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Predrag Spasojević, Member, IEEE, and
Emina Soljanin, Senior Member, IEEE

Abstract—The weight spectrum of sequences of binary linear codes that
achieve arbitrarily small word error probability on a class of noisy channels
at a nonzero rate is studied. We refer to such sequences as good codes. The
class of good codes includes turbo, low-density parity-check, and repeat-ac-
cumulate codes. We show that a sequence of codes is good when transmitted
over a memoryless binary-symmetric channel (BSC) or an additive white
Gaussian noise (AWGN) channel if and only if the slope of its spectrum is
finite everywhere and its minimum Hamming distance goes to infinity with
no requirement on its rate growth. The extension of these results to code en-
sembles in probabilistic terms follows in a direct manner. We also show that
the sufficient condition holds for any binary-input memoryless channel.

Index Terms—Binary linear code, good codes, low-density parity-check
codes, maximum-likelihood (ML) decoding, turbo codes, weight spectrum.

I. INTRODUCTION

Let C = fC(ni)g
1

i=1 be a sequence of binary linear codes, where
C(ni); fni : i = 1; 2; . . .g, are (ni; ki) codes with a common rate
Rc = ki=ni. FollowingMacKay [1], [2], we say that a code (sequence)
C is good if it achieves arbitrarily small word error probability when
transmitted over a noisy channel at or below a nonzero threshold rate
Rc. Capacity achieving codes are good codes whose rate thresholdRc

is equal to the channel capacity. We say that a code is bad when the
corresponding code sequence can not be decoded with an arbitrarily
small probability of error, or if it can be decoded with an arbitrarily
small probability of error only by decreasing the information rate to
zero (e.g., repetition codes).

The performance of a code ensemble is often studied when the
performance corresponding to a member code is hard to analyze. We
define a binary linear code ensemble [C(n)] as a family of (n; k) code
sequences of a common rate. Randomly chosen code (sequence) from
a good code ensemble is good with probability one. The class of good
(ensembles of) codes includes the family of the, so called, random-like
codes, such as parallel concatenated convolutional codes (classical
turbo codes), serial concatenated convolutional codes, low-density
parity-check (LDPC) codes [3], and repeat–accumulate (RA) codes
[4]. Since the threshold rates of these (ensembles of) codes are close
to Shannon’s limit, their design, analysis, and application has become
a focal point of recent research efforts in coding theory.

We aim here to characterize the weight spectrum of linear binary (en-
sembles of) codes which are good when transmitted over a memoryless
binary-symmetric channel (BSC) and an additive white Gaussian noise
(AWGN) channel. We study the error probability performance of good
(ensembles of) codes under maximum-likelihood (ML) decoding. Al-
though, in general, prohibitively complex for long codes, ML decoding
based analysis provides the ultimate performance bounds independent
of the decoding algorithm.
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First, we give a (necessary) condition that the code weight spec-
trum must satisfy to achieve arbitrarily small word error probability
on a BSC and an AWGN channel. We also show that this condition
is, in fact, sufficient for any binary-input memoryless channel. Next,
we study good code ensembles. We summarize the results from Jin
and McEliece in [5] where the authors derive a sufficient condition for
goodness of code ensembles based on the average weight spectrum (see
also [6] for a stronger sufficient condition). Here, we illustrate why the
condition from [5] is only sufficient but not necessary and describe the
necessary and sufficient condition for ensemble goodness for a BSC
and an AWGN channel using probabilistic language.
The goodness condition is a function of the minimum distance and

the behavior of the spectrum in the low codeword weight region. A
goodminimumdistance has traditionally been adopted as a criterion for
asymptotic code goodness. In [3, Sec. 2.1], Gallager noted that the min-
imum distance of random binary codes (which are capacity achieving)
meets the Gilbert-Varshamov bound, and, thus, increases linearly with
the codeword length (see also [7]). However, goodminimum distance is
a sufficient condition, but not necessary for good codes. For example,
concatenated Hamming codes have bad minimum distance (i.e., the
minimum distance normalized by the codeword length converges to
zero [2]), whereas, regular LDPC codes have good minimum distance
[3]; however, both are good [2]. We show that, to guarantee goodness,
it is not important how quickly the minimum distance goes to infinity
with the codeword length as long as the slope of the low codeword
weight spectrum is finite.
We note that the previous work on capacity achieving (or �-capacity

achieving) LDPC code ensembles [8]–[11] has focused on vanishing
bit error probability. The requirement to achieve an arbitrarily small
word error probability is stricter, since vanishing word error probability
implies vanishing bit error probability, but not vice versa. However, for
an ensemble of regular LDPC codes (with the degree of variable nodes
larger than 2) transmitted over a BSCwith the crossover probability less
than a threshold [3], Gallager has shown that the bit-error probability
under iterative decoding decreases as exp(��nb) (when n is large
enough), where � and b are positive constants, and n is the codeword
length. Since the word error probability is at most n times the bit error
probability, it follows that the word error probability will approach zero
as n increases. Moreover, for irregular graph-based LDPC code ensem-
bles [10], [12], one can achieve a probability of bit error that approaches
zero exponentially fast in terms of n with arbitrarily small loss in rate
by concatenating with an appropriate outer code [10], or expanding the
graph [12]. In addition, for the capacity achieving LDPC code ensem-
bles and a binary erasure channel, the author in [8] states that one can
show that the message-passing algorithm can successfully decode
(asymptotically in the codeword length) once the graph is expanded
[12], which implies that the word error probability converges to zero.
The remainder of this correspondence is organized as follows: We

state the main results in Section II, prove Theorem 1 in Section III, the
rest of the proofs are deferred to the Appendix.

II. THE MAIN RESULT STATEMENT

In this section, we study the weight spectrum of good binary codes
and code ensembles. Hereafter, low weight sequence refers to a se-
quence of integers fFng such that

1 � Fn � n and Fn=n! 0; as n!1 (1)

very low weight sequence refers to a sequence of integers fLng such
that

1 � Ln � n and Ln ! 0; as n!1
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and F denotes the set of all possible low weight sequences fFng. The
slope of the (normalized) weight spectrum for a codebook C(n) is de-
fined as

SC(n)(w)
lnAC(n)(w)

w

where w denotes the Hamming weight, and the weight enumerator
AC(n)(w) enumerates the codewords of weight w for codebook C(n).

A. Good Codes

Here, we state the necessary and sufficient condition for goodness
of a binary code C transmitted over a memoryless BSC and AWGN
channel. The condition is expressed, in terms of the minimum Ham-
ming weight and the slope of weight spectrum of the corresponding
sequence of binary linear codes fC(ni)g1i=1, in the following theorem.

Theorem 1: A binary linear code C transmitted over a BSC or an
AWGN channel is good if and only if the code satisfies the following
condition

T1.a The minimum Hamming distance of a good code C

d
C(n)
min !1; as n!1:

T1.b The low weight spectrum slope of a good code C

lim sup
n!1

SC(n)(Fn) <1; 8fFng 2 F :

Furthermore, Condition T1 is sufficient for any binary-input memory-
less channel.

The proof is given in Section III. Intuitively, one can interpret The-
orem 1 as two codebook design requirements: In order to successfully
decode a codeword xxx at the receiver end, it is required that the distance
from xxx to other codewords is large and the number of xxx’s neighbors is
small. Clearly, the former requirement corresponds to Condition T1.a
and the latter relates to Condition T1.b.

An immediate consequence of Theorem 1 is the following corollary.

Corollary 1: The good minimum distance property requiring that
the ratio dC(n)min =n converges to a nonzero constant is a sufficient condi-
tion for code goodness.

The proof is in the Appendix.

B. Ensemble Goodness

In this subsection, we focus on a good code ensemble [C(n)] of rate
Rc transmitted over a binary-input memoryless channel. First, we sum-
marize the sufficient condition for goodness of code ensembles in terms
of the average weight spectrum [5]. Next, we illustrate that this condi-
tion is not necessary using counterexamples. Finally, we state a neces-
sary and sufficient condition for ensemble goodness for a BSC and an
AWGN channel using probabilistic language.

Following [5], the following theorem states a sufficient condition for
the code ensemble goodness in terms of the average weight enumerator
�A[C(n)](w) averaged over the ensemble family of codes.

Theorem 2 [5, Theorems 5.1 and 5.3]: A binary code ensemble [C]
is good for any binary-input memoryless channel if it satisfies the fol-
lowing condition

T2.a There exists a sequence of integers fDng such that

Dn !1 and lim
n!1

D

w=1

�A[C(n)](w) = 0:

T2.b The average lowweight spectrum slope of a code ensemble [C]

lim sup
n!1

S[C(n)](Fn) <1; 8fFng 2 F

where

S[C(n)](w) [ln �A[C(n)](w)]=w:

We provide the proof in the Appendix for completeness.

To illustrate the fact that Condition T2 is not necessary for ensemble
goodness, we consider the following two counterexamples. Suppose
that there is a code ensemble [C(n)] such that the proportion of good
codes in [C(n)] is (pn� 1)=

p
n, and that the proportion of bad codes

in [C(n)] is 1=pn. By definition, such ensemble is good. Let us now
also assume that, for each bad code Cb(n) in [C(n)], there exists a con-
stant D such that D

w=1 A
C (n)(w) = �(

p
n); where f(x) = �(x)

implies that positive constants c1; c2, and k1 exist, such that 0 � c1x �
f(x) � c2x for all x � k1. The average weight enumerator of the code
ensemble [C(n)] is now D

w=1
�A[C(n)](w) = �(1) and, thus, Condi-

tion T2.a is not satisfied. An examplewhich illustrates this development
is the ensemble of quasicyclic turbo codes [13] with two parallel con-
catenated branches concatenated by a random interleaver. In [14], the
authors note that, for this ensemble of codes, the expected number of
turbo codewords of small weight averaged over all possible interleavers
does not vanish with the code lengthn (it is constant) but that there is an
all-or-nothing phenomenon: by randomly choosing a code from the en-
semble of turbo codes, we either have no very-low-weight codewords,
or relatively many (at least in the order of

p
n). This implies that the

proportion of good turbo codes (with no very-low-weight codewords)
is 1 in probability even though the ensemble does not satisfy Condition
T2.a. Similarly, we can construct another good code ensemble which
does not satisfy Condition T2.b as follows. Let [C(n)] be a good code
ensemble such that the proportion of bad codes in [C(n)] is 1=pn. We
further assume that, for any bad code Cb(n) in [C(n)], there exists a
sequence of integers wn = blnnc1=2 such that

AC (n)(wn) � n:

We now have that fwng 2 F and

ln �A[C(n)](wn)

wn
� (lnn)1=2

2
!1:

Clearly, the above example is a good code ensemble which does not
satisfy Condition T2.b.
Finally, we state the necessary and sufficient ensemble goodness

condition for a BSC and an AWGN channel using probabilistic lan-
guage in the following theorem.

Theorem 3: A binary code ensemble [C] transmitted over a BSC or
an AWGN channel is good if and only if a randomly chosen code C
from the ensemble [C] satisfies
T3.a

P lim
n!1

d
C(n)
min � � = 0; 8� <1:

T3.b 9� < 1

P lim sup
n!1

SC(n)(Fn) > � = 0; 8fFng 2 F :

Proof: The proof follows in a straightforward manner from the
definition of code ensemble goodness and Theorem 1.
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We note that (see also [5] for the related comment)

P lim
n!1

d
C(n)
min < Dn

=
1

j[C(n)]j
C(n)2[C(n)]

1 lim
n!1

dCmin(n) � Dn

� lim
n!1

1

j[C(n)]j
C(n)2[C(n)]

D

w=1

AC(n)(w)

= lim
n!1

D

w=1

�A[C(n)](w)

where 1f�g denotes the indicator function. Therefore, we say that Con-
dition 2.a implies Condition 3.a.

III. THE PROOF OF THEOREM 1

Let �C0 be the union-Bhattacharyya (UB) threshold of the code C,
that is

�C0 lim sup
n!1

max
1�w�n

SC(n)(w): (2)

Theorem 1 is based on the following lemma.

Lemma 1: For a code C, the UB noise threshold �C0 is finite if and
only if

lim sup
n!1

SC(n)(Fn) <1; 8fFng 2 F

i.e., Condition T1.b is satisfied.

Lemma 1 follows from ( [5], Theorem 5.3). We provide its proof in
the Appendix for completeness. We derive the proof of Theorem 1 in
the following.

A. Sufficiency in Theorem 1

The proof of sufficiency is based on the UB bound on the ML de-
coding word error probability for code C(n)

P
C(n)
W

() �
n

w=d

AC(n)(w)w

where  is the Bhattacharyya noise parameter of a binary-input mem-
oryless channel [15]. The UB threshold definition (2) implies that

P
C(n)
W

() �n
n

w=d

exp �w � ln  � �C0 � � ; 8� > 0

(3)
where�n means that the inequality holds for sufficiently large n. Con-
dition T1.b and Lemma 1 imply that�C0 is finite. Thus, for any �; � > 0,
there exists a 0(�; �) > 0 such that � ln 0(�; �)� �C0 > �+ � > 0.
Then, for any 0 <  � 0(�; �), (3) can be upper-bounded as

P
C(n)
W

() �n
n

w=d

exp(�w�) � B(�) exp �dC(n)min � �

where B(�) = 1=(1� e��). Now, Condition T1.a implies that

lim
n!1

P
C(n)
W

() = 0 8 � 0(�; �) (4)

where 0(�; �) can be made arbitrarily close to exp(��C0 ) by choosing
sufficiently small � and �. Therefore, code C is good.

B. Necessity in Theorem 1

Necessity of Condition T1.a: In order to prove the necessity of Con-
dition T1.a, we assume that it does not hold. Then, there exists a con-
stant d0 such that

lim inf
n!1

d
C(n)
min < d0 <1:

Let xxx 2 C(n) � f0; 1gn be a transmitted codeword. Then, there exists
a codewordxxx0 2 C(n) (wherexxx0 6= xxx) such that the Hamming distance
between xxx and xxx0 can be bounded as follows:

0 < dH(xxx; xxx0) �n d0:
Hence, for an AWGN channel with a received SNR � <1, the proba-
bility that the maximum likelihood (ML) detector selectsxxx0 as the more
likely one is

Pe(xxx; xxx
0) �n Q(

p
d0 � �) > 0:

For a BSC with the cross error probability p > 0, the pairwise error
probability is

Pe(xxx; xxx
0) �n pd > 0:

Note that

P
C(n)
W

(�) = P
C(n)
W jxxx (�) � Pe(xxx; xxx

0) > 0

where � denotes the channel parameter (i.e., � for an AWGN channel
and p for a BSC) and P C(n)

W jxxx (�) is the ML decoding word error proba-
bility when xxx is transmitted over either channel. Thus, the asymptotic
ML decoding word error probabilities for an AWGN channel and a
BSC are also positive, i.e.,

lim
n!1

P
C(n)
W

(�) > 0; for all � <1
lim
n!1

P
C(n)
W

(p) > 0; for all p > 0

which contradicts the definition of good codes.
Necessity of Condition T1.b: Let fFng be an arbitrary low weight

sequence from (1), and w be an arbitrary integer such that 1 � w �
Fn. Consider a constant-weight subset C�w(n) of the codebook C(n)

C�w(n) = fxxx 2 C(n) : dH(xxx; xxx0) = wg (5)

where xxx0 2 C(n) is the all-zero codeword. Since

P
C(n)
W

(�) = P
C(n)
W jxxx (�) � P

C (n)

W jxxx (�); for xxx 2 C�w(n)
then

P
C (n)

W
(�) =

xxx2C (n)

p�(xxx)P
C (n)

W jxxx (�)

�
xxx2C (n)

p�(xxx)P
C(n)
W jxxx (�) (6)

= P
C(n)
W

(�) (7)

where p�(xxx) is codeword probability distribution over C�w(n). In the
following, instead of considering the whole codebook C(n), we only
consider the codeword subset C�w(n). LetXn be the channel-input se-
quence distributed over C�w(n) and Y n be the channel-output sequence
with the n-tuple alphabet Yn. Fano’s inequality ( [16, p. 38]) implies
that

log jC�w(n)j � 1 + P
C (n)

W
(�) log jC�w(n)j+ I(Xn; Y n):

Note that jC�w(n)j = AC(n)(w) and, thus,

logAC(n)(w) � 1 + I(Xn;Y n)

1� P
C (n)

W
(�)

: (8)
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Since the considered channels are memoryless and output-symmetric,
the channel transition probability is given by p(yyyjxxx) = n

i=1 p(yjx)
and the conditional entropy satisfies

H(Y jX = 0) = H(Y jX = 1) = H(Y jX):

Hence,

H(Y njXn) =

n

i=1

H(YijXi) = nH(Y jX):

The mutual information I(Xn;Y n) can now be expressed as

I(Xn;Y n) = H(Y n)�H(Y njXn)

�
n

i=1

H(Yi)� nH(Y jX) � n[H�p(Y )�H(Y jX)]

(9)

where

H�p(Y ) = �
y2Y

�p(y) log �p(y)

and

�p(y) =
1

n

n

i=1

p(Yi = y):

The first inequality in (9) corresponds to the subadditivity property of
the entropy, and the second inequality follows from the concavity of
the entropyHp(Y ) as a function of the density function p(y) (see, e.g.,
[16]). Combining (7), (8), and (9), we have

logAC(n)(w)

w
� 1

1� P
C(n)
W (�)

1

w
+
H�p(Y )�H(Y jX)

�n
(10)

where �n = w=n. Note that (10) holds for differential entropy as well.
First, we study (10) for a memoryless BSC with the crossover error

probability 0 < p < 1=2. Since the input sequence is distributed p�(xxx)
over C�w(n)

p(Xi = 0) =
xxx2C (n)

p�(xxx)p(Xi = 0jxxx)

=
xxx2C (n)

p�(xxx)1fxi = 0g

p(Xi = 1) =
xxx2C (n)

p�(xxx)p(Xi = 1jxxx)

=
xxx2C (n)

p�(xxx)1fxi = 1g

where 1f�g denotes the indicator function and xi denotes the i-th ele-
ment of codeword xxx. Thus, �p(Y = 0) is given by

�p(Y = 0) =
1

n

n

i=1

p(Yi = 0)

=
1

n

n

i=1

[p(Xi = 0)p(Yi = 0jXi = 0)

+ p(Xi = 1)p(Yi = 0jXi = 1)]

= (1� p)� 1

n

n

i=1 xxx2C (n)

p�(xxx)1fxi = 0g

+ p� 1

n

n

i=1 xxx2C (n)

p�(xxx)1fxi = 1g

= (1� p)�
xxx2C (n)

p�(xxx)
n
i=1 1fxi = 0g

n

+ p�
xxx2C (n)

p�(xxx)
n
i=1 1fxi = 1g

n

= (1� p)� n� w

n
+ p� w

n
= (1� p)� �n(1� 2p)

and, similarly, �p(Y = 1) = p+ �n(1� 2p). Hence,

H�p(Y )�H(Y jX) = H(p+ �n(1� 2p))�H(p)

where H(x) �x log x � (1� x) log(1� x). Note that

�n � Fn
n
! 0 as n!1

and, thus, by employing the L’Hopital’s Rule

lim
� !0

H�p(Y )�H(Y jX)

�n
= (1� 2p) log

1� p

p
<1: (11)

Next, we focus on a memoryless AWGN channel

Yi = Xi + Zi; for i = 1; . . . ; n

where Xi is a sequence of signals from the alphabet X =
f�pEs;

p
Esg (�pEs and

p
Es correspond to the coded sym-

bols “0” and “1,” respectively), Es is the energy per symbol, and
Zi � N (0; �2z) is the i.i.d. additive Gaussian noise sequence. The
received SNR � = Es=�

2
z . Since the input codeword xxx 2 C�w(n) and

xxx0 is the all-zero codeword

E�p[Y ] =
1

n

n

i=1

E[Xi]

= �n� w

n

p
Es +

w

n

p
Es

= �(1� 2�n)
p
Es

and

V ar�p(Y ) = E�p[Y
2]�E�p[Y ]2

=
1

n

n

i=1

E X2
i + �2z � (1� 2�n)

2Es

= �2z + 4�n(1� �n)Es:

Also,

h�p(Y )� h(Y jX) = h�p(Y + (1� 2�n)
p
Es)� 1

2
log 2�e�2z

� 1

2
log[2�e � V ar�p(Y )]� 1

2
log 2�e�2z

=
1

2
log[1 + 4�n(1� �n)�]:

Finally,

lim
� !0

h�p(Y )� h(Y jX)

�n
� 2� � log e <1: (12)

Note that, by definition, a good codes requires

lim
n!1

P
C(n)
W (�) = 0: (13)

Thus, for both a BSC and an AWGN channel, (10)–(13) imply that

�C[ = lim sup
n!1

max
1�w�F

lnAC(n)(w)

w
<1:
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APPENDIX

A. Proof of Corollary 1

Proof: The good minimum distance property implies

d
C(n)
min !1 and lim sup

n!1
SC(n)(Fn) < 0; 8fFng 2 F

i.e., Condition T1 is satisfied. Now, Theorem 1 implies that the good
minimum distance property is sufficient for code goodness.

B. Proof of the Lemma 2

Proof ): This direction is trivial. Note that 1 � Fn � n, we
have

SC(n)(Fn) � max
1�w�n

SC(n)(w) <1; 8fFng 2 F :

(: This direction will be proved using contradiction. Let us assume
that �C0 = 1. Thus, following definitions (1) and (2), there exists a
convergent subsequence 0 � �n � 1 such that �n ! �0 and

lim
n!1

lnAC(n)(bn�nc)

bn�nc
=1: (14)

Since the weight enumerator can be bounded as (the second inequality
follows from [16, p. 284])

AC(n)(w) �
n

w
� enH(w=n):

Then for any �0 > 0 we have

lim
n!1

lnAC(n)(bn�nc)

bn�nc
�

H(�0)

�0
<1:

Thus, (14) can only happen if �0 = 0. Let now Fn = bn�nc. We have
fFng 2 F , and

SC(n)(Fn) =
lnAC(n)(bn�nc)

bn�nc
! 1; as n!1

which contradict the condition

lim sup
n!1

SC(n)(Fn) <1; 8fFng 2 F :

C. Proof of Theorem 2

Proof: Let code ensemble [C] satisfy Condition T2 and let �[C]0

be the UB threshold of [C], where

�
[C]
0 lim sup

n!1
max

1�w�n
S[C(n)](w)

= lim sup
n!1

max
1�w�n

ln �A[C(n)](w)

w
: (15)

Note that the proof of Lemma 1 (see the Appendix ) holds if we
consider code ensembles and replace �C0 ; S

C(n)(w), and AC(n)(w) by
�
[C]
0 ; S[C(n)](w), and �A[C(n)](w), respectively. Therefore, following

Condition T2.b, we have �[C]
0 <1. The definition of (15) implies that

�A[C(n)](w) �n exp[w(�
[C]
0 + �)]; 8� > 0:

We now can bound the average ML decoding word error probability of
[C] as follows:

�P
[C(n)]
W () �

n

w=1

�A[C(n)](w)w

�

D

w=1

�A[C(n)](w)

+

n

w=D +1

e�w(� ln �� ��) (16)

where Dn is defined in Condition T2.a. Note that �[C]
0 < 1. Hence,

for any �; � > 0, there exists a 0(�; �) > 0 such that � ln 0(�; �)�

�
[C]
0 > � + � > 0. Then, for any 0 <  � 0(�; �), (16) can be

upper-bounded as

�P
[C(n)]
W () �n

D

w=1

�A[C(n)](w) +

n

w=D +1

exp(�w�)

�

D

w=1

�A[C(n)](w) +B0(�) exp[�Dn�]

where B0(�) = e��=(1� e��). Now, Condition T2.a implies that

lim
n!1

�P
[C(n)]
W () = 0; 8 � 0(�; �):

Therefore, the code ensemble [C] is good.
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