravi.ravindran, lijun.dong, gq.wang}@huawei.com

‡China Agricultural University, Beijing, China. Email: hjgao@cau.edu.cn
§The Catholic University of America, U.S.A. Email: liuh@cua.edu

Abstract—The rapid growth in IoT deployment has posed
unprecedented challenges to the underlying network design. We
envision tomorrow’s global-scale IoT systems should support
global device reach-ability, mobility, diverse communication pat-
terns, and resource efficiency. Existing solutions either rely on
IP protocols that do not have efficient mobility support, or seek
application-layer optimizations that incur high computing and
deployment overhead. To fill this void, we propose to adopt clean-
slate network architecture in the core network that decouples
locators from network addresses, and towards this end, we
propose MF-IoT, which is centered around the MobilityFirst
architecture that focuses on mobility handling.

MF-IoT enables efficient communication between devices from
different local domains, as well as communication between
devices and the infrastructure network. The MF-IoT network
layer smoothly handles mobility during communication without
interrupting the applications. This is achieved through a trans-
parent translation mechanism at the gateway node that bridges
an IoT domain and the core network. In the core network,
we leverage MobilityFirst functionalities in providing efficient
mobility support for billions of mobile devices through long,
persistent IDs, while in the local IoT domain, we use short, local
IDs for energy efficiency. By seamlessly translating between the
two types of IDs, the gateway organically stitches these two parts
of the network.

Through large scale simulation studies, we show that MF-
IoT is able to achieve the four features we envisioned for an
IoT system, with performance optimizations in reducing network
traffic load, avoiding congestion, and ensuring fast and timely
packet delivery.

Keywords-IoT, Network architecture

I. INTRODUCTION

With the advent of new generation embedded devices,

including wearables, robots and drones, Internet of Things

(IoT) has received a great deal of attention in the past few

years. The applications of IoT range from individual-level

applications such as smart health care and smart homes, to

large-scale ones such as smart cities. According to [1], the

total number of connected “devices1” can reach 50 billion

by the year of 2020. Compared to traditional sensors, these

new devices are able to cope with more complex logic —

1In this paper, we refer to these devices as embedded devices, sensor
devices, or IoT devices interchangeably.

sensors can carry out more local computation and actuators

can be easily controlled via the network. Additionally, many

devices now have higher mobility than before. These changes

in the IoT devices have introduced new opportunities as well

as posed new challenges to the underlying network design.

In the last few years, several solutions have been proposed

to design new IoT systems, which can be generally classified

into two categories based on the underlying network design.

Solutions in the first category (e.g., those discussed in [2],

[3]) try to support the IoT system through traditional Internet

Protocol (IP). However, IP has its intrinsic problems in deal-

ing with device mobility since it couples a node’s identity

with its location. Also, the wide deployment of Network

Address Translation (NAT) hinders global device reach-ability

in scenarios such as sending invasion alarms to the user’s

mobile devices. To better cope with mobility and realize

global reach-ability, therefore, solutions in the second category

(e.g., those discussed in [4], [5]) try to alleviate the above

problem in the application layer. In these solutions, a variety

of Wireless Sensor Network (WSN) protocols are used inside

the constrained part of the networks (that mainly consist of

resource constrained embedded devices), while the interactions

between infrastructure nodes and sensor devices are achieved

by a server (or a proxy) that runs application-layer logic.

Hence, to allow embedded nodes to initiate communication

with infrastructure nodes, these solutions either have to main-

tain long-lived connections between the client and the proxy,

which will likely result in scalability issues, or rely on polling,

which will likely cause traffic overhead and long latency.

To make matters worse, sensor nodes deployed by different

organizations are usually not compatible with each other, and

therefore users will end up installing multiple servers (or

server applications) to support all the sensor nodes.

In this paper, we argue that we should design a generic

and efficient network architecture to support sensor nodes and

infrastructure nodes across domains and organizations. We

present the IoT system we envision in Fig. 1. Much more

than a simple combination of WSN and core network, the

proposed network architecture should have the following crit-

ical features: 1) global reach-ability for all the embedded and

2016 IEEE First International Conference on Internet-of-Things Design and Implementation

978-1-4673-9948-7/16 $31.00 © 2016 IEEE

DOI 10.1109/IoTDI.2015.17

129

Core network

IoT domain 1

IoT domain 2

IoT domain 3

Fig. 1: The envisioned IoT system architecture consists of the core
network and many local area IoT networks (referred to as IoT domains).
We illustrate three applications that motivate our study in this paper. The
green arrows illustrate the data exchange between an air conditioner and
a temperature sensor and a humidity sensor; the blue arrows illustrate the
application in which a light sensor triggers a drone in another IoT domain
to take pictures and send them to a cell phone (in core network); the
red arrows illustrate the application in which a cell phone synchronizes
multiple cameras so that they take pictures at the same time.

infrastructure nodes, in that they can be identified and located

via persistent, globally accessible, identities, 2) mobility sup-
port for seamless connection in the presence of node mobility,

3) richer communication patterns including direct device-to-

(multiple/any) device, device-to-(multiple/any) infrastructure,

infrastructure-to-(multiple/any) device communication without

the necessity of going through the application layer (where the

devices may belong to different local IoT domains as shown

in Fig. 1), and 4) resource efficiency which supports a large

number of embedded devices that are severely constrained

in energy, computation, storage, and/or network capacity. To

build an IoT system with these features, we believe the

main challenge lies in the network layer design, especially

in the data plane. In this paper, we focus on this particular

aspect, while adopting existing algorithms in neighbor/service

discovery and routing in the proposed system.

At the center of the proposed IoT network architecture is

MobilityFirst [6], a next-generation network that focuses on

handling device mobility in the Internet. We choose to build

our architecture on MobilityFirst because it is designed to

address the inefficiencies of IP when accommodating rapidly

increasing mobile and sensor devices in the Internet, which

shares a common set of challenges as building a new IoT

system out of these devices. In MobilityFirst, each device (or

application, or even a piece of content) has a 20-byte flat

Globally Unique IDentifier (GUID). MobilityFirst decouples

the node identity (GUID) from its location (Network Address,

NA in short). The translation from GUID to NA is performed

by a logically centralized Global Name Resolution Service
(GNRS). Different from DNS, GNRS is a network component

transparent to the applications, which means the routers rather

than the senders can perform late-binding (GNRS re-lookup)

on a delivery failure when an end host moves. This design

allows quick and local fail recovery to increase the delivery

rate, and more importantly, the applications focus only on

the GUID’s rather than the changing NAs. MobilityFirst is

well-suited to support the aforementioned features of the IoT

architecture.

However, we need to address several challenges before we

can extend MobilityFirst into the IoT networks:

1) Long GUID’s: the usage of 20-byte GUID’s in IoT is

too heavy-weight, if at all possible, for layer 2 protocols

like 802.15.4 [7] (which has a mere 127-byte Maximum

Transmission Unit, MTU);

2) Costly GNRS lookup: MobilityFirst routers perform a

GNRS lookup when the destination NA is unknown or

the client is no longer at the NA specified in the packet

(due to mobility). This operation is not feasible for storage-

constrained embedded nodes;

3) Link-state routing: MobilityFirst adopts link-state rout-

ing [8], similar to OSPF [9], which poses high computation

and storage burdens on embedded nodes.

To address these challenges, in this paper, we propose MF-
IoT, a generic network architecture that extends MobilityFirst

into the IoT world. We create a resource efficient “dialect” of

MobilityFirst to allow sensor nodes to communicate within a

local area, referred to as a local IoT/sensor domain (see Fig. 1).

Gateways are used to translate between MobilityFirst and

the dialect but this process is transparent to the applications.

Unlike the application layer solutions, the dialect only exists

in the network layer. Unlike NAT either, each device in MF-

IoT has a GUID, like in MobilityFirst, and this GUID can

be used to realize global reach-ability. MF-IoT also takes

communication pattern diversity, GUID size, and computation

awareness into consideration to provide rich yet light-weight

support to IoT applications.

The contributions of this paper are as follows:

• We identify a list of requirements for a generic IoT archi-

tecture;

• We extend the GUID-based communication into the IoT

domains to allow global reach-ability and seamless mobility

handling, while using Local Unique IDentifiers (LUID) in

local IoT domains for efficiency;

• We support a rich set of communication patterns, including

unicast, multicast and anycast between sensor nodes and

infrastructure nodes and among sensor nodes (that may or

may not belong to the same domain);

• We adopt service-based GUID assignment which facilitates

communication with a specific service provided by a node

instead of with the node itself, and easier support for

functions like caching, service mobility (anycast), etc.;
• Through large scale simulations, we show that MF-IoT can

significantly reduce the network traffic load and effectively

avoid congestion in the network, leading to packet delivery

latencies that are orders of magnitude shorter. Indeed, MF-

IoT can deliver packets within tens of milliseconds, while

IP-based solutions encounter severe congestion and the

resulting latencies are more than a few seconds.

The remainder of the paper is organized as follows: §II
summarizes the envisioned requirements of a generic IoT

network architecture and describes our main design rationales.

The design detail is presented in §III and the architecture is

130

evaluated in §IV. §V discusses existing IoT network architec-

tures, and §VI concludes the paper.

II. DESIGN RATIONALE

In this section, we first discuss the requirements we envision

an IoT architecture should satisfy to efficiently connect billions

of devices online and enable diverse interactions among them.

We then give a brief description of MobilityFirst and explain

why we base our design on MobilityFirst. Finally, we present

our design rationales one by one.

A. Requirements of a Generic IoT Architecture

As the number of embedded devices rapidly increases, they

pose a set of new challenges/requirements on the underling

network design.

1) Global reach-ability: One of the salient features offered

by IP is its global reach-ability – applications can reach

each other by simply specifying the destination IP address

in the packet header, without worrying about details such as

hardware type, or the application on the destination.

This feature is particularly important for scenarios like

emergency notification. In such scenarios, it is desirable that

the sensors are able to notify the predefined clients without

the need of going through a server or proxy, requiring each

client to be associated with a unique and persistent identifier.

Global reach-ability is also important for remote actuation

applications, where users may need to use their smartphones

to directly control devices such as air conditioners, rather than

going through 3rd party protocols [10].

Most of the existing IoT architectures (e.g., [2], [4]) focus

either on the communication within a local sensor network

or on the adaptation over the application layer, but we take

the viewpoint that an IoT architecture should also enable

transparent interactions between sensors and infrastructure

nodes at little overhead.

2) Mobility support: With the rapid deployment of mobile

sensors such as robots and drones, an IoT architecture should

provide seamless mobility support such that applications can

communicate with each other without worrying about the

consequence of a node’s location change or any network

change (e.g., new identity, new route to the target). At the

same time, client devices tend to move frequently — the user’s

smartphone may move to a different network while in the

middle of controlling a rice cooker, or listening to the security

alarm at home. An IoT architecture should be able to handle

mobility of different parts of the system.

3) Communication diversity: A significant departure from

traditional WSNs whose main function is data collection, the

new IoT paradigm aims to facilitate a larger variety of use

cases and a much richer set of communication patterns.

An important communication pattern in IoT is device-to-

device communication; a sensor should be able to directly

communicate with an actuator rather than being connected by

a server. This communication pattern can cut down response

time, traffic volume and potential failures caused by the server,

all of which are critical to real-time IoT systems. Additionally,

direct communication between a device and multiple devices

should also be supported.

Another communication pattern needed by IoT is direct

communication between a device and infrastructure nodes.

In fact, the observe mode described in [11] follows this

communication pattern — a client registers a certain event,

and when that event is detected by a device, it would send

notifications to the client directly.

Finally, anycast should be supported, delivering messages

to any node from a group.

4) Resource constraints and heterogeneity: Even though

today’s IoT devices are becoming increasingly more powerful,

their resource constraints remain a big issue. Many of the em-

bedded devices still have very limited computation, memory,

and communication capability. Moreover, embedded devices

vary greatly in their capability. As a result, an IoT architecture

should take into consideration these factors.

B. Background on MobilityFirst

MobilityFirst [6] is proposed as a future Internet architecture

with mobility and global accessibility as core design concerns.

To achieve these features, MobilityFirst introduced several

components into the network:

1) Globally Unique IDentifier (GUID): MobilityFirst uti-

lizes persistent GUID to name every network object. The

separation between the identifier (GUID) and the locator (net-

work address, NA) provides support for mobility and global

accessibility. Meanwhile, GUID can be a public key derived

from the properties of the object or a human-readable name,

hence it allows the objects to be self-certifiable.

2) Global Name Resolution Service (GNRS): GNRS is a

logically centralized service that maintains the mapping from

the GUID of an object to its current NA(s). MobilityFirst

routers can perform late binding — querying the GNRS

whenever a destination NA could not be resolved in the local

scope. This is a network-layer solution which is different from

DNS, and it provides better support for mobility since the

network has the potential to recover a delivery failure locally.

Works in [12], [13] proposed distributed solutions for GNRS

implementation which can have scalability and acceptable

lookup performance in the core network.

3) Routing: MobilityFirst routes packets based on the

NA(s). Work in [8] proposed a basic routing solution in Mobil-

ityFirst similar to Open Shortest Path First (OSPF). In this so-

lution, each router maintains the global topology and calculates

the shortest path to the destination in a distributed manner.

4) Service ID: To support multiple network services such

as unicast, multicast, and in-network computing, service ID is

included in the packet header so that each router is capable of

making decision based on its policy.

Based on the aforementioned components, MobilityFirst has

the potential to be a network architecture for IoT. However,

some challenges remain for the deployment in IoT systems

in which many resource-constraint devices might exist. First

of all, MobilityFirst uses a 20-byte flat GUID. If the net-

work operator tries to run the low-rate network (e.g., IEEE

131

802.15.4), it will be inefficient in data transmission. Secondly,

GNRS operations remains unrealistic for the low-end devices

since they may not have direct link to the GNRS server, nor

does it have enough storage to support store and forward in

late binding. Routing scheme also needs to be optimized to

preserve energy consumption if we want to use MobilityFirst

in IoT. Therefore, in this work, we propose MF-IoT, a generic

network architecture that extends MobilityFirst into the IoT

world, providing rich (yet light-weight) support for different

applications and communication patterns.

C. MF-IoT Design Rationales

Based on the requirements, we propose MF-IoT, an archi-

tecture that extends MobilityFirst to allow seamless commu-

nication among IoT nodes and between IoT and infrastructure

nodes. We build our architecture over MobilityFirst because

of its inherent support for reach-ability (via 20-byte persistent

GUID) and mobility (via late-binding in the network layer [6]).

Accordingly, we create a much lighter-weight protocol em-

bedded devices can use within a local IoT domain to meet

their resource constraints. In order to achieve global reach-

ability, we use network-layer translators (gateways) to provide

transparent translation between the light-weight protocol and

MobilityFirst.

1) GUID vs. LUID: The 20-byte GUID is a key feature in

MobilityFirst to provide mobility support. Each device would

have a persistent and unique GUID no matter when and where

it moves. It is also important for MF-IoT to keep this feature

in achieving global reach-ability and mobility handling.

However, always carrying the 20-byte GUID’s (40 bytes

for a source-destination pair) in the packet header may not

be always feasible over a low-rate layer-2 protocol such as

802.15.4. To solve this issue, we first introduce a lighter-

weight packet header (total length of 10 bytes, see §III-B))

and a 2-byte locally unique ID (LUID in short). In this way,

we map a device’s 20-byte GUID to its 2-byte LUID when

we reach the local area IoT domain. To cope with collisions

that may occur in this mapping process, we let each domain

have its own GUID to LUID mapping which is managed by

a gateway deployed at the edge of the domain.

Different from NAT and other existing domain-based so-

lutions, MF-IoT does not change the identity the application

uses. The applications, either on constrained IoT devices or on

the infrastructure nodes, still use the 20-byte GUID to identify

each other, while the network performs translation which

is transparent to these applications (see §III-C for detailed

explanation). An IoT node carries its GUID no matter where it

moves, even when it is relocated to another local IoT domain

and is assigned with a new LUID. This ensures the global

reach-ability and mobility handling yet still considers resource

constraints of embedded devices.

2) Service-based GUID: In MobilityFirst, a GUID can be

used to identify a network node, an application, or even a piece

of content. In MF-IoT, we associate a GUID with a specific

service, hence service-based GUID’s. Here, service has a finer

granularity than a network node since in IoT, a node often

IoT Domain 1

MobilityFirst

IoT Domain 2

GW2

GNRS

n1

GW1n3

n2

Forwarding Services

Services

Gateway Service

Fig. 2: MF-IoT architecture overview.

carries multiple services — e.g. a robot might carry a light

sensor, a temperature sensor and several actuators, each of

which provides a service. Its granularity is similar to that of

a “port” in the TCP/UDP definition – each application can

have its GUID(’s) that are exposed to the network and other

applications. In MF-IoT, we name each individual service

instead of the node GUID + port approach like in TCP/UDP.

With service-based GUID’s, applications on an IoT node

can simply listen to one or more GUID’s for different ser-

vices, e.g. sensor data reporting, actuation, caching, etc. With

this approach, we can easily support transparent and energy

efficient service migration, without affecting the functionality

of the services (see §III-D for detail).

MF-IoT also treats message forwarding and gateway as

services, allowing simpler topology management and logic

separation in IoT especially when multiple services co-locate

on a single IoT node (see §III-E).

3) GUID-centric communication diversity: MF-IoT is well

suited to support direct device-to-device communication, no

matter if these two devices are in the same domain or not.

The applications on the devices can identify each other with

corresponding service GUID’s while the underlying network

takes care of the translation between GUID and LUID. IoT

applications can also reach infrastructure nodes easily, through

their GUID’s.

MF-IoT does not distinguish unicast and multicast services.

Whenever there are multiple services listening for the same

GUID, the network would forward a message to all of these

services. However, MF-IoT distinguishes to-all services from

to-any services (anycast). This is achieved by a “Service ID”

(SID) field in the packet header similar to MobilityFirst.

III. MF-IOT ARCHITECTURE DESIGN

In this section, we describe the detailed design of MF-IoT.

We first present the components in MF-IoT, the data packet

format, and then explain how the components work together

to provide the features discussed in §II-A.

A. Components in MF-IoT

MF-IoT consists of the following components (Fig. 2):

1) IoT/Sensor domain: We refer to a local area IoT/sensor

network as an IoT/sensor domain. A large portion of the

nodes in the IoT domain are resource-constrained, where

energy-efficient link and physical protocols such as 802.15.4

or Bluetooth Low Energy (BLE) are primarily used.

132

TABLE I: MF-IoT packet format (4 octets per row).

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

VER PKT_TYP SVC_TYP PROT TTL PKT_LENGTH

SRC_LUID DST_LUID

NONCE

PAYLOAD

2) MobilityFirst domain: MobilityFirst domain refers to the

infrastructure network consisting of MobilityFirst routers.

3) Gateway: A gateway (e.g., GW1 and GW2 in Fig. 2)

serves as the bridge between local IoT domains and the

MobilityFirst domain, translating between MF-IoT packets and

MobilityFirst packets for each local domain. In order to be

compatible with both ends, multiple physical interfaces should

be adopted by a gateway node.

4) Network nodes: In our MF-IoT architecture, network

nodes can be categorized in three classes: constrained nodes

within an IoT domain, resource-rich nodes within an IoT

domain, and infrastructure nodes. Note that a resource-rich

node within an IoT domain usually has rich computing and

storage resources (e.g., camera), but the network interface is

compatible with that of a resource-constrained node.

5) Service: We treat any resource that might be of interest

to users (such as a sensor or an actuator) as a service which

is the unit of GUID assignment.

To provide basic network functions while separating them

from the application logic, we treat forwarding and gateway

also as services (namely, forwarding service and gateway
service). They provide functions like neighbor discovery, rout-

ing, packet forwarding and translation between MF-IoT and

MobilityFirst packets.

Application services refer to IoT resources such as sensing

and actuating. While multiple such services can be provided

by a single IoT node (or even within a single application for

embedded devices), a single service can also be supported

among multiple sensor nodes (details in §III-D).

B. Packet Format

In MF-IoT, we use fixed-length headers instead of Type-

Length-Value (TLV), so that less space and computing is

needed. As shown in Table I, we define the following fields:

VER: the version number of MF-IoT packets;

PKT TYP: type of a packet, can be data, control, etc.;
SVC TYP: the network service type, e.g., multicast, anycast;

PROT: the upper layer (e.g., transport layer or application

layer) protocols, which helps map the upper layer to the

corresponding logic;

TTL: time-to-live, used to prevent routing loops;

PKT LENGTH: length of a packet, can allow packet size up

to 4kB (212 bytes);

SRC LUID & DST LUID: source and destination;

NONCE: a random number generated by the sender. In MF-

IoT multicast, the link layer of the branching node broad-

casts the packet instead of unicasting to every next hop.

The previous hop will receive the same packet, and drop it

if packet with same nonce is seen before.

Algorithm 1 Send function implementation in MF-IoT

1: procedure SEND(G, d)

parameters:
G: destination GUID

d: data to be sent

2: tmp← ti[G] � Lookup local translation cache

3: if tmp = ∅ then � Initiating communication

4: L← REQUEST(G, ∅)
5: else if tmp.State = Stale then � After move

6: L← REQUEST(GL, tmp.LUID)
7: else � Continue communication

8: L← tmp.LUID
9: end if

� Forward MF-IoT packet based on routing

10: FORWARD(Li, L, d)
11: end procedure

C. Transparent GUID/LUID Translation

To enable global reach-ability, MF-IoT uses gateways as

the bridge between the MF-IoT and MobilityFirst domains.

It maintains the mapping between GUID and LUID via a

translation table. The translation table contains 3 columns

(as shown in Table II) — the GUID, its LUID in the local

domain and the mapping type. The mapping type can be Local,
meaning the GUID is in this local domain, Remote, meaning

the GUID is outside of the local domain, or Local+Remote,

which is usually a multicast GUID and means that there

receivers are both inside and outside the domain (see §III-F).

The LUID in the local domain can be recycled based on Least

Recent Used (LRU) or Time To Live (TTL) policies. This

ensures the uniqueness of LUID in a local domain during a

period of time even with a 2-byte length (which allows 65,536

concurrent GUID mappings).

When an embedded device joins a domain, it registers its

GUID’s (each service has a GUID) at the gateway. The gate-

way would give each GUID a LUID and mark them as Local.
When an application tries to send a message to a certain

GUID (G), it would call the send function provided by the

host node’s forwarding service (see Algorithm 1). Note that

in this process, the LUID is transparent to the application.

The forwarding service requests G’s LUID from the gateway

(lines 3–4), and the gateway looks up G in its translation table.

If there is already a mapping, the gateway simply replies with

the LUID; otherwise it creates an entry {GUID=G, LUID =L,

Type=Remote} in the translation table, where L is randomly

generated (different algorithms could be adopted here, which

is orthogonal to this study). Note that in this stage, the gateway

does not have to perform a GNRS lookup and it can respond

to the request immediately. After getting G’s LUID, L, the

forwarding service checks its own routing and neighbor table

to forward the packet using L as the destination LUID.

The forwarding service can also have a local translation

cache (ti in Algorithm 1) for frequently communicated parties.

Before requesting G’s LUID from the gateway, the forwarding

133

n1

n2

GNRS

n4n3

GW1 GW2

{Lookup: G
nx �→L

nx}(a)

{L
n
1
→

L
n
2
}

(b
)

{L
n1→

L
n3,4}

(c) {Lookup: Gn4 �→NAGW
2}

(d)

{G
n1→

G
n3}

(e)

{Gn1→Gn4}
(e)

{L ′
n1→

L
n4}

(f)

Fig. 3: Illustrations for global reach-ability (blue lines: MobilityFirst
traffic, green lines: MF-IoT traffic).

TABLE II: Translation table on GW1 in Fig. 3.
GUID LUID Type
Gn1 Ln1 Local
Gn2 Ln2 Local
Gn3 Ln3 Remote
Gn4 Ln4 Remote
.

service can first check its own cache (lines 2 and 8). The

cache could have stale information when a node moves to

a new domain, but we try to keep the original LUID infor-

mation to reduce changes in the routing tables. Therefore,

when requesting the LUID of a stale entry in the cache,

the forwarding service would carry the original LUID as its

preference (lines 5–6). If there is no collision, the gateway

would register this original LUID in its translation table.

Upon arrival of a MF-IoT packet, a gateway looks up its

translation table and obtain the GUID’s for both source and

destination forward the packet using MobilityFirst logic. At

this point, it might need to look up GNRS for the destination

node’s NA if it is unknown. On the other hand, when the

gateway receives a MobilityFirst packet whose destination

GUID (Gd) is in its domain (the translation table has a

matching entry whose type is Local), the gateway would create

a LUID (Ls) for the source GUID (Gs) and mark the type as

Remote if the source is not in the translation table, and then

send a MF-IoT packet consisting of Ls and Ld. This entry is

created such that the destination device can send a message

to the sender.

In MF-IoT, the gateway does not differentiate if a Mo-

bilityFirst packet is coming from an infrastructure node or

an embedded node in another domain. This feature enables

global reach-ability and seamless mobility handling. Below

we explain how these two objectives are achieved.

1) Global reach-ability: Fig. 3 depicts three scenarios

where an embedded node n1 wants to send a message to a

node in the same domain (n2), an infrastructure node (n3),

and an embedded node in another domain (n4), respectively.

To simplify the description, we assume that each node has

only one forwarding service and one application service,

represented by a box. In Fig. 3, MF-IoT traffic is represented

by green lines and MobilityFirst traffic is represented by blue

lines. Note that we use dotted lines here to denote that the

traffic is not direct traffic between the two nodes, but there

might be relay nodes between them. We next describe the

protocol exchange according to the figure.

(a) To initiate the communication with n2, n3, and n4, n1’s

forwarding service needs to first get their LUID from the

gateway. For n2, GW1 can respond directly since it has

a Local entry in the translation table. For the other two,

GW1 creates new entries and mark them as Remote. Here,

GW1’s translation table is shown in Table II.

(b) The routing algorithm in the local IoT domain forwards

the packet based on the destination LUID. Since n2 is

in the same domain, the local routing algorithm would

forward the packet to n2 eventually.

(c) If the destination LUID (Ln3 or Ln4) is not in the same

domain, the local routing algorithm forwards the packet to

GW1, which translates the packet to MobilityFirst packets

{Gn1 → Gn3} or {Gn1 → Gn4}.
(d) Now GW1 sends the packets with traditional MobilityFirst

logic. In MobilityFirst, the first step is a GNRS lookup

for the NA of the destination. If the destination is an

embedded node in another domain (n4), GNRS would

reply with the NA of the corresponding gateway (GW2).

For an infrastructure node (n3), GNRS would respond

directly with its NA (not shown in the figure).

(e) After getting the NA, the packet will be forwarded in the

MobilityFirst network and eventually reach n3 or GW2.

Note that thanks to late-binding technique in MobilityFirst,

the packet would reach the destination even if n3 or GW2

has moved and has a new NA. This provides seamless

mobility support when an infrastructure node or an entire

local IoT domain moves.

(f) When GW2 receives the packet destined to Gn4, it checks

the translation table and finds that n4 belongs to the local

domain. It then creates a LUID mapping for Gn1 (L′
n1)

and forwards an MF-IoT packet {L′
n1 → Ln4}. Note that

the LUID of Gn1 in this domain does not have to be the

same as Ln1 given by GW1. However, this new LUID

does not affect the communication between n1 and n4

since they are communicating with the GUID while LUID

is kept transparent from them.

2) Handling node mobility: Next, we show how MF-IoT

handles the situation when embedded nodes move from one

domain to another. There are two cases we need to consider,

the first involving one of the communication parties moving to

a different domain (e.g., n2 moves to GW2), and the second

involving one of the communication parties moving into the

same domain (n4 moves to GW1). In both cases, the node

that does not move (n1) will not observe any change in the

communication.

In the first case, let us consider the following situation: when

n1 sends a message to n2, n2 has moved from GW1 to GW2.

We assume that n1 already initiated the communication before

n2 moved, and therefore it already has Gn2toLn2 mapping

in its local cache. When the packet ({Ln1 → Ln2}) reaches

GW1, either via proactive routing (which detects the node

departure and updates the routing) or reactive routing (which

cannot find n2 during message forwarding and then redirects

the packet to GW1), GW1 contains a Remote entry for n2

134

n1

T S

n2

T

n3

GW

{Gn3→GT }

{Ln3→LT
}

{L
n3→L

T }

Fig. 4: Service migration. When the original temperature sensor fails,
the service is migrated to a back up sensor without interrupting the
application because of service-based GUID assignment.

and it will forward the packet similar to the steps (d, e) in the

previous example. Note that during this process, n2’s LUID

has changed, but the application uses only its GUID and is

unaware of this change. If GW1’s translation table has not been

updated when n1’s packet arrives, GW1 can store the message

and forward it later when n2 reconnects from the new domain.

In the second case, let us consider the following situation:

when n1 sends a message to n4, n4 has moved from a different

domain to GW1 and has registered with GW1. In this case,

GW1 has assigned a LUID to n4, Ln4. When n1 sends a

packet {Ln1 → Ln4}, it would reach n4 without going to

GW1, without n1’s active involvement.

Having considered infrastructure node mobility, IoT domain

(as a whole) mobility (described in the previous example), and

embedded node mobility, we believe that MF-IoT can provide

seamless mobility support for an IoT system.

D. Service-based GUID

With the wide deployment of IoT devices where each device

can have more than one sensor services (e.g., a robot may have

a temperature sensor, a humidity sensor, and several actuators),

there is a need to communicate with a specific sensor service

rather than lumping all the sensor services together. Thus,

MF-IoT gives each of these services a GUID, which enables

seamless service migration and service caching. Such features

would be particularly useful in extreme cases like disaster

management. Below, we will discuss 2 typical use cases to

illustrate the benefits of service-based GUID’s compared to

the traditional ID (IP) + port solution.

1) Service migration: In this case, we have an embedded

node n1 which has a temperature sensor (T) and a smoke

sensor (S), and a backup node n2 with a temperature sensor

that is not in use in the beginning of the example (see Fig. 4).

In this example, an infrastructure node n3 queries T from time

to time to get the current temperature. When the temperature

sensor on n1 fails, n2 will serve the same functionality. In the

traditional IP + port solution, the new T would have n2’s IP

address with a specific port and accordingly, GW and/or n3

would need to know the change. Note here that it is often not

feasible to migrate the whole node and let the new node (n2)

use the original node’s (n1’s) IP address because n2 only pro-

vides a subset of services that n1 supports. Thus, the traditional

solution is inconvenient for users and application designers.

In MF-IoT, we can have the temperature sensor on n2 take

over the service T by inheriting T ’s GUID GT and LUID LT .

In this way, the routing algorithm would find T ’s new location

without any extra overhead from n3 and GW .

GW

n1

H

{Ln4→LH}

n2

T

{Ln4→LT}

n3

L

{Ln
4
→LL

}

n4

{Gn4→Gx}

(a) Before power outage (each device is serving its own sensor service)

GW

n1

T L
H

{Ln4→Lx}

n2

n3

n4

{Gn4→Gx}

{Upd: LT
}

(b) During power outage (n2 and n3 can be turned off and update the caching
service on n1 periodically)

Fig. 5: Service caching during power outage.

2) Service caching: There are also cases that the more

powerful devices can help lower-end devices cache the sensor

readings, or low-end devices collaborate and cache for each

other to save energy, which we refer to as service caching in

MF-IoT. The caching node will listen for the specific service

GUID and the source sensor can update the caching node with

the same GUID.

Fig. 5 shows a local IoT domain containing 3 services (a

humidity sensor service H from node n1, a temperature sensor

service T from node n2, and a light sensor service L from

node n3). During normal operations (Fig. 5a), each of three

nodes has its own power source and can serve data requests

from other parts of the system (e.g., an infrastructure node n4).

When power outage happens (Fig. 5b), to extend the lifetime

of the entire domain, they can elect a representative (n1 in the

example) and cache the latest readings from all three sensor

services on n1. n2 and n3 can then go to the sleep mode and

wake up periodically to get the sensor reading and update the

cache. In Fig. 5b, n2 is updating the cache and n3 is in the

sleep mode. Since n1’s cache is listening for the LUID for T
and L, the corresponding requests would be forwarded to n1

and the caching service can respond with the cached value.

When the battery on n1 drops lower than a threshold, n1 may

also offload the caching service to other nodes (e.g., n3) and

go to the sleep mode. Of course, the caching service can also

be placed on the gateway (GW).

E. Forwarding Service and Gateway Service

MF-IoT treats the basic network functionalities within an

IoT domain, such as forwarding and gateway, as services. This

leads to easier topology management and better separation

between application functions and network functions.

Fig. 6 illustrates a local IoT domain with 4 nodes (n1–n4),

each of which has some or no services, and a gateway (GW).

135

n1

GW
n3

n4

n2

MobilityFirst

Fig. 6: Virtual topology with forwarding as a service (virtual topology
marked in blue).

TABLE III: Neighbor table on n4F .

Neighbor Identity
Ln1F MAC(n1)
Ln2F MAC(n2)
Ln3F MAC(n3)
Ln4S1 PID(n4S1)

TABLE IV: FIB on n4F .

Destination Next Hop
Ln3S2 Ln3F

Ln4S1 Ln4S1

LMF1 Ln1F

.

Unlike the traditional solutions in which the services have

to take care of neighbor discovery and routing, in MF-IoT,

each node’s forwarding service collectively performs these

tasks. To send a packet, an application simply sends the data

to its forwarding service and the network functions reside

only in forwarding services. This clear separation would help

developers focus on a specific part of the system.

When the embedded nodes move, this design can also help

simplify topology management. For example, when n4 moves

away from n1 and they cannot reach each other, this solution

only has one link change (between forwarding service of n1

and n4) while the tradition solution would have 3 link changes.

On the gateway, we also separate the forwarding service

(that relays packets for IoT nodes) from the gateway service

(that translates between MF-IoT packets and MobilityFirst

packets). Therefore, only the packet that will be forwarded out

will go through the gateway service. This reduces the response

time and energy consumption on the gateway and leads to

simpler modification of routing algorithms on a gateway node.

Similar to popular WSN designs, MF-IoT separates the

neighbor discovery from routing. The forwarding service on

the embedded nodes maintains two basic data structures — a

neighbor table (see Table III) and a FIB (see Table IV). We

denote the forwarding service on node ni as niF and the appli-

cation service on node ni as niSj in the tables. The neighbor

table maintains the direct neighbors in the virtual topology.

In the example, the forwarding service on n4 has 3 neighbor

forwarding services with LUID Ln1F −Ln3F (the first 3 rows

in the table). Since the application service on n4 (Ln4S1)

is also a neighbor to the forwarding service, we require the

neighbor table on n4 to maintain an extra entry that maps

Ln4S1 to the Process/Thread ID (PID) of the service (the last

row). The FIB maintains the next hop(s) for each active LUID.

To forward a message, the forwarding service would first get

the next hop(s) for the destination LUID according to the FIB,

and then forward the packet either through wireless media or

through Inter-Process Communication (IPC) according to the

neighbor table. According to Tables III and IV, if the destina-

tion of the packet is a service on n3 (Ln3S2) the forwarding

service on n4 would forward it to the forwarding service on

n3 (1st row in FIB) through layer 2 with MAC(n3) (3rd row

in neighbor table). If the destination is the service on its own

device, the forwarding service would know n4S1 is a direct

neighbor (2nd row in FIB) and forward it though IPC (4th

row in neighbor table). If the destination is a node not in the

domain (e.g., MF1), the FIB would have an entry pointing to-

wards the gateway (to n1F , 3rd row in FIB) and it will be for-

warded to the MAC address of n1 (first row in neighbor table).

Here, the forwarding service takes care of neighbor discov-

ery and forwarding. The update of the FIB is performed by the

routing module (§III-G). An extra TTL field can be added to

the table to allow soft-state neighbor and routing management.

With the forwarding and application services separated, one

can better focus on either component without interfering with

the other.

F. Additional Communication Patterns

As described in §III-C, MF-IoT can support direct device to

device communication (both intra- and inter-domain) and the

communication between devices and infrastructure nodes. In

this subsection, we describe additional communication patterns

that are supported in MF-IoT.

1) Multicast: Since we use service-based GUID’s which

are independent of any specific node, everyone in the same

local IoT domain can listen to the same service GUID.

Therefore, multicast can be supported naturally in MF-IoT

and we further lump unicast and multicast together and refer

to them as a to-all service. The forwarding service on the

branching point would have more than one entry in the FIB for

a GUID if there are more than one receiver. It then replicates

the packet and sends a copy to each next hop (either it is on

another node or an application in the same node). MF-IoT

also takes advantage of the broadcast media all the wireless

nodes are using. When the number of next hop nodes is larger

than a threshold, a node can broadcast the packet instead of

replicating and sending the packet multiple times. The next

hop nodes will look up their FIB and discard the packet if no

matching entry is found.

2) Anycast: In addition to unicast and multicast, MF-IoT

also supports anycast. The listeners in anycast work in the

same way as in multicast — they would listen to the same

GUID and a tree would be formed by the routing protocol

either proactively (e.g., OSPF-like) or reactively (e.g., AODV-

like). When sending an anycast packet, the sender would

place a different SVC_TYP value in the packet header and

the intermediate nodes would only forward it to one of the

next hop nodes based on its policy (e.g., shortest path, to a

node with highest energy level, etc.).
3) “Observe” mode: According to [11], the observe mode

is important for WSN and IoT applications. In this mode, the

observer registers a specific event at a sensor and when the

event is detected, the sensor notifies the observer. Usually one

registration in the observe mode can get multiple notifications

from a single sensor.

The observe mode can also be supported in MF-IoT, and

furthermore, we can provide additional mobility handling and

136

117 137 157 177 197
0

4

8

12

16

of groups per receiver

#
o

f
re

ce
iv

er
s

(a) Histogram for a user’s group number

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Grid size

#
o

f
g

ro
u

p
s

(k
)

(b) The number of groups vs. grid size

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

Grid size

#
o

f
re

ce
iv

es
(M

)

(c) The number of groups vs. grid size

Fig. 7: Intra-domain simulation setup.

multicast support. The observers (either in the same local IoT

domain, in the core network or even in different local IoT

domains) can listen to the same specific GUID. When an event

is triggered, the subject can send the notification to all the

receivers through multicast. With the mobility support and an

inherent push model, we allow the notifications to be sent in

a timely and efficient manner.

G. Routing

MF-IoT does not restrict the routing in the network. The

application designers can feel free to use any existing routing

mechanism or design their own according to the communica-

tion pattern they envision. Here, we suggest several mecha-

nisms that we have in mind:

RPL [14] is widely used in the existing IoT systems for

home and building automation [15]. The solution builds a tree

among the nodes and usually the gateway is seen as the root.

It can provide easier management with lower memory and

energy consumption thanks to the tree topology. For applica-

tions which mostly depend on sensor to gateway and sensor

to infrastructure communication, the solution has its benefits

since all the traffic has to go through the gateway. MF-IoT can

also adopt such kind of routing — RPL algorithm can run as

a separate module and modify the FIB of on the forwarding

engines. The data plane does not need to be modified.

AODV [16] is used by Zigbee [17] as the default routing. It

provides on-demand distance vector routing to accelerate the

direct sensor-to-sensor communication (they do not need to

go to the root of the tree as RPL). However, to find a path

on demand, a request has to be flooded in the whole network

which made the solution less efficient when the network is

large. AODV also can be used in MF-IoT in small domains

for direct communication.

With the advent of Software Defined Networking (SDN),

the concept of a central controller eases the traffic engineering

and policy enforcement in the network. At the same time,

it allows the forwarding engines to be simpler and more

efficient. This concept can also be used in IoT world since

the gateway usually has more resources, no power constraints

and possibly larger radio coverage. The sensors can report the

link changes to the gateway and after calculation, the gateway

will send the forwarding rules back to the sensor nodes either

proactively or on demand. This solution can reduce the amount

of flooding in AODV, and support efficient sensor-to-sensor

communication compared to RPL. It also has the flexibility

to support communication based on policies and resource

constraints on the sensors. At the same time, the sensors do

not have to calculate the routing and it can save energy in

resource constraint nodes. We will use this kind of routing as

the default routing for MF-IoT in the evaluation.

IV. EVALUATION

To evaluate the performance of MF-IoT, we modified our

event-driven simulator that was used in [18], [19], to represent

typical IoT usecases. In the evaluation, we compare MF-IoT

with IP and another state-of-the-art IoT architecture that is

based upon a clean-slate Named Data Network (NDN, see

§V) architecture. We will show that compared to IP and NDN,

MobilityFirst provides a better support for IoT.

Specifically, We consider three scenarios in the evaluation:

intra-IoT domain communication, IoT device mobility, and

communication between IoT devices and infrastructure nodes.

A. Intra-IoT Domain Device-to-Device Communication

1) Simulation setup: We first report the performance of

MF-IoT within a local IoT domain. We simulate a domain that

has 400 sensor nodes, forming a 20×20 grid, and a gateway

(or proxy in the IP case). Each sensor node can communicate

with 8 direct neighbors through 802.15.4, with bandwidth of

250kbps. To perform stress tests, we first generate 30,000

communication groups each containing a sender and 1–50

receivers (therefore the traffic containing both unicast and

multicast traffic). The number of receivers per group follows

a Zipf distribution with α=0.35. As a result, each node in the

network belongs to 117–198 such kind of groups (see Fig. 7a).

We also generate a set of messages for each group. The number

of messages per group also follows a Zipf distribution but

with α=0.81 [20]. The trace then has 138,662 messages and

1,208,203 receive events. The size of the messages varies

between 1 and 100 bytes, and follows a normal distribution

with E=50. The arrival of the messages follows a Poisson

distribution with a mean inter-arrival time of 1/160 seconds.

We compare the following three networking solutions:

IP: We use UDP over 6Lowpan [2] to represent the state

of the art IP-based IoT solutions. According to [21], we use

RPL [14] as the routing mechanism. To send a message to

multiple receivers, the sender would send multiple unicast

messages. If a message cannot fit into a 802.15.4 MTU (127

bytes), it needs to be segmented and re-assembled later.

NDN: NDN [22] uses a query/response model and therefore

the receivers of a group have to poll the sender for updates in

the group. We choose a polling period of 2 seconds to get a

137

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Grid size

A
v
er

ag
e

la
te

n
cy

(m
s) MF-IoT

MF-IoT-U

IP(RPL)

(a) Average packet delivery latency vs. grid size

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

Grid size

N
et

w
o

rk
tr

af
fi

c
(m

s) MF-IoT
MF-IoT-U

IP(RPL)
NDN

(b) Aggregate network traffic load vs. grid size

Fig. 8: Simulation results for intra-IoT domain device-to-device communication.

1-second average latency, which might be acceptable for many

event notification cases but still large for emergent real-time

cases. To reduce the average latency, NDN has to poll more

frequently and the network traffic would increase rapidly. This

is an inevitable trade off in NDN. Unlike IP, it can form a

temporal multicast tree if the requests have temporal locality.

We place a 10kB Content Store on each sensor node. NDN

packet uses TLV format as described in [23] and we do not

place signature and signed info in the Data packet to make

them feasible to be transmitted in 802.15.4. Similar to IP, if

an NDN packet cannot fit into a MAC packet, segmentation

and reassembling would happen on the end hosts.
MF-IoT: We consider two variations of MF-IoT in the

evaluation — MF-IoT w/o multicast (MF-IoT-U) and full

fledged MF-IoT. In MF-IoT-U case, we only use unicast

feature in the network and to send a message to multiple

receivers, the sender has to send multiple unicasts. We use

centralized routing described in §III-G in both variations.
We use the end-to-end latency as well as the aggregate

network traffic transmitted by all the nodes as the performance

metrics of our evaluation.
2) Simulation Results: To show each solution’s perfor-

mance trend, we use different grid sizes ranging from 2×2

to 20×20, and plot the number of groups and receive events

for each grid size in Fig. 7b and Fig. 7c. The performance

results are reported in Fig. 8.
From Fig. 8a, we observe that with larger grids, the average

latency for each solution becomes larger since the sender-

receiver pairs are farther apart. Among the four solutions,

MF-IoT outperforms the other three. Specifically, MF-IoT-U

caused minor congestion in the 20×20 grid and the average

latency grows by around 15ms. However, the average latency

in the IP solution grows even faster since the traffic has to

go through the proxy. When the grid size reaches 13×13, the

traffic load reaches the capacity limit on the gateway, causing

congestion. The average latency goes up to 18.32 seconds

eventually. Here, we assume the proxy has an infinite queue so

that IP would not drop packets. NDN does not cause serious

congestion in the network thanks to its intrinsic flow balance

design. However, due to the polling frequency, the average

latency remains around 1 second, and when the network grows

larger, the average latency goes up by around 100ms partially

caused by some minor congestion.
Fig. 8b shows the aggregate network traffic generated by

0 5 10 12.2 15 20
0

100

200

300

400

500

Receive Time (s)

D
el

ay
(m

s)

Initialization

GNRS lookups
Receiver movement

Late binding

Direct transmit

Fig. 9: The observed receiving latency at different simulation times when
an embedded node communicates with an infrastructure node (I). I
moved to to a different network address at time 12.2s.

each solution. We observe that MF-IoT and MF-IoT-U gen-

erate much less traffic compared to IP and the difference

becomes more pronounced when the network size becomes

larger. Finally, NDN causes a lot of wasteful traffic due to the

polling mechanism.

To summarize, MF-IoT has achieved lower traffic overhead

and average latency compared to other solutions. As a result,

we believe that IoT systems that adopt MF-IoT will accoma-

date higher traffic load and larger network size than the other

start-of-the-art solutions.

B. Communication between IoT and Infrastructure Domains

Next, we demonstrate that MF-IoT supports efficient com-

munication between an embedded device and infrastructure,

even when the infrastructure node is mobile. We consider the

use case that involves a sensor node n trying to send data

to an infrastructure node I once every 100ms. We report the

latencies observed at I at different times in Fig. 9.

In the start phase of the simulation run, marked as “Ini-

tialization”, n first requests I’s LUID from the gateway, and

sends the packet to the gateway. The gateway then conducts a

remote GNRS lookup to find the network address for I . The

overall latency for this initialization phase is around 550ms.

To deal with node mobility, each GNRS entry cached on

the MobilityFirst router would expire after some time. Here,

we set the expiration time as 5 seconds. We thus observe the

reciever-side latency has spikes each time the cached GUID-

to-NA mapping expires and the gateway has to perform remote

GNRS lookups (marked as “GNRS lookups”).

In the simulation setup, I moves to a different network at

12.2 second and the gateway is not aware of this. Therefore,

the gateway would send the packet to the first-hop router

towards I’s original NA (denoted as R) where R performs

138

0 5 7 10 15 20
0

100

200

300

400

500

Receive Time (s)

D
el

ay
(m

s)

Initialization

Receiver movement

GNRS lookupGateway binding Late binding

Direct transmit

Fig. 10: The observed receiving latency at different simulation times
when an embedded node communicates with another embedded node.
The receiver moved to to a different IoT domain at time 7s, and moved
to a third domain at time 15s.

late-binding. We assume that the movement happens instantly

and R can obtain I’s new NA through another GNRS lookup.

With this additional remote GNRS lookup, the average latency

at these times (marked as “Late binding”) also increases.

Finally, we note that this entire process is transparent to the

sensor node n.

C. Inter-IoT Domain Device-to-Device Communication

Finally, we demonstrate that MF-IoT can efficiently support

communication between two embedded devices, even when

one of them moves to a different domain. Specifically, we

consider two embedded nodes n1 and n2, and n1 sends a

packet to n2 every 100 ms. The receiver node n2 is within

the same local IoT domain as n1, and it moves to another IoT

domain at 7s, and to a third IoT domain at 15s. We plot the

latency observed at n2 at different times in Fig. 10.

In the beginning of the simulation (marked as “Initial-

ization”), n1 requests n2’s LUID from the gateway, and its

latency is rather low since they are in the same domain.

n2 moves to another domain at time 7. Here, n1 still sends

the MF-IoT packet with n2’s original LUID, but the packet

will be forwarded to the gateway as n2 has left the domain.

The gateway then performs a remote GNRS lookup for the NA

of n2’s new gateway (marked as “Gateway binding”). From

this point on, the gateway has to perform a GNRS lookup every

5 seconds as cached GNRS entries expire every 5 seconds. As

a result, the latency increases around here.

When n2 moves to a third domain at time 15, the gateway

in the second domain would perform a late binding (like in

the case of the infrastructure node movement), and the first

gateway obtains the NA for n2’s latest gateway at time 17

(with a spike in the latency numbers).

This process is entirely transparent to both nodes. Finally,

we note that in the two mobility usecases we have considered,

it is the receiver that has moved during the communication.

MobilityFirst-IoT also works seamlessly if the sender moves

to a different domain, wherein the sender simply needs to

register the reciever with its new gateway (see §III-C).

V. RELATED WORK

In this section, we discuss related work in state-of-the-art

IoT system and architecture design.

A. State of the Art IoT Architectures

Existing work on IoT systems can be broadly classified into

two categories: network adaptation for constrained devices

and application-layer approaches for resource accessibility

and manageability. Network adaptation solutions like 6LoW-

PAN [2] and ZigBee IP [3] compress the packet header to

allow IPv6 (with MTU ≥ 1280 bytes) to operate on resource-

limited networks like IEEE 802.15.4 (with only 127-byte

MTU). However, the tight coupling between identifier and

locator in IP makes it difficult for these solutions to provide

efficient mobility support.

To deal with resource mobility, studies in the second cate-

gory seek solution in the application layer. Constrained Appli-

cation Protocol (CoAP) [4] proposes a specialized web transfer

protocol to cope with constrained nodes and networks. It pro-

vides a query/response interaction model between endpoints,

where resources could be accessed via URIs. State of the art

IoT platforms such as IoTivity [5] usually involve generic

interfaces to accommodate different lower layer protocols and

a centralized server to facilitate efficient resource retrieval. The

downside of these overlay approaches is that they usually rely

on a server, which is an additional deployment overhead. Also,

they are not well suited to support event notification or pushing

type of communication pattern.

As a result, we believe that in order to support next-

generation IoT systems, we need to consider a network ar-

chitecture that can naturally support IoT’s inherent demands,

one that is fundamentally different from IP.

B. Information-Centric Networking and Its Use in IoT

Information-Centric Networking (ICN) is a clean-slate Inter-

net architecture, which is proposed to evolve the network from

host-centric to content-centric model where data are identified

and accessed by names. Named Data Networking (NDN) [22]

(or Content-Centric Network (CCN) [24]) is one of the pop-

ular ICN proposals. It uses human-readable, hierarchically-

structured Content Names as the identity in the network. NDN

provides a query/response communication pattern by using two

types of packets in the network: Interest (query) and Data

(response). It also introduced a new forwarding engine model

having three data structures — Forwarding Information Base

(FIB) which maintains the outgoing (inter)faces for each name

prefix; Pending Interest Table (PIT) which keeps the unsat-

isfied Interests and there incoming (inter)faces; and Content

Store working as an in-network cache. Data consumers issue

Interests with Content Names. The intermediate forwarding

engines forward the Interest towards Data provider by accord-

ing to FIB. Bread crumbs are left on the path via PIT. On

receiving an Interest, a node that provides the requested Data

(either an intermediate caching router or a Data provider) can

reply the Interest. The Data packet travels through the reverse

path according to PIT and it consumes the entries in the PITs.

Work by Zhang et al. [25] defines several architectural

requirement for the IoT including global accessible name and

mobility, which indicates ICN has the potential to be used as

the underlying network for IoT since it integrates named-based

139

routing, compute, and caching/storage as part of the network.

To adapt to the resource-constraint devices, CCNLite [23]

is proposed as a lightweight implementation of NDN which

simplifies the original code base and data structure. In order

to support multi-source data retrieval, work in [26] proposes a

framework that multiple data producer can answer to the same

Interest packet. However, the similar to NDN, these solutions

only focus on data retrieval, and it is difficult for them to

achieve functions like event notification and multicast in IoT.

Moreover, NDN requires the Data packet to be transmitted

on the reverse path as the Interest, it causes difficulties in

IoT where links might be asymmetric. The need for PIT and

Content Store also puts burden on storage-constraint devices.

Work in [27] proposes a generic IoT middleware architec-

ture based on NDN and MobilityFirst to support basic IoT

function such as service discovery and naming service. These

functions can also be used in MF-IoT in the application layer

and is orthogonal to the design in this paper.

VI. CONCLUSION

In this paper, we propose MF-IoT, a generic network archi-

tecture that satisfies the requirements placed by the emerging

IoT systems, namely, global reach-ability, mobility, communi-

cation diversity, and resource efficiency. We achieve this goal

by creating a network-layer dialect (Local Unique IDentifier,

LUID) in a local IoT domain and adopt a gateway to efficently

translate between GUID’s that are used in the core network

and the corresponding LUID’s. The translation is transparent

to the applications so that MF-IoT can have efficient global

reach-ability and mobility support. With service-based GUID

assignment, we further enable seameless service migration,

service caching and the separation between application logic

and network functions. Our simulation results show that MF-

IoT can greatly improve the performance of IP-based and

NDN-based solutions.

REFERENCES

[1] “The Internet of Things — How the Next Evolution of the Internet
Is Changing Everything,” https://www.cisco.com/web/about/ac79/docs/
innov/IoT IBSG 0411FINAL.pdf, Apr. 2011.

[2] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed
Standard), Internet Engineering Task Force, Sep. 2007, updated by RFCs
6282, 6775. [Online]. Available: http://www.ietf.org/rfc/rfc4944.txt

[3] Z. Alliance, “ZigBee IP Specification,” ZigBee 095023r10, Work in
Progress, July, 2010.

[4] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252 (Proposed Standard), Internet Engineering
Task Force, Jun. 2014. [Online]. Available: http://www.ietf.org/rfc/
rfc7252.txt

[5] “Iotivity,” https://www.iotivity.org/.
[6] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “Mobilityfirst: A

Robust and Trustworthy Mobility-Centric Architecture for The Future
Internet,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 16, no. 3, pp. 2–13, 2012.

[7] “Local and Metropolitan Area Networks Specific Requirements Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(LR-WPANs),” IEEE Std 802.15.4-2003, pp. 0 1–670, 2003.

[8] S. C. Nelson, G. Bhanage, and D. Raychaudhuri, “GSTAR: Generalized
Storage-Aware Routing for Mobilityfirst in the Future Mobile Internet,”
in Proceedings of the sixth international workshop on MobiArch. ACM,
2011, pp. 19–24.

[9] J. Moy, “OSPF Version 2,” RFC 2328 (INTERNET STANDARD),
Internet Engineering Task Force, Apr. 1998, updated by RFCs 5709,
6549, 6845, 6860, 7474. [Online]. Available: http://www.ietf.org/rfc/
rfc2328.txt

[10] “Alljoyn framework,” https://allseenalliance.org/framework.
[11] K. Hartke, “Observing Resources in the Constrained Application

Protocol (CoAP),” RFC 7641 (Proposed Standard), Internet Engineering
Task Force, Sep. 2015. [Online]. Available: http://www.ietf.org/rfc/
rfc7641.txt

[12] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin,
and D. Raychaudhuri, “DMap: A Shared Hosting Scheme for Dynamic
Identifier to Locator Mappings in the Global Internet,” in IEEE 32nd
International Conference on Distributed Computing Systems (ICDCS),
2012, pp. 698–707.

[13] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and
A. Yadav, “A Global Name Service for A Highly Mobile Internetwork,”
in Proceedings of the 2014 ACM conference on SIGCOMM. ACM,
2014, pp. 247–258.

[14] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
Internet Engineering Task Force, Mar. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6550.txt

[15] J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building
Automation Routing Requirements in Low-Power and Lossy Networks,”
RFC 5867 (Informational), Internet Engineering Task Force, Jun. 2010.
[Online]. Available: http://www.ietf.org/rfc/rfc5867.txt

[16] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561 (Experimental),
Internet Engineering Task Force, Jul. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3561.txt

[17] Z. Alliance, “ZigBee 2007 Specification,” Online: http://www. zigbee.
org/Specifications/ZigBee/Overview. aspx, vol. 45, p. 120, 2007.

[18] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. Ramakrishnan,
“COPSS: An Efficient Content Oriented Publish/Subscribe System,” in
Seventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2011, pp. 99–110.

[19] M. Arumaithurai, J. Chen, E. Monticelli, X. Fu, and K. Ramakrish-
nan, “Exploiting ICN for Flexible Management of Software-Defined
Networks,” in Proceedings of the 1st international conference on
Information-centric networking. ACM, 2014, pp. 107–116.

[20] L. A. Adamic and B. A. Huberman, “Zipfs law and the Internet,”
Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[21] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung,
“A Survey on the IETF Protocol Suite for the Internet of Things:
Standards, Challenges, and Opportunities,” Wireless Communications,
vol. 20, no. 6, pp. 91–98, 2013.

[22] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smet-
ters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al., “Named
Data Networking (NDN) Project,” Relatório Técnico NDN-0001, Xerox
Palo Alto Research Center-PARC, 2010.

[23] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information Centric Networking in the IoT: Experiments with NDN
in the Wild,” in Proceedings of the 1st International Conference on
Information-centric Networking, ser. ICN ’14. ACM, 2014, pp. 77–86.

[24] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings of
the 5th international conference on Emerging networking experiments
and technologies (CoNext). ACM, 2009, pp. 1–12.

[25] Y. Zhang, D. Raychadhuri, R. Ravindran, and G. Wang, “ICN based Ar-
chitecture for IoT,” IETF Internet Draft draft-zhang-iot-icn-architecture-
00. IRTF, Tech. Rep., 2013.

[26] M. Amadeo, C. Campolo, and A. Molinaro, “Multi-source Data Retrieval
in IoT via Named Data Networking,” in Proceedings of the 1st interna-
tional conference on Information-centric networking. ACM, 2014, pp.
67–76.

[27] S. Li, Y. Zhang, D. Raychaudhuri, R. Ravindran, Q. Zheng, and L. Dong,
“IoT Middleware Architecture over Information-Centric Network,” in
Globecom Workshop on Information Centric Networking Solutions for
Real World Applications (ICNSRA). IEEE, 2015, pp. 19–24.

140

