Whose Move is it Anyway? Authenticating Smart Wearable Devices Using Unique Head Movement Patterns

Sugang Li, Ashwin Ashok, Yanyong Zhang, Chenren Xu, Janne Lindqvist, Macro Gruteser

WINLAB

PerCom 2016

Project Highlights

- We design HeadBanger
- We achieve accurate user authentication
 - Experiment with 95 subjects
 - High TPR and Low FAR
 - Robust against Attack
- We build an running app on Google Glass

WINLAB

Personal Information Is in Your Wearables !

Existing Approaches: Indirect Authentication

4

Existing Approaches: Built-in Authentication

XLimited Input Area

XLong Input Period

XNot Intuitive Pattern

Existing Approaches: Biometrics

Physical Biometrics :

- Additional Hardware
- Not always applicable for head-mounted device

Existing Approaches: Biometrics

Behavioral Biometrics: Walking gait arm

Walking gait, arm swing, finger gesture, etc.

But, for head movements:

- Hard to collect longterm movement patterns
- Do not have high
 Degree of Freedom

Challenges

Music-induced Head Movement

Music-induced Head Movement

- 30 Subjects
- Same movement and same music 30 times

RUTGERS

WINLAB

Response Time Is Not Enough

RUTGERS

WINLAB

Headbanger Rationales

Headbanger Overview

Data Filtering

- Accelerometer Contains High Frequency Noise
- Head Movement is at Low Frequency (< 5 Hz)

Headbanger Overview

Dynamic Time Warping

Time-normalized distance between A and B : $D(\mathbf{A}, \mathbf{B}) = \left| \frac{\sum_{s=1}^{k} d(p_s) \cdot w_s}{\sum_{s=1}^{k} w_s} \right|$ $d(p_s)$: distance between i_s and j_s $w_s > 0$: weighting coefficient. *<u>Best alignment path</u>* between **A** and **B**: $P_1 = \underset{D}{\operatorname{arg\,min}}(D(\mathbf{A}, \mathbf{B})).$

RUTGERS

Time Series B

Headbanger Overview

Reduce the Computing Overhead

Choose Representative Samples

- Compute the average distance to other samples
- Rank the samples based on their average distance
- Threshold can be expressed as: Threshold = $\overline{d_k}$ + n × σ_k

RUTGERS

Repeatability & Similarity Experiment

Objectives:

- True user can login with high probability
- Different user do different movement
- Low computing cost

Setup:

30 subjects are involved

- Each of them design its own pattern
- Each of them performs it 40 times

RUTGERS

Evaluation Metrics

D True Positive Rate

D False Accepted Rate

\Box Equal Error Rate EER = TRR(n) = FAR(n)

Impact of Distance Algorithm

Impact of Voting Scheme

Impact of Training Size

23

Impact of Music Duration

24

Overall

RUTGERS

WINLAB

Let's Attack it!

Let's Attack It!

Attack Results

Target	# of Attackers	# of Successful Attackers	Average # of Trials before 1 st Successful Attack	FAR (%)
А	12	7	10	15.83
В	13	3	14	2.77
С	12	3	17	2.72
Overall	38	13	13	6.94

WINLAB

Prototyping

- **D** Google Glass Development Kit
- Java Speech Tool Kit
- **□** Fast DTW: $O(n^2) \rightarrow O(n)$
- Task pipelining

Music Cue Duration (s)	Data processing latency (s)
10	1.93
6	1.15
5	0.88

Conclusion

We design Headbanger

We Conduct Intensive Experiment Repeatability, Robustness

■ We develop a running App on Google Glass

Thank you! Questions?

