= AJT, A, = £1,43,+5 7
The basis function is given by
5;(1) _ 5;(1)

v

The signal-space diagram of the 8-level PAM signal is as follows:

—— o o Fle . ’ ’ 0y
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Problem 5.3

Consider the signals s(7), s5(¢), s3(7), and s4(r) shown in Fig. 1a. We wish to use the Gram-
Schmidt orthogonalization procedure to find an orthonormal basis for this set of signals.

Step 1 We note that the energy of signal s;(¢) is

L)
E, = fo s(t)dt

T/3 2
j (1)°dr
0
r
3
The first basis function ¢(?) is therefore

0,(1) = ——=

_{A/3/T, 0<t<T/3 }

0, otherwise
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s1(t) s2(0) salt)
1 1 1}-
t ¢ 0 T
0T 0 2T T
3 3 3
(a)
1 (2) ¢2(t)
3T V3IT
¢ { p t
orT 0 r2r
3 3 3
(b)
Figure 1

¢3(t)

Step 2 Evaluating the projection of s,(¢) onto ¢(r), we find that

T
§y = jo 55(2)0,(1)dt

The energy of signal s,(¢) is

E, = j:sg(z)

2T/3 )
jo (1)“dt

2T

3
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The second basis function ¢,() is therefore

55(2) = 5510,(7)

2
E, -5y

¢2(l) =

_ {A/3/T, TI3<2T/3

0 otherwise

Step 3 Evaluating the projection of s3(f) onto ¢;(?),

S31

T
jo s3(1)0,(1)dt

=0

and the coefficient s3, equals

T
S3y = fo s4(1)0,(1)dt

The corresponding value of the intermediate function g,(¢), with i = 3, is therefore

85(1) = 53() —53,0,(2) = 53,0,(7)

|1, 2T/3<i<T
- 0, elsewhere
Hence, the third basis function ¢5(?) is

g5(?)

Uzgi(t)dz

¢3(t) =

272



_ {A/3/T, 2T/3<t<T

0, elsewhere

The orthogonalization process is now complete.

The three basis functions ¢;(#), ¢,(7) , and ¢5(z) form an orthonormal set, as shown in Fig. 1b. In
this example, we thus have M = 4 and N = 3, which means that the four signals s1(2), s,(?), s3(?),
and s4(7) described in Fig. 1a do not form a linearly independent set. This is readily confirmed by
noting that s4(z) = s;(¢) + s3(¢). Moreover, we note that any of these four signals can be expressed

as a linear combination of the three basis functions, which is the essence of the Gram-Schmidt
orthogonalization procedure.

273



Problem 5.4

(a) We first observe that s1(t), sz(t) and 53(t) are linearly independent.
The energy of s1(t) is
1 2
E1.= J (2)%dt = 4
0

The~first basis function is therefore

s1(t)
¢1(t) = =
E1
1, 0<t<
0, otherwsie
Define
T
Sy = IO sz(t) ¢1(t)dt
1
=1 (~u)(1)dt = -4
.0
Bz(t) = sz(t) - 521¢1(t)
-1, 1<tg2
0, otherwise

Hence, the second basis function is

gz(t)

/T >
I gatidt

0

9,(t) =
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-1, 1<t<2
o, otherwise

Define
T
331 = fo s3(t) ¢1(t)dt
1
=J (3)(1)dt = 3
0
2T
332 = LT s3(t) ¢2(t)dt
2
=/ (3)(-1)dt = =3
1
83(t) = s3(t) - S3 ¢1(t) - S3 ¢2(t)
3, 2<t<3
) 0, otherwise
Hence, the thrid basis function is
g,(t)
45(t) = -3
/T
2
/ 33(t)dt
0
1, 2<{t<3
) 0, otherwise
The three basis functions are as follows (graphically)
& ) ey 43(9
\.0-————————] D
4
A E ®
0 ] 0 0 ,
0 ---=-
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(b) 51(t) 2¢1(t)
sz(t) = -ll¢1(t) + 4¢2(t)

s3(t)

3¢,(t) - 3¢,(t) + 3¢3(t)
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Problem 5.5

Signals s1(z) and s,(7) are orthogonal to each other. The energy of s1(¢) is

T/2 T
E, = [ Udr+ [ »lar =T
0 T/2
The energy of s,(?) is
T
E,= (1% =T
0

To represent the orthogonal signals s;(¢) and s,(¢), we need two basis functions. The first basis
function is given by

si(t) _ sy(1)
o) = 2 = L
1 A/El ﬁ

The second basis function is given by

5,(1) _ 5,(1)

0p(0) = 22 = 2
2 A/E—,2 .\/T

The signal-space diagram for s(z) and s,(z) is as shown below:

A9
NT ®

> 0

o 7

Problem 5.6

The common properties of PDM and PPM are as follows: In both cases a time parameter of the
pulse is modulated and the pulses have a constant amplitude. In PDM, the samples of the message
signals are used to vary the duration of the individual pulses, as illustrated in Fig. 1a for M =4 on
the next page. In PPM, the position of the pulse is varied in accordance with the message, while
keeping the duration of the pulse constant, as illustrated in Fig. 1b for M = 4.

From these two illustrative figures, it is perfectly clear that the set of PDM signals is
nonorthogonal, whereas the PDM signals form an orthogonal set.
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Problem 5.7

(a) The biorthogonal signals are defined as the negatives of orthogonal signals. Consider for
example the two orthogonal signals s;(f) and s,(¢) defined as follows:

s1(t) = JEO (1)

Sz(f) = A/Eq)z(t)

where ¢(7) and 0,(¢) are orthonormal basis functions. The biorthogonal signals are given by
-s1(2) and -s,(#), which are respectively expressed in terms of the basis functions as \/E(])l(t)
and —\/-E—q)z(t). Hence, the inclusion of these two biorthogonal signals leaves the dimensionality

of the signal-space diagram unchanged. This result holds for the general case of M orthogonal
signals.

(b) The signal-space diagram for the biorthogonal signals corresponding to those shown in Fig.
P5.5 is as shown in Fig. 1a. Incorporating this diagram with that of the solution to Problem
5.5, we get the 4-signal constellation shown in Fig. 1b.

¢
0 NT @
o 5 0 . . o
NT T T
- \]T ® - \]T ®
(a) (b)
Figure 1
Problem 5.8

(a) A pair of signals s/z) and s (f), belonging to an N-dimensional signal space, can be
represented as linear combinations of N orthonormal basis functions. We thus write

N
si (1) = Ysy0,0), Osi=<T 1)
=1 i=1,2
where the coefficients of the expansion are defined by
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T
i=1,2
5 = El).si(t)(j)j(t)dt, - 12 (2)

The real-valued basis functions ¢{(z) and ¢,(¢) are orthonormal. Hence,

T
J'q)i(;)q)j(z) =3, = { 1, if i=j 3)
0

0, otherwise

The set of coefficients s.-}IY_ may be viewed as an N-dimensional vector defined by
4 j=1 y

s, = |%2|, i=1,2 ..M (4)

where M is the number of signals in the setl, with M > N. The inner product of the pair of
signal 5,(#) and s;(?) is given by

T

j s(1)s,(1)dt 5

0

By substituting (1) in (5), we get the following result for the inner product:
T-N N

J.I:ZSU(I)].(I)} {Zsk,q)l(z)}dz

oLj=1 =1

T

N
=Y Dsysuf0,(1)0(r)de (6)
j 0

Jj=1 I=1

Since the q)j(t) form an orthonormal set, then, in accordance with the two conditions of Eq. (3)
and (4), the inner product of s;(#) and s;(r) reduces to

T N
[sinsi(nyde = Y sy
0 j=1
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T
= 5;8;

(b) Consider next the squared Euclidean distance between s; and s;, which can be expressed as

follows:
2 T
”Si_sk” = (8;—58;) (5;—5;)
T T T
=8;8;+8;8; — 251. S,
T T T
= fsf(t)dt + js,f(t)dt ~2[s(0)s,dr
0 0 0
T
2
= [(si()-s(n)) de
0
Problem 5.9

Consider the pair of complex-valued signals s1(¢) and s,(¢), which are defined by
s1(1) = a;10,(8) +a;0,() (D)

5p(1) = ay,0,(2) + ay0,(t) (2)

The basis functions ¢;(7) and ¢,(¢) are real-valued and the coefficients ayy, a5, @y and ay, are
complex-valued. We may denote the complex-valued coefficients as follows:

ajp=oayp +jBy;
app =0 +jBio
a1 =01 +jBy;
ayy = 0y +jBy;

On this basis, we may represent the signals s(z) and s,(¢) by the following respective pair of
vectors:
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