CHAPTER 4

Problem 4.1

(a) The impulse response of the matched filter is
h(t) = s(T-t)

The s(t) and h(t) are shown below:

s(t)
A/2

-az2 F——-—

h(t)
A2 |5~

(NYE]

-A/2

(b) The corresponding output of the matched filter is obtained by convolving h(t) with
s(t). The result is shown below:

s (&)
(o]

3T/4 27

a’r/8

(e i
) The peak value of the filter output is equal to A2T/‘h occuring at t=T
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Problem 4.2

(a) The matched filter of impulse response £ (¢) for pulse s;(7) is given in the solution to Problem
~ 4.1. The matched filter of impulse response h,(¢) for s,(¢) is given by

which has the following waveform:

hy(8)

AR f---

3774
0 T/4 T

-A2

Fig.

(b) (i) The response of the matched filter, matched to $,(7) and due to s(¢) as input, is obtained by
convolving h,(¢) with s,(z), as shown by

T
Y (1) = jo 51(T)hy (2 - T)dr

The waveform of the output y,,(7) so computed is plotted in Figure 2. This figure also
includes the corresponding waveforms of input s, (¢) and impulse response A, (7).

(ii) Next, the response of the matched filter, matched to s;(r) and due to s,(¢) as input, is
obtained by convolving A;(f) with s,(¢), as shown by

T
NOE jo 5,(T)h,(t - T)dr

Figure 3 shows the waveforms of input s,(¢), impulse response 4,(z), and response y;5(2).
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Note that y;,(?) is exactly the negative of y,;(¢). However, in both cases we find that at # =
T, both outputs are equal to zero, as shown by

)’21(T) = ylz(T) =0

For n pulses 51(2) s5(1)....,s,(?) that are orthogonal to each other over the interval [0,T], the
n-dimensional matched filter has the following structure:

- Output |

> Output 2

Filter matched
——
to | (t)
- Filter matched
to Sz([)
_—>
input
Filter matched
> 0 5,(7)
Fig. 4
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Problem 4.3

Ideal low-pass filter with variable bandwidth. The transfer function of the matched filter for a
rectangular pulse of duration t and amplitude A is given by

Hopi(f) = sinc(fT)exp(-jnfT) (1)

The amplitude response |Hopt(f) | of the matched filter is plotted in Fig. 1(a). We wish to
approximate this amplitude response with an ideal low-pass filter of bandwidth B. The amplitude
response of this approximating filter is shown in Fig. 1(b). The requirement is to determine the
particular value of bandwidth B that will provide the best approximation to the matched filter.

We recall that the maximum value of the output signal, produced by an ideal low-pass filter in
response to the rectangular pulse occurs at t = T/2 for BT < 1. This maximum value, expressed
in terms of the sine integral, is equal to (2A/x)Si(nBT). The average noise power at the output of
the ideal low-pass filter is equal to BN,,. The maximum output signal-to-noise ratio of the ideal
low-pass filter is therefore

(SNR); - (2A/15)2BSI\} 2(1CBT) (2)
0

Thus, using Eqs. (1) and (2), and assuming that AT = 1, we get

SNR),
SNR, _ 2 g2¢BT)
(SNR),  #2BT

This ratio is plotted in Fig. 2 as a function of the time-bandwidth product BT. The peak value on
this curve occurs for BT = 0.685, for which we find that the maximum signal-to-noise ratio of the
ideal low-pass filter is 0.84 dB below that of the true matched filter. Therefore, the " best" value
for the bandwidth of the ideal low-pass filter characteristic of Fig. 1(b) is B = 0.685/T.
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Problem 4.4

The output of the low-pass RC filter, produced by a rectangular pulse of amplitude A and duration
T, is as shown below:

s0(8)

A(L-exp(-2nfyT))

0 T t

The peak value of the output pulse power is
2 2
Py = AT[1 —exp(-2nf,T)]
where f; is the 3-dB cutoff frequency of the RC filter.

The average output noise power is

v = No _ df
ot T~ o) T 5
1+ (f/fo)
_ Nomfy
T2

The corresponding value of the output signal-to-noise ratio is therefore
24’

(SNR)oy = G2l

[1-exp(2nf,T)]

Differentiating (SNR), with respect to fo7 and setting the result equal to zero, we find that
(SNR),,, attains its maximum value at

0.2

fO'_‘"f

The corresponding maximum value of (SNR),,; is
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AT

2
m—o[l - CXp(—-O.47T)]

(SNR)g max =

_ L62A’T
NO

For a perfect matched filter, the output signal-to-noise ratio is

2FE
(SNR)O,matched = N_O
_ 24T
NO

Hence, we find that the transmitted energy must be increased by the ratio 2/1.62, that is, by 0.92
dB so that the low-pass RC filter with f = 0.2/T realizes the same performance as a perfectly

matched filter.

Problem 4.5

(1) po>py

The transmitted symbol is more likely to be 0. Hence, the average probability of symbol error is
smaller when a 0 is transmitted than when a 1 is transmitted. In such a situation, the threshold A in
Figs. 4.5(a) and (b) in the textbook is moved to the right.

(i1) p; > pg

The transmitted symbol is more likely to be 1. Hence, the average probability of symbol error is
smaller when a 1 is transmitted than when a 0 is transmitted. In this second situation, the threshold
A in Figs. 4.5(a) and (b) in the textbook is moved to the left.
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Problem 4.6

The average probability of error is

Pe = py [* fyly IDdx + pg J;“ fu(y 10)dx 1)

An optimum choice of A corresponds to minimum P,. Differentiating Eq. (1) with respect to A, we get:

oP,
a_; = pify (A [1) - pofy(A |0)

oP
Setting a_; = 0, we get the following condition for the optimum value of A:

fYo‘opt: |1) - Po

fyWop 100 Py

which is the desired result.
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Problem 4.7

In a binary PCM system, with NRZ signaling, the average probability of error is

1 /Eb
P, = — erfc| [——
e =5 erfc Ny

The signal energy per bit is

E, = A2T,

where A is the pulse amplitude and Ty, is the bit (pulse) duration. If the signaling rate is doubled,
the bit duration Ty is reduced by half. Correspondingly, E, is reduced by half.

Letu = JEb/No. We may then set

P, = 1076 = _21_ erfe(u)

Solving for u, we get

u =33

When the signaling rate is doubled, the new value of P, is

P; l erfc| %
2 V2

% erfc(2.33)

1073,
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Problem 4.8

(a) The average probability of error is

where E, = A2Tb. We may rewrite this formula as

P, = L erfe (_é) (1
2 c

where A is the pulse amplitude at ¢ = \fN—OTb. We may view o as playing the role of noise variance
at the decision device input. Let

E
u=|-b A
NO (¢}
We are given that
o2 =102 volts 2, o = 0.1 volt
P, = 1078

Since P, is quite small, we may approximate it as follows:

erfc(u) = M
Vru
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We may thus rewrite Eq. (1) as (with P, = 10®)

exp(—uz)ﬁu - 10-8
2

Solving this equation for u, we get

u = 3.97

The corresponding value of the pulse amplitude is

A =0u=01x397

0.397volts

(b) Let ozi denote the combined variance due to noise and interference; that is

2 _ 2, 2
Op = O G;

where o2 is due to noise and ozi is due to the interference. The new value of the average probability
of error is 10, Hence

2)
- _2’_ erfe(ur)

where



Equation (2) may be approximated as (with P, = 10°%)

2
exp(-ur)
ST L1076
2\/;uT
Solving for uy, we get
up = 3.37

The corresponding value of 0’2T is

Y
o2 =(AN - (9397F _ 00138 volts?
uT) 3.37

The variance of the interference is therefore

2 _ 2 2
O'i—GT—O'

0.0138 - 0.01
= 0.0038 volts 2
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Problem 4.9

Consider the performance of a binary PCM system in the presence of channel noise; the receiver
is depicted in Fig. 1. We do so by evaluating the average probability of error for such a system
under the following assumptions:

1. The PCM system uses an on-off format, in which symbol 1 is represented by A volts and
symbol 0 by zero volt.

2. The symbols 1 and 0 occur with equal probability.

3. The channel noise w(t) is white and Gaussian with zero mean and power spectral density
Ny/2.

To determine the average probability of error, we consider the two possible kinds of error
separately. We begin by considering the first kind of error that occurs when symbol 0 is sent and
the receiver chooses symbol 1. In this case, the probability of error is just the probability that the
correlator output in Fig. 1 will exceed the threshold A owing to the presence of noise, so the
transmitted symbol 0 is mistaken for symbol 1. Since the a priori probabilities of symbols 1 and
0 are equal, we have P=P Correspondingly, the expression for the threshold A simplifies as follows:

_ AT, 1)
2

A

where T}, is the bit duration, and AT} is the signal energy consumed in the transmission of
symbol 1. Let y denote the correlator output:

y = LTb s(t)x(t)dt (2)

Under hypothesis Hy, corresponding to the transmission of symbol 0, the received signal x(t) equals
the channel noise w(t). Under this hypothesis we may therefore describe the correlator output as

Hyy = A LTb w(t)dt 3)

Since the white noise w(t) has zero mean, the correlator output under hypothesis H also has zero
mean. In such a situation, we speak of a conditional mean, which (for the situation at hand) we
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describe by writing

po = EIY [Hyl = E[ [ W(t)dt] =0 )

where the random variable Y represents the correlator output with y as its sample value and W(t)
is a white-noise process with w(t) as its sample function. The subscript 0 in the conditional mean
By refers to the condition that hypothesis H, is true. Correspondingly, let 020 denote the
conditional variance of the correlator output, given that hypothesis H, is true. We may therefore
write

oy = E[Y2 [H]
A )
T
- E[ [T [ Wepwdt dty

The double integration in Eq. (5) accounts for the squaring of the correlator output. Interchanging
the order of integration and expectation in Eq. (5), we may write

A [ P Ewewa,

- LTh [ R(Ty - tpdt; dty

The parameter R, (t; - t,) is the ensemble-averaged autocorrelation function of the white-noise
process W(t). From random process theory, it is recognized that the autocorrelation function and
power spectral density of a random process form a Fourier transform pair. Since the white-noise
process W(t) is assumed to have a constant power spectral density of Ny/2, it follows that the

autocorrelation function of such a process consists of a delta function weighted by Ny/2.
Specifically, we may write

N
R, (t; - to) = T" 3(t - t; + tp) (7)

Substituting Eq. (7) in (6), and using the property that the total area under the Dirac delta
function &t - t; + t,) is unity, we get

'./'A\

o - N TpA 2 ®)
0 - o
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The statistical characterization of the correlator output is compitted by noting that it is Gaussian

distributed, since the white noise at the correlator input is itself Gaussian (by assumption). In
summary, we may state that under hypothesis H, the correlator output is a Gaussian random
variable with zero mean and variance NOTbA2/2, as shown by

1 y2
fo(y) = ————exp| - — 9)
mNoTp A NoTpA

where the subscript in fy(y) signifies the condition that symbol 0 was sent.

Figure 2(a) shows the bell-shaped curve for the probability density function of the correlator
output, given that symbol 0 was transmitted. The probability of the receiver deciding in favor of
symbol 1 is given by the area shown shaded in Fig. 2(a). The part of the y-axis covered by this area
corresponds to the condition that the correlator output y is in excess of the threshold A defined by
Eq. (1). Let P, denote the conditional probability of error, given that symbol 0 was sent.
Hence, we may write

Pio = o) dy
1 f 9 (10)
= o y
R — exp| - —~——— |dy
\/nNOTb a ATz [ NoTA? J
Define
Zz = _.._y__ (11)

NoTp, A

We may then rewrite Eq. (10) in terms of the new variable z as

Pio = 1 f‘” exp(-z2) dz (12)

ﬁ VAPTYIN,

which may be reformulated in terms of 214



complementary error function

2 (e 2
erfc(u) = =_ exp(-z“) dz (13)
(1'5 .fu

Accordingly, we may redefine the conditional probability of error P, o.s

. A2T 14
2 4N,

Consider next the second kind of error that occurs when symbol 1 is sent and the receiver chooses

symbol 0. Under this condition, corresponding to hypothesis H,, the correlator input consists
of a rectangular pulse of amplitude A and duration T, plus the channel noise w(t). We may
thus apply Eq. (2) to write

H;:y=A I;Tb [A + w(t)] dt (15)

The fixed quantity A in the integrand of £ q. (15) serves to shift the correlator output from a
mean value of zero volt under hypothesis H, to a mean value of A2Tb under hypothesis H,.
However, the conditional variance of the correlator output under hypothesis H; has the same value
as that under hypothesis H. Moreover, the correlator output is Gaussian distributed as before.
In summary, the correlator output under hypothesis H; is a Gaussian random variable with mean
A2Tb and variance NOTb2/2, as depicted in Fig. 2(b), which corresponds to those values of the
correlator output less than the threshold A set at A2Tb/2, From the symmetric nature of the
Gaussian density function, it is clear that

?OI = Fo. (16)

Note that this statement is only true when the a priori probabilities of binary symbols 0 and
1 are equal; this assumption was made in calculating the threshold A.

To determine the average probability of error of the PCM receiver, we note that the two possible

kinds of error just considered are mutually exclusive events. Thus, with the a priori probability

of transmitting a 0 equal to PD’ and the a priori probability of transmitting a 1 equal to pwe find
215



that the average probability of error, P, is given by

Pe =pP1o * p po

Since Poy = pll-D’ and po+ P = 1, Eq. (17) simplifies as

Pe = Pie © Poi
or
A2T
P, = L oerfe| L b
2 2 Ny
Choose H, if
T o A is exceeded
x(t) f dt »| Decision | |
0 device Otherwi
erwise,
T choose H,
s(t) A
Figure 1
foly)
R0
y
0 % Asz
(a)
i
|
I
|
Peor |
I
* 7777 ! y
3 AT, A?T,
-~
(b)
Figure 2
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Problem 4.10
For unipolar RZ signaling, we have

Binary symbol 1: s(f) =+A for0 <t < 7/2
and s(®)=0for 772 <t<T

Binary symbol 0: s(t) =0 forO<t< T

The a priori probabilities of symbols 1 and 0 are assumed to be equal, in which case we have
po=py=1/2.

To determine the average probability of error, we consider the two possible kinds of error
separately. We begin by considering the first kind of error that occurs when symbol 0 is sent and
the receiver chooses symbol 1. In this case, the probability of error is just the probability that the

matched filter output will exceed the threshold A owing to the presence of noise, so the
transmitted symbol O is mistaken for symbol 1.

A
Energy of symbol 1 = — = E,

Energy of symbol 0 =0

The conditional probability density function of the two signals is given below:

frOls=0) fyGls=1)
|
|
|
0 VE, y
A

With symbols 1 and 0 assumed to be equiprobable, the optimum threshold is

2
1 _ 1 /AT,
AT

Given that symbol 0 was transmitted, the probability of error is simply the probability that y > A,
as shown by
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P(error|0) = J.:ofy(}’lo)dy

_ ! Ay
Lot

Define a new variable z as

L= D
JNg
We then have
1 2
P(error|0) = — exp(—z")dz
o=zl s

= lerfc(—}i—)
2 N

= lerfc 1 ﬂ
T2 2NN,
2
_loe AT
T2 2N 2N,

Define 7 = , and so write

JE,—y
N

0

P(error|l) = 71_1;5? ) exp(—zz)dz
NTb &
JNo
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P(error|1) = lerfc[

i)

il

2
S 2 20 2N,

The average probability of error is therefore

P, = P(1)P(error|1) + P(error|0)P(0)

Il

1 1
Eerfc(i ’Eb/NO)

2
1 1 /A T,
§CrfC(§ m) (1)

The average probability of error for on-off (i.e., unipolar NRZ) type of encoded signals is

2
Lope L 2 T
27 24N,

Comparing this result with that of Eq. (1) for the unipolar RZ type of encoded signals, we
immediately see that, for a prescribed noise spectral density Ny, the symbol energy in unipolar RZ
signaling has to be doubled in order to achieve the same average probability of error as in unipolar
NRZ signaling.

Il

Problem 4.11
Probability of error for bipolar NRZ signal
Binary symbol 1 : s(f) = +A

Binary symbol 0: s(r) =0
Energy of symbol 1 = E, = A2Tb
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. 1 1 2
The absolute value of the threshold is A = QA/E—b = 5 A°T,.

Refering to Fig. 1 on the next page, we may write

2
1 —(y+ JE})
P =-A) = — = \d
(error|s=-A) A/TWO‘—?» exp|: N, } y

v+ JE,

Letz = A/—N_o
Then,
X+J_b
P(error|s = —A) = ﬁ'[ - ﬁexP(_ZZ)dz
N

- Y3 5] -end 32

Similarly, P(error|s = +A) = P(error|s = —A)

2
2x1
P(error|s = 0) = rexp[ )dy
[N "2 No

1 /Eb
= f - D —
er {2 NOJ

The average probability of error is therefore

P,= P(s=t A)P(error|s=t A)+ P(s=0)P(error|s = 0)

The conditional probability density functions of symbols 1 and 0 are given in Fig. 1:
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11 1 |E, 3 /Eb 1 1 [E,
Pe = ixé[erfc(i ]V())_erfc[é_‘ ]—\-]— +§Crf 5 ]v

= §erfc 1 Eé —lerfc § E
T4 24N,y) 4 4NN,

Problem 4.12
The rectangular pulse given in Fig. P4.12 is defined by
g(®) =rec(t/T)

The Fourier transform of g(¢) is given by

T/2
G(f) = [ exp(=janfrydr

= Tsinc (fT)
We thus have the Fourier-transform pair
rec(t/T) & Tsinc (fT)
The magnitude spectrum |G(f)/T is plotted as the solid line in Fig. 1, shown on the next page.
Consider next a Nyquist pulse (raised cosine pulse with a rolloff factor of zero). The magnitude
spectrum of this second pulse is a rectangular function of frequency, as shown by the dashed curve

in Fig. 1.

Comparing the two spectral characteristics of Fig. 1, we may say that the rectangular pulse of Fig.
P4.12 provides a crude approximation to the Nyquist pulse.
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Problem 4.13

Since P(f) is an even real function, its inverse Fourier transform equals

p(t) = 2 L“ P(f) cos(2nft) df (1)

The P(f) is itself defined by Eq. (7.60) which is reproduced here in the form

1, 0< kl<f
2W
2)
= - f
P® 14+ co Llf_l__l) » f; <f<2W-f]
4W 2W - 2f]
0, > 2w-£;

Hence, using Eq. (2) in (1):

2W-f, £-f )
1 (f , 1 v eoe| T
p(t) W L cos(2nft) df 5 ff [1 cos[ X J]ccs&nﬂ;) df

1 o

, [(sin(2nft)] . [sin(znﬂ:) w-Fy

2nTWt 4tWt

1

) 2W —fl
T(E-fy) ]

_ 2W-f,
sin(21tﬂ: + sin(ant A i’.)

+ 2w

4 2t + W2Wa £, 4W 2nt - /2Wa £,

_ sin(2rfyt) . sin[2nt(2W -f;)]
47Wt 4nWt

_ 1 sin(@rfyt) + sin[2nt(2W -f;)] . sin(2nf t) + sin[2nt(2W-f;t)]

4W 2nt - P2Wa 2nt - ©/2Wa

1 .. . 1 nt
= __ [sin(2nf;t) + sin[2rt(2W-f,)] -

L [ ] Lnt (2rt)? - (1c/2Wa)2]
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2
L [sin(2nWt)cos(2naW)] [ - (n/2Wa) ]
w 4nt [(2nt)? - (W2Wor)?

sinc(2Wt) cos(2raWt) 1
1 - 16 a?W?2 t2

Problem 4.14

The minimum bandwidth, By, is equal to 1/2T, where T is the pulse duration. For 64 quantization
levels, log,64 = 6 bits are required.

Problem 4.15

The effect of a linear phase response in the channel is simply to introduce a constant delay 1 into
the pulse p(t). The delay 7 is defined as -1/2r)times the slope of the phase response; see Eq. 2.171.
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Problem 4.16

The Bandwidth B of a raised cosine pulse spectrum is 2W - f1. where W =\/2Tb and

f1 =W (1-@). Thus B = W (1+). For a data rate of 56 kilobits per second, W = 28 kHz.

(a) For q = 0.25,
B = 28 kHz x 1.25
= 35 kHz
(b) B = 28 kHz x 1.5
: = 42 KkHz
(e) B = 49 kHz
(d) B = 56 kHz

Problem 4.17

The use of eight amplitude levels ensures that 3 bits can be transmitted per pulse.
The symbol period can be increased by a factor of 3. All four bandwidths in problem 7./2

will be reduced to 1/3 of their binary PAM values.

Problem 4.18

(a) For a unity rolloff, raised cosine pulse spectrum, the bandwidth B equals 1/T, where
T is the pulse length. Therefore, T in this case is 1/12kHz. Quarternary PAM ensures 2
bits per pulse, so the rate of information is

E_E%EE = 24 kilobits per second.

-(b) For 128 quantizing levels, 7 bits are required to transmit an amplitude. The
additional bit for synchronization makes each code word 8 bits. The signal is transmitted
at 24 kilobits/s, so it must be sampled at

24 kbits/s
8 bits/sample

= 3 kHz.

The maximum possible value for the signal's highest frequency component is 1.5 kHz, in
order to avoid aliasing.

226



