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Service Outage Based Power and Rate Allocation for
Parallel Fading Channels
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Abstract—The service outage based allocation problem explores
variable-rate transmission schemes and combines the concepts of
ergodic capacity and outage capacity for fading channels. A ser-
vice outage occurs when the transmission rate is below a given
basic rate o. The allocation problem is to maximize the expected
rate subject to the average power constraint and the constraint
that the outage probability is less than . A general class of prob-
abilistic power allocation schemes is considered for an -parallel
fading channel model. The optimum power allocation scheme is
derived and shown to be deterministic except at channel states of a
boundary set. The resulting service outage achievable rate ranges
from 1 of the outage capacity up to the ergodic capacity with
increasing average power. Two near-optimum schemes are also de-
rived by exploiting the fact that the outage probability is usually
small. The second near-optimum scheme significantly reduces the
computational complexity of the optimum solution; moreover, it
has a simple structure for the implementation of transmission of
mixed real-time and non-real-time services.

Index Terms—Adaptive transmission, ergodic capacity, fading
channel, outage capacity, power allocation, service outage.

I. INTRODUCTION

WIRELESS communication channels vary with time
due to multipath, mobility of users, and changes in

the environment. For a time-varying channel, dynamic alloca-
tion of resources such as power and rate can yield improved
performance over fixed allocation strategies. Since system
performance criteria are usually application specific, different
classes of applications will result in different adaptive trans-
mission schemes. In order to differentiate real-time service
from non-real-time service, three capacity measures have been
defined in the literature: ergodic capacity [7], delay-limited
capacity [8], and capacity versus outage [4], [17]. A compre-
hensive survey of these concepts can be found in [2].

The ergodic capacity [7] determines the maximum achievable
rate without a delay constraint. The corresponding optimum
power allocation is the well-known water-filling allocation [5],
[6]. In a fast fading environment, the ergodic capacity can be
achieved by using a constant-rate variable-power long code that
experiences the ergodicity of the fading process [4]. But in the
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presence of slow fading and a decoding delay constraint, ergodic
capacity is usually achieved by multiplexing variable-rate vari-
able-power short codes [4]. Thus, in deep fades, the code rate
could be very low or even equal to zero, which could be detri-
mental to real-time applications. To address this issue, the notion
of capacity versus outage was developed for constant-rate real-
time applications for a block-fading channel model [4], [17]. In
the capacity versus outage problem, a constant target rate aims
to be maintained throughout the fading process. An informa-
tion outage occurs when the target rate is higher than the instan-
taneous mutual information [4]. The maximum target rate that
can be achieved with an outage probability less than is called
the outage capacity, and the zero outage capacity is called the
delay-limited capacity in [4].

We observe that for some variable-rate real-time applica-
tions, neither the ergodic capacity nor the outage capacity is
appropriate. For example, for applications with simultaneous
voice and data transmissions, as soon as a basic rate for
the voice service has been guaranteed, any excess rate can
be used to transmit data in a best effort fashion. For some
video or audio applications, the source rate can be adapted
according to the fading channel conditions to provide multiple
quality of service levels. Typically, a nonzero basic rate
is required to achieve a minimum acceptable service quality.
For these applications, maximizing the long-term average rate
while meeting a basic rate requirement for the instantaneous
rate allocation is a desirable property. However, neither the
ergodic capacity nor the outage capacity can achieve this goal,
since the ergodic capacity offers no guarantee on the instanta-
neous rate while the outage capacity achieves a low long-term
average rate. Therefore, in this paper, we combine the notion
of ergodic capacity and outage capacity, and formulate the
service outage based allocation problem, which maximizes the
long-term average rate subject to basic rate and average power
constraints.

In a Rayleigh-fading channel, infinite average power is
needed to achieve any nonzero rate at all times. Hence, we im-
pose the basic service rate requirement in a probabilistic way to
obviate a need for infinite average power. The service is said to
be in an outage when the instantaneous rate is smaller than the
basic service rate . A service outage constraint dictates that
the probability of a service outage be less than , a parameter
indicating the outage tolerance of the application. Unlike the
information outage in the capacity versus outage problem [4],
[15], the bits transmitted during the service outage may still
be valuable in that they will be transmitted reliably and will
contribute to the average rate. Related to service outage [13],
[14], a minimum rate requirement was recently proposed in
[10] for the fading broadcast channel.
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The service outage based allocation problem was previously
studied for the single fading channel in [13], [14]. In this paper,
we generalize the results to the -parallel flat-fading channel.
The -parallel flat-fading channel model can characterize a
variety of systems, including an orthogonal frequency-division
multiplexing (OFDM) system with frequency-selective fading
and the multiple-antenna signal model when the perfect channel
state information is available at the transmitter and singular
value decomposition is employed. In practical systems, the
service outage based allocation problem is more relevant for
the -parallel channel model, since multimedia applications
usually require large bandwidth or spatial dimension.

We will see in this work that solving the allocation problem
in the -parallel fading channel is quite difficult. In the single
channel scenario [14], it is intuitive that the outage should
happen for a set of worst fraction fading states. However, in
the case of parallel channels, the channel state is specified
by a vector and there is no absolute ordering of these state
vectors. Unlike the single-channel case in [13], [14], we show
in Section V-B that choosing the outage set to be the set of
channels that consume the most power to achieve the basic
rate is suboptimal. Therefore, we cannot simply extend the
approach in [13], [14] to the -parallel fading channel.

In order to solve the allocation problem for the -parallel
fading channel, we formulate the problem in the general class
of probabilistic power allocation schemes. Probabilistic power
allocation schemes were previously studied in [4]. In this paper,
the optimum power allocation scheme is derived using the gen-
eralized Karush–Kuhn–Tucker conditions in vector space [11].
The computation of the parameters in the optimum solution is
complicated, which motivates us to find some simpler near-op-
timum schemes. Two near-optimum power allocation schemes
are derived by exploiting the fact that the outage probability is
usually a small value.

The remainder of this paper is organized as follows. In Sec-
tion II, the channel model and the service outage based allo-
cation problem are presented. The generalized Karush–Kuhn–
Tucker conditions for functional optimization problems are re-
viewed in Section III. The optimum power allocation is derived
in Section IV. Two near-optimum power allocation policies are
derived in Section V. Numerical results are given in Section VI
and conclusions are drawn in Section VII. All proofs in this
paper are provided in the Appendix.

II. SYSTEM MODEL AND ALLOCATION PROBLEM

In an -parallel flat-fading channel model, each fading block
consists of subchannels as follows:

(1)

For a subchannel , is the channel input, is the channel
output, and is the channel state. The noise components

are independent Gaussian random variables with
normalized unit variance. It is assumed that the channel
state vector stays the same within one
fading block but may vary from block to block. For a typical
slow-fading environment, it is also assumed that block length

so that the information-theoretic results can be

applied. One codeword spans subchannels in one fading
block and perfect channel state information is available at both
the transmitter and the receiver. The vector fading process is
ergodic within the communication session.

Throughout this paper, we use the following notation.

• For a vector of channel states , the
power allocation vector is .
Here , the power allocated to subchannel , depends
on the current channel state vector .

• Given a vector of length , we denote its arithmetic
mean by

• The maximum mutual information of an -parallel
Gaussian channel with power allocation is

(2)

To simplify the derivations, we use the natural logarithm
and drop the usual factor in the Gaussian capacity
expression. The rate unit is nats per subchannel. In this
paper, the rate is averaged over parallel channels, since in
practical systems the expected rate as well as the basic rate
usually scales with the number of dimensions (bandwidth
or number of antennas).

• For a scalar , . For a vector
, .

• The indicator function is equal to if is true and
is equal to otherwise.

• For two vectors and of length , we write if
for all .

It can be seen that with perfect channel state information at the
transmitter and receiver, the maximum achievable rate of a given
power vector at fading block is given by (2). Thus, we
only need to identify the optimum power allocation scheme.

Although we could formulate the allocation problem for
-parallel fading channels in the class of deterministic

schemes, as we did for fading channel in [14], the
deterministic allocation problem turns out to be difficult to
solve. Moreover, as shown in [4], the optimum allocation for
the outage capacity is a probabilistic policy for discrete channel
distribution, suggesting that deterministic schemes are likely to
be suboptimal. Therefore, this paper formulates the allocation
problem using the more general class of probabilistic schemes.

The probabilistic power allocation is a vector of random
variables with a conditional probability density function (pdf)

. The physical interpretation of a probabilistic scheme
is that the probability of using a particular power vector is the
time-sharing factor for that power vector. In a probabilistic
power allocation scheme, each realization of the power allo-
cation is associated with a coding scheme. A service outage
occurs when the code rate is less than the basic rate specified
by the application. Since multiple codes are employed in a
probabilistic manner, at each channel state we can have the
situation where some code rates are less than while others
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are greater or equal to . Thus, at each channel state, a service
outage occurs with some probability. In order to simplify
the derivation, we use to indicate a probabilistic power
allocation scheme with conditional pdf , while using

to indicate a deterministic scheme. Due to the assumptions
of ergodicity and perfect channel state information, the power
allocation only depends on the current channel state vector. We
use to represent the cumulative distribution function (cdf)
of channel state vector .

For a given probabilistic power allocation , the average
rate, average power, and outage probability are given by

(3)

The service outage based allocation problem is to identify the
optimum conditional pdf as follows:

(4)

subject to (4a)

(4b)

where the conditional pdf is a set of functions for each
satisfying

for all (5)

The resulting maximum average rate is called the service
outage achievable rate. This work can be extended to other rate
expressions besides the Shannon capacity in (2), which may
depend on decoding error probability, and the set of modula-
tion and coding schemes in a practical system. Problem (4) may
seem to be more complicated than the corresponding determin-
istic allocation problem, but in fact it will be easier to solve. In
later sections, we will see that this problem can be simplified
and solved using generalized Karush–Kuhn–Tucker conditions
[11].

III. FUNCTIONAL OPTIMIZATION

In this section, we briefly review the Karush–Kuhn–Tucker
conditions for functional optimization, since in this work the
optimization variables are functions instead of vectors in an Eu-
clidean space. Readers are referred to texts [9], [11] for compre-
hensive results on optimization theory in a general vector space
and [1] on optimization theory in an Euclidean space.

Specifically, we are interested in the following type of
functional optimization problem in an Lebesgue space with
measure :

(6)

subject to (6a)

(6b)

(6c)

(6d)

where functions and belong to the space with
measure . The space consists of those real-valued measur-
able functions for which is finite [11], [16].
It is shown that the Lagrange multiplier associated with con-
straint (6a) and (6b) are scalers denoted as and , while the
Lagrange multiplier associated with constraint (6c) is a function

where [3], [11]. Usually, no Lagrange
multipliers are employed for simple constraints such as (6d), in-
stead it is absorbed in the Karush–Kuhn–Tucker conditions as
shown in the following. Let

The Lagrangian of problem (6) is

The variation of with respect to is equal
to iff the derivative of with respect to at

is equal to zero. Thus, according to the generalized
Karush–Kuhn–Tucker necessary conditions theorem [11], if the
optimum solution is a regular point (constraint qualifica-
tion), it must satisfy the following conditions:

(7)

(8)

(9)

(10)

In addition, must also satisfy the constraints (6a)–(6c).
Note that (7) incorporates the constraint (6d), and that (9) fol-
lows from due to the fact that

for all and .
Furthermore, if , , and are

convex functionals with respect to , and is a
linear functional with respect to , conditions (7)–(10) and
constraints (6a)–(6d) are sufficient for the global optimum so-
lution of (6).

A similar approach can be applied to the more general case
where is replaced by . In this
case, we just replace the derivation with respect to in (7)
with the partial derivatives with respect to for all

.

IV. THE OPTIMUM SERVICE OUTAGE BASED ALLOCATION

A. Allocations for an -Parallel Fading Channel

In this section, we introduce two deterministic power
allocation schemes: the multidimensional water-filling allo-
cation and the basic-rate power allocation .
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These two allocations will be used to characterize the optimum
solution in later sections.

The multidimensional water-filling allocation is the optimum
allocation achieving the ergodic capacity in -parallel fading
channels as

(11)

subject to (11a)

(11b)

We get , by
applying the generalized Karush–Kuhn–Tucker condition in
vector spaces [11], where

(12)

and the water-filling cutoff is the solution to

The basic-rate power allocation is the power allocation that
requires the minimum average power to maintain a basic rate at
each channel state, as follows:

(13)

subject to (13a)

(13b)

The solution to the above problem is given in [4, Lemma 1], and
is summarized below. The basic-rate allocation is

with

(14)

For a given , the basic-rate allocation also allocates power
in the form of water-filling among subchannels, but the
changes with to ensure . Let be the
permutation of index such that .
The is given by

(15)

where is the unique integer in such that
for and for [4]. Parameter

indicates number of subchannels with nonzero power allocation
at . When the basic-rate allocation becomes
channel inversion, and when it converges to the water-
filling allocation . An example of for
fading channel can be found in [4].

Based on the observation that for a given both
and are in the form of “water-filling” but with different
water levels, we have the following proposition.

Proposition 1: We have

a)
;

b) for any , either or
holds.

B. Feasibility and Outage Capacity

The feasibility of problem (4) is directly related to outage
capacity in [4]. Let be the outage capacity for a given

. The is the maximum instantaneous rate which can
be transmitted with an outage probability . Thus, for a given
and , problem (4) is feasible iff . For convenience
of subsequent derivations, the feasibility condition is expressed
in the following equivalent form:

(16)

where the is the minimum average power needed
to support with an outage probability . When

, we have and problem (4) shares
the same optimum solution, denoted , with the outage
capacity problem. For convenience of subsequent derivations,
we rewrite Proposition 4 in [4] and express as follows.

Definition 1: For any , let be a Bernoulli
random variable: with probability and

with probability .

The minimum average power allocation is
, where

(17)

and the parameters and are solutions to
. That is,

(18)

(19)

is an on–off transmission policy. If the required
sum power , transmission is turned off, while
if , transmission is turned on, and the power is
allocated according to . for an fading
channel is plotted in Fig. 1. The off region may or may not be a
convex set depending on and .

C. Derivation of the Optimum Allocation Scheme

In this subsection, we derive the optimum solution for the ser-
vice outage based allocation problem (4). We first show that an
optimum power allocation in (4) is a scheme which is random-
ized between two deterministic schemes.

Lemma 1: There exists an optimum solution of problem (4)
of the following form:

(20)

where for all , , and
.
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Fig. 1. The PPP (hhh) in an M = 2 parallel fading channel.

The proof of Lemma 1 is based on the concavity of the rate
function .

By Lemma 1, we have with probability ,
and with probability . Moreover, the
conditions and ensure
that the randomized scheme meets the service outage constraint.
Thus, problem (4) can be simplified into a problem which re-
quires identifying , , and as follows:

(21)

subject to

(21a)

(21b)

(21c)

(21d)

In the following, we derive the optimum solution of problem
(21) using the generalized Karush–Kuhn–Tucker conditions
theorem described in Section III.

Let , , and denote the optimum solution of
(21). Let and denote the corresponding
Lagrange multipliers for constraints (21a)–(21c), respectively.
Define

(22)

In following, for simplicity we use the notation

According to the Karush–Kuhn–Tucker necessary conditions
theorem, the optimum solution must satisfy the following
conditions:1

for (23)

for (24)

(25)

(26)

(27)

(28)

Moreover, the following lemma shows that any solution that sat-
isfies the above conditions is an optimum solution.

Lemma 2: The Karush–Kuhn–Tucker conditions (23)–(28)
are sufficient conditions for the optimum solution of prob-
lem (21).

The proof of Lemma 2 requires transforming of
problem (21) into a convex optimization problem. From
Karush–Kuhn–Tucker conditions (23), (24), and (26), we have
the following lemma.

Lemma 3: The optimum and are

otherwise (29)

(30)

Proposition 1 b) implies that has an equivalent expres-
sion as

(31)

1Notation is the derivative over p (hhh) evaluated at p (hhh)
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We define the second term as the supplemental power allocation,
that is,

(32)

The supplemental power allocation provides the additional
power needed for the water-filling allocation to meet the basic
rate requirement. The rate achieved by can be expressed
as

(33)

with being the additional
rate allocation needed for water-filling allocation to meet the
basic rate requirement.

Combining Lemma 1, Lemma 3, and expression (31), the op-
timum power allocation is

(34)

In the following, we determine . Employing (30), (31),
and (33) in , we have

(35)

with

(36)

The first term in is the power expense of allocating
supplemental power, the second term is the corresponding rate
return, and is the Lagrange multiplier that connects the power
with the rate. Thus, function provides a measure for
the cost of allocating the supplemental power, and is called the
supplemental cost function.

Lemma 4: Properties of are as follows.

a) If , then .
b) If , then . If ,

then .

Lemma 4 a) shows that a higher cost is associated with a
poorer channel state vector. Based on Lemma 4 b) and Proposi-
tion 1, we have the following equivalent statements:

(37)

Taking the derivative of over , we have

(38)

From condition (25) and equality (38), we obtain

(39)

where needs to be determined. As we can see,
the cost function determines the value of and
indicates where the supplemental power should be allocated.

Condition (27) implies the following two situations:

• when , we must have .

• when , we must have . im-
plies that either or . Consequently,
from Lemma 4 (b) we have that

Therefore, in this case . Since no
supplemental power is allocated, can be
any function that meets . In order to
simplify the presentation and without loss of generality,
we choose so that .2

The following theorem combines above results.

Theorem 1: If problem (4) is feasible, an optimum power
allocation is

(40)

where

(41)

and , , and are solutions to

The optimum power allocation can be viewed as a two-layer
allocation: the first layer is the water-filling allocation, and
the second layer is the supplemental allocation. The supple-
mental allocation provides the additional power and rate for
the water-filling allocation to meet the basic rate requirement.
If the channel states are so poor that the cost is above
a threshold, the supplemental allocation is turned off and a
service outage is declared. divides the channel space
into a service set with rates , a boundary
set with a probabilistic policy, and an outage
set with rates . The service set can be
further divided into a basic-rate set with rate , and an
enhanced-rate set with rate .

D. Properties of the Optimum Solution

In this section, we study the properties of the optimum solu-
tion. By examining in Theorem 1 further, it can be seen
that the optimum solution is a combination of basic-rate allo-
cation and water-filling allocation in the non-boundary-channel
state set, and is randomized between these two at the boundary
set. The optimum solution for fading channel can be
found in [14]. The optimum solution for fading chan-
nels is depicted in Fig. 2. The optimum solution can be classified
into four types as a function of an increasing for any given

as follows.

• is Type I when . In this case,
we have and from (17).
The optimum solution is the same allocation as the outage
capacity, that is .

2In this case, the outage probability is less than or equal to

1� Efw (hhh)g = �:
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Fig. 2. Optimum solution Types I–IV inM = 2 parallel fading channels. The optimum solution is probabilistic only at the boundary set.

• is Type II when in the outage set.
In this case, we have and the outage set
is the same as for the outage capacity allocation. In this
case, the cost function in the outage set reduces
to . Therefore, the optimum outage set,
defined as , can be rewritten as

. Type II solution includes no transmission in the outage
set, a probabilistic scheme in the boundary set, basic-rate
allocation in the basic-rate set, and water-filling allocation
with rate in the enhanced-rate set.

• is Type III in the most general case. All other types
can be considered as special cases of Type III. It includes
water-filling allocation with rate in the outage
set, a probabilistic scheme in the boundary set, basic-rate
allocation in the basic-rate set, and water-filling allocation
with rate in the enhanced-rate set.

• is Type IV when

holds. In this case, we have and

Thus, the optimum solution is .

With increasing , gradually changes from Type I
solution , the optimum solution for the outage capacity,
to Type IV solution , the optimum solution for the
ergodic capacity. The service outage achievable rate gradually
changes from to the ergodic capacity. The outage prob-
ability is equal to for Type I–III solution, and is less than for
Type IV solution.

The optimum solution is probabilistic at the boundary set
only when . For a continuous channel distribution, the
boundary set has a probability measure zero when .

Therefore, the optimum solution is deterministic for the contin-
uous channel distribution. As stated before, the deterministic
allocation problem for -parallel fading channel is hard
to solve directly. However, by considering the probabilistic
allocation problem (4), we in fact obtain the optimum solution
for the corresponding deterministic allocation problem for
continuous channel distributions.

E. Computation of the Optimum Parameters

In this subsection, we study the algorithm that determines
the parameters of the optimum scheme . The optimum
parameters , , and are the solutions of the average
power constraint and the outage probability constraint (neces-
sary condition) as follows:

(42)

(43)

(44)

A solution of (42)–(44) must exist when problem (4) is feasible.
Moreover, Lemma 2 shows that any solution of these equations
is the optimum parameter set (sufficiency). In the following, we
discuss algorithms to solve (42)–(44) for continuous channel
distributions and discrete channel distributions, respectively.

In the case of a continuous channel distribution function
, is a set of probability measure zero for
, and thus, (42)–(44) can be reduced to

(45)

(46)

The left-hand sides of (45) and (46) are continuous functions of
and , and a variety of well-known root finding algorithms

can be used [18].
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The case of discrete channel distribution functions is more
complicated, since we have to determine the value of for
the boundary set. For given and , (42)–(44) form a linear
programming problem on . Standard linear programming
approaches, such as employing artificial variables and the sim-
plex method [12], can be used to determine whether there exists
a feasible solution . If there exists a solution , the cor-
responding and are the solutions we try to find. Therefore,
the iterative algorithm is to search and until a feasible solu-
tion is found. The two-dimensional search for and can
be carried in a sequential manner as shown below. For a given

, since , (43) implies that

(47)

Thus, for a given , can be expressed as

(48)

The linear programming approach for solving is a nu-
merical method, and usually requires a lot of computation.
Moreover, it gives no insight on the structure of the solution.
Therefore, in the Appendix, subsection J we have also derived
the exact feasibility condition and a closed-form solution of

for any by exploiting the structure of (42)–(44).

V. NEAR-OPTIMUM ALLOCATION SCHEMES

In Section IV, we derived the optimum solution for problem
(4). As shown in Section IV-E, the computation of the op-
timum parameters, especially the optimum value of in the
boundary set is quite complicated. This motivates us to find
simpler near-optimum solutions in this section. As shown later
in this section, there exist many near-optimum schemes as long
as certain requirements are satisfied. In particular, we develop
two near-optimum schemes, each with a specific physical
interpretation.

In this section, we consider power allocations with the same
two-layer structure

(49)

as the optimum solution . As we can see, any
that satisfies

and

is a feasible scheme for problem (4). In this subsection, by
choosing some particular , we obtain two near-op-
timum schemes in the form of (49). These schemes are simpler
to implement than the optimum policy.

We first develop bounds for the average rate achieved by the
as follows.

Lemma 5: The average rate achieved by with
is bounded as

where .

The upper bound is achieved when we have zero outage, and
the lower bound is achieved when the rate during the outage is
equal to zero.

It can be seen that for small , the average rate perfor-
mance is determined mainly by the value of . Since

is a decreasing function of , is a
decreasing function of . Thus, in order to achieve a high
average rate, the value of should be small.

For a given , that satisfies the average power and
outage constraints is not unique. There could be an infinite
number of choices of for a given when is a vector of
continuous random variables. The bounds of Lemma 5 imply
that the average rate performance is relatively insensitive to the
value of for a given . When the outage probability is
sufficiently small, there are many near-optimum schemes with
small and the exact shape of the outage set is not critical.

A. Near-Optimum Power Allocation I

In this subsection, we develop the near-optimum scheme I
using the general structure but with particular

and , so that the outage occurs when the supplemental
power is above a threshold. The near optimum scheme I is sim-
pler than the optimum solution in that parameter is constant
over the boundary set.

Consider a policy with

(50)

where , , and are solutions to
and . We will see that it is sufficient

to choose . For any solution , it can be
directly verified that with

is also a solution to and .
This simplifies the computation of parameters relative to the
computation of the optimum solution . In this subsection,
we show that is a near-optimum scheme for problem (4).
Applying the generalized Karush–Kuhn–Tucker conditions, we
have the following lemma characterizing .

Lemma 6: is the optimum solution of the following
problem:

subject to (51)

The following lemma is a corollary of Lemma 6.

Lemma 7: Policy has the minimum water-filling pa-
rameter among all that satisfy

and

In Lemma 5, it is shown that the average rate of
is mainly determined by , which is

a decreasing function of . This implies that with the
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minimum should be a good scheme. Applying Lemma 5,
we have

(52)

Here is the maximum average rate achieved by . In-
equalities and are direct results of the rate bounds in
Lemma 5. Inequality follows from the fact that by
Lemma 7. Therefore, achieves a rate between and

, and is a near-optimum solution for problem (4) for small .
To determine , we have to solve

(53)

(54)

(55)

We search in an iterative way. For a given , we first
examine (54) and (55), and obtain and as a function
of as

(56)

(57)

Then we adjust the value of until . Each
time we adjust , we have to compute and ac-
cording to (56) and (57).

B. Near-Optimum Power Allocation II

In this subsection, we develop the near-optimum scheme II
using the general structure but with particular

and , so that the policy has the same outage set as the
outage capacity derived in [4]. As shown later in this subsection,
the computational complexity of the near-optimum scheme II is
significantly less than that of either the optimum solution or the
near-optimum scheme I. Moreover, we will see that it has an
appealing structure for the implementation of mixed real-time
and non-real-time services.

Consider a policy
with given by (17) and satisfying .
Recall that

.
(58)

Policy allocates the supplemental power at channel states
where is below a threshold. Since does not de-
pend on , the outage set of is much simpler than
and . Applying the equality

can be expressed equivalently as

(59)

Recall that achieves the minimum
sufficient power to meet the outage constraint. The physical

meaning of is that we first assign to meet
the outage constraint with the minimum sufficient power, and
then we allocate the remaining power in an optimum way to
maximize the excess rate. The is in
fact a “water-filling” allocation when is viewed as
interference.

It is interesting to see that is not the optimum solution,
since choosing the outage set to minimize the power for the
basic rate may not maximize the expected rate at the same time.
Nevertheless, we show that is a near-optimum scheme for
problem (4) as follows.

It is hard to show directly that is a near-optimum
scheme. Our approach is to introduce, as an intermediate step,
a second scheme

(60)

where is the solution to . The following
lemmas on allow us to show that is a near-op-
timum scheme for problem (4).

Lemma 8: The average rate achieved by satisfies
.

Lemma 9: We have , where the is the water-
filling parameter in .

Applying Lemmas 8 and 9, we have

(61)

Inequality holds since is a feasible scheme for
problem (4). Inequality follows from Lemma 8. Inequality

holds since is a decreasing function of and
by Lemmas 7 and 9. Applying the rate bounds

in Lemma 5 to the optimum allocation , we have

and thus get inequality . Therefore, is a near-optimum
scheme for problem (4) for small .

As we can see, both and first allocate
to meet the outage constraint, but the allocates the re-
maining power in an optimum way to maximize the additional
rate.

Lemma 10: Scheme achieves a higher average rate
than .

Therefore, is a near-optimum scheme for problem (4)
for small .

The computation of is much simpler than and
, since its parameters do not depend on . In

particular, can be determined by solving the outage
probability constraint (4b) alone. This solution is given by
(18) and (19). It follows that can be determined by solving

using a line search technique. Therefore,
in the are the same for all values of , while
in and we have to compute for each value
of .
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Fig. 3. The average rate performance of the optimum scheme PPP (hhh) versus two near-optimum schemes P̂PP (hhh) and PPP (hhh) for a two-state model with fixed r =
0.36 bits/symbol and � = 1=2.

The structure of in (59) suggests a simple implemen-
tation of transmission of mixed real-time and non-real-time ser-
vices. The can be used to transmit the real-time service
with the basic-rate requirement, and
can be used to transmit the non-real-time service. Two code-
books will be generated according to the corresponding power
assignments to these two services and transmitted simultane-
ously using superposition coding, while successive decoding is
employed at receiver.

C. Discussion

We derived three allocation schemes , , and
. All of these three schemes have a similar two-layer

structure: but with different
and . The determines where to allocate the supple-
mental power according to a metric. The metric is
for , for , and for . The
service outage happens at the channel states where the metric is
above a threshold. Since the metrics , , and

are all nonincreasing functions of , outage occurs at
poor channel states for a good scheme, which is consistent with
intuition.

In previous sections, we have shown that and
achieve a rate between and . It can be directly ver-
ified that for sufficiently small such that
holds in the outage set, we have .
For sufficiently large average power, all three policies become
a water-filling allocation. Thus, for sufficiently small and large

, both and are optimum. Moreover, as shown

later, we have in an fading
channel for all parameters. When , since the metrics

, , and are all nonincreasing func-
tions of , all , , and can be expressed in the
same way as

.
(62)

Hence, and are the same for all three schemes since they
are the solutions of . With the same , the
average power constraints implies that . Thus, we
have in an fading channel.

VI. NUMERICAL RESULTS

In most of our numerical results, the two near-optimum
schemes achieve an average rate almost equal to the maximum
rate achieved by , and the lower bound
is loose, especially for large . To highlight the performance
difference between these three schemes, we construct a par-
ticular two-state model as follows: in an channel, the
channel state vector is equal to
with probability , and equal to with probability

. The average rate versus the average power performance
for , , and in this model with fixed
0.36 bits/symbol and is given by Fig. 3. It can be seen
that the optimum solution achieves a slightly higher
average rate than the near-optimum schemes and .
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Fig. 4. The average rate performance of the optimum scheme PPP (hhh) versus two near-optimum schemes P̂PP (hhh) and PPP (hhh) for a two-state model with fixed r =
0.5 bits/symbol and � = 1=2.

For sufficiently small and high average power, both and
are equal to . In this example, is slightly

better than in a range of parameters. As shown in Fig. 4,
with 0.5 bits/symbol, is indistinguishable from

, and both are better than . The relative performance
difference is still much less than .

As observed in Fig. 4, the average rate versus the average
power performance for is discontinuous near 6.1 dB and
also near 7.2 dB. In fact, the performance of is always
continuous, since is the optimum solution of the con-
tinuous optimization problem (4) and the complicated solution
in the boundary of ensures the continuity of its perfor-
mance. However, for the two near-optimum schemes and

, we are not guaranteed a continuous solution when the
channel state is discrete. The discontinuous points occur at the
values of for which the outage region changes.

We apply the results to the parallel Rayleigh-fading
channel model. To simplify the computations, we assume that
the subchannels are independent and identically distributed
(i.i.d.) with the joint pdf

otherwise.
(63)

In Fig. 5, the average rate versus the average power is plotted
for , , and with fixed and
3 bits/symbol in a Rayleigh-fading channel. As we can see,
the near-optimum schemes are indistinguishable from the op-
timum solution . In Fig. 6, the service outage achievable
rates with different are plotted against the ergodic capacity

and the outage capacity in Rayleigh-fading channel.
As we can see, for the given outage probability , the
outage capacity has a close to 2 dB loss in the average power
compared to the ergodic capacity. A larger average power loss
is expected when the outage probability is smaller. Between
the outage capacity and the ergodic capacity, a number of ser-
vice outage achievable rates with different exist. The service
outage achievable rate ranges from of the outage capacity
up to the ergodic capacity. Starting from , it approaches
the ergodic capacity as the average power increases. The outage
probability achieved by the water-filling allocation with respect
to different is also plotted against the service outage solution
with a given in Fig. 7. It can be observed that, for
a range of , the service outage solution achieves a rate very
close to the ergodic capacity, and, at the same time, significantly
reduces the outage probability. Hence, the service outage ap-
proach strikes a good balance between average rate and outage
probability.

VII. CONCLUSION

The service outage based allocation problem is to maximize
the expected rate subject to the average power constraint and the
outage probability constraint in the class of probabilistic power
allocation schemes. The feasibility condition of this allocation-
problem can be obtained from the capacity versus outage proba-
bility problem [4]. The optimum power allocation is derived for
an -parallel fading-channels model. The result can be applied
to both discrete and continuous fading distributions.
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Fig. 5. The average rate performance of the optimum scheme PPP (hhh) versus two near-optimum schemes P̂PP (hhh) and PPP (hhh) in Rayleigh-fading channel with fixed
� = 0:01 and r = 3 bits/symbol.

Fig. 6. Comparison of the service outage achievable rate with other capacity notions in M = 2 Rayleigh-fading channel for a fixed � = 0:01.
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Fig. 7. The outage probability of water-filling allocation with respect to r = 0:5 is compared to the service outage solution in M = 2 Rayleigh-fading channel.

The optimum power allocation is shown to be a combination
of the water-filling allocation and the basic-rate allocation, and
is deterministic except at the boundary set. It can be viewed as a
two-layer allocation: the first layer is the water-filling allocation,
and the second layer the supplemental power allocation. The
supplemental power is only allocated at channel states where the
supplemental cost is below a threshold. With increasing
average power, the optimum power allocation gradually changes
from , which is the optimum solution for the outage
capacity, to , which is the optimum solution for the
ergodic capacity. The service outage based achievable rate
gradually changes from to the ergodic capacity. The
service outage approach strikes a good balance between the
outage probability and the average rate.

Two near-optimum schemes are also derived: the
with the minimum and the based on . Both

and have similar structures as the optimum so-
lution, but the supplemental power is allocated according to
different metric functions. We have
in an fading channel and for a range of parameters
in fading channels. Otherwise, and
achieve a rate between and . The derivation
of near-optimum schemes shows that the exact shape of the
outage set is not critical, a feasible scheme in the form of

achieves a high average rate
as long as the corresponding is small. The near-optimum
scheme has an immediate application on transmission of
mixed real-time and non-real-time services. Its computation is

also significantly simpler than the optimum solution and
the near-optimum scheme .

APPENDIX

A. Lemma 1

Our approach is to show that for an arbitrary feasible proba-
bilistic power allocation scheme with a conditional pdf

, we can always construct another feasible scheme
which is randomized between two deterministic schemes
and with and the sharing factor
satisfying . It can be shown that

achieves a higher average rate than . This implies that there
exists an optimum scheme which is randomized between two
deterministic schemes, and one of them has a rate higher or
equal to and .

The feasibility of implies that and
. Deterministic schemes and

, and the weighting function are constructed as
follows:

(64)

Clearly, is the outage probability of for a given
. Since meets the outage probability constraint, we must
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have . The is the conditional average of
whose rate is larger than or equal to , while the is

the conditional average of whose rate is smaller than .
Since is concave on for a given , applying Jensen’s
inequality we have

(65)

(66)

Consider a new probabilistic scheme such that
with probability and with proba-

bility . The average power of is

(67)

Since by (65) and
, we have

Thus, the outage probability of satisfies

(68)

From (67) and (68), is also a feasible scheme for problem
(4). Inequalities (65) and (66) imply that achieves an av-
erage rate higher than or equal to , that is,

(69)

Thus, from any arbitrary feasible power allocation we can
always construct a better feasible power allocation which is
randomized between two deterministic power allocations. This
implies that there must exist an optimum power allocation which
is randomized between two deterministic power allocations.
Furthermore, it is required that

and

Also, it is easy to see that should hold for
the optimum solution; otherwise, a higher average rate can be
achieved by increasing the power.

B. Proof of Lemma 2

In order to prove Lemma 2, we need the following proposi-
tions.

Proposition 2: If is a concave function over , then
function is a concave function over nonnega-
tive .

Proof: Applying the fact that is a concave function
and , we have

(70)

Note that nonnegativity of is used in .

In the following proposition, we use to indicate the
gradient of .

Proposition 3: Let and be two vectors with equal lengths.
Let where is a one-to-one transfor-
mation between and . If is a solution to , then

is also a solution to .

Now we return to the proof of Lemma 2, and show that
problem (21) can be transformed into a convex optimization
problem. Define

and

Problem (21) can be transformed as follows:

(71)

subject to (71a)

(71b)

(71c)

(71d)

Denoting , it follows from Proposition 2
that

(72)

is the sum of concave functions. Thus,
is a concave function over . Similarly
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is a concave func-
tion over . Thus, the objective function is concave
over . It can be seen that the equality
constraint (71a) is a linear function over , the
constraint (71b) is a linear function over . Since the
left-hand side of constraint (71c) is a concave function over

, constraint (71c) is a convex set. Thus, the con-
straints specify a convex feasible set. Therefore, according to
the Karush–Kuhn–Tucker sufficient conditions theorem [9], the
Karush–Kuhn–Tucker conditions are sufficient conditions for
the transformed problem (71). Let be a
solution of the Karush–Kuhn–Tucker conditions of the original
problem (21). According to Proposition 3, it is easy to see that
the corresponding transformed variable
satisfies the Karush–Kuhn–Tucker conditions of the trans-
formed problem (71). Therefore, is the
optimum solution of the original problem (21), and, thus, the
Karush–Kuhn–Tucker conditions of problem (21) are also
sufficient.

C. Proof of Lemma 3

Condition (23) yields

(73)
Condition (26) implies the following.

1) When , we have . Moreover,
when , (73) implies . Thus,
in this case, we have .

2) When , we have . Expression
(73) and imply that
with

Since , we have . According
to Proposition 1a), we have

iff

Therefore, when , we have
with a rate equal to .

Therefore,

otherwise. (74)

Finally, condition (24) yields directly.

D. Proof of Lemma 4

We need the following proposition to prove Lemma 4.

Proposition 4: For , is an
increasing nonnegative function of .

Proof: When , the first derivative
. Thus, is increasing in when . Since

, for all .

a) To prove Lemma 4 a), we only need to show that func-
tion is a nonincreasing function of for all

.
When , we have

and . Thus, we have when
.

When , we have

Thus, in this case, we have

where . We
have

(75)

A partial derivative of can be computed ac-
cording to the approach used in [4]. Without loss of
generality, it is assumed that . [4] shows
that

(76)
where is an integer employed in . Parameter has a
property such that for and
for [4]. Thus, we have . From
(75) and (76), it follows that

when , we have

when , we have

(77)

In the case of , by Proposition 1 we
have , and thus, .
By the definition of , we have
iff . Thus, in this case we must have .
Therefore, we have

Thus, is a nonincreasing function of for all
.

b) Clearly, we have when . When
, we want to show that is strictly

positive.
In this case, we have

(78)
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Let

then we have .

1) When , we have and
. Then

(79)

2) When ,
holds, and thus,

(80)

Here, function is an increasing nonnegative function of
when by Proposition 4. Therefore, we have
for all , and thus, when .

E. Proof of Lemma 5

The average rate achieved by is

(81)

The first term in (81) is

(82)

Equality follows from for any
, , and .
The second term in (81) is bounded between and , since

(83)

(84)

Thus,

(85)

F. Proof of Lemma 7

We need the following proposition to prove Lemma 7.

Proposition 5: The average power is
decreasing in for a given .

Proof: Proposition 5: The average power achieved by
can be expressed as follows:

(86)

Since is decreasing in , the preceding expression
implies that is a decreasing function of
for a given .

Now we return to the proof of Lemma 7. For any
with and

, consider a scheme .
Then

holds for any that satisfies according to
Lemma 6. Then we have

(87)

Since is a decreasing function of for
a given by Proposition 5, we have . Hence,

has the minimum water-filling parameter among all
that satisfies and

.

G. Proof of Lemma 8

We show in this section.
For any and , we have

and thus,

Therefore, for any two power allocations and we
have

(88)

Let
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Expanding and applying , we
have

(89)

Applying Proposition 1 b) and c), it is easy to show that

(90)

Thus, .
Since , we have

(91)

Thus, applying (88) we have

(92)

H. Proof of Lemma 9

To show , we only need to show that for
any that satisfies
and .

We have

(93)

Inequalities and follow from . Equality
follows from . Inequality

holds since achieves the minimum power that needed
to support with probability , that is,

for any that satisfies .
Thus, it follows that

(94)

Since is a decreasing function of , we have
, and thus, .

I. Proof of Lemma 10

In this section, we show that achieves a higher average
rate than .

For any nonnegative and , let denote a set of
probabilistic schemes with average power such that

with probability and with probability
. Here is given by (17). It is easy to show that

with

and

and with

Consider the following optimization problem:

(95)

subject to

(95a)

Applying the generalized Karush–Kuhn–Tucker conditions
[11], the optimum solution of (95) is

Thus, is the optimum power allocation that maximizes
the average rate in set . Therefore, achieves a higher
average rate than .

J. Closed-Form Solution for the Sub-Problem

As shown in Section IV-E, to determine for
, it requires solving a linear programming problem on

for given and .
For a given and the corresponding in (48), let

(96)

(97)

Define event as . Equations (42)–(44) be-
come

(98)

(99)

(100)

To determine whether (98)–(100) is feasible, we first solve
the following two optimization problems:

(101)

subject to (101a)

and

(102)

subject to (102a)
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Let and denote the corresponding optimum solution
for and , respectively.

We have the following lemma for the subproblem.

Lemma 11: For a given , problem (98)–(100) is feasible
iff . When it is feasible, one solution is

where is the solution to .

The can be obtained by solving problem (101) using
the Karush–Kuhn–Tucker conditions. We have

(103)

where parameters and are solutions of (101a) as

(104)

(105)

Similarly, solving problem (102), we have

(106)

where and are

(107)

(108)
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