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Complementary Sequences for ISI Channel
Estimation

Predrag Spasojevic´, Member, IEEE,and Costas N. Georghiades, Fellow, IEEE

Abstract—A merit factor based on the sequence autocorrela-
tion function, whose minimization leads to the reduction in the
Crámer–Rao lower bound (CRLB) for the variance of “two-sided”
intersymbol interference (ISI) channel estimation is introduced.
Pairs of binary pilot symbol sequences (a preamble and a post-
amble) for channel estimation are jointly designed to minimize this
merit factor. Given that the number of channel taps is and the
length of a pilot symbol sequence is( + 1), where , we
distinguish between the case when is even and the case when it is
odd. For even , we show that complementary sequences not only
minimize the merit factor, but also the CRLB. For a subset of odd

we construct almost-complementary periodic sequence pairs
that minimize the merit factor. The optimal pilot symbol block sig-
naling requires alternating between two (in most cases) different
binary sequences that form the merit-minimizing pair.

Index Terms—Autocorrelation merit function, complementary
sequences, intersymbol interference (ISI) channels, pilot symbols.

I. INTRODUCTION

D IGITAL communications over mobile channels can be se-
verely degraded due to unknown time-variant fading of

the received signal. It is a common approach to periodically in-
sert known symbols in order to reliably estimate the channel
parameters prior to detection (see, e.g., [1], for flat fading chan-
nels). In the case of time-variant multipath fading channels,
where the path delay spread is on the order of several symbols or
larger, pilot symbol blocks that span the channel memory need
to be inserted (see, e.g., [2]). In deriving optimal, or some deci-
sion-feedback detection and channel estimation algorithms, the
signal is frequently assumed to be quasistatic in an interval en-
compassing a number of transmitted symbols (see, e.g., [2] (and
references therein) and [3]).

As in [4] for pilot symbols, [5] has employed both pilot
symbol blocks (preamble and postamble) that frame a block
of data (as seen in Fig. 1) for estimation of the (quasi-static)
channel coefficients pertaining to a particular data block. This
approach we term “two-sided” channel estimation. Here, we
introduce optimal binary sequences for two-sided channel
estimation. Previously, only sequences for one-sided channel
estimation have been considered (for training using binary
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sequences, see [6]–[9] and, more recently, [10]). As will be
shown, the constructed optimal sequences will require that
the two pilot symbol blocks framing a data block differ in
most cases and, therefore, the optimal signaling will require
alternating periodically inserted training blocks.

A merit factor based on the periodic autocorrelation func-
tion (PACF) of the two binary pilot sequences framing a data
block is introduced. The minimization of this merit factor will
lead to the reduction in the channel estimation Crámer–Rao
lower bound (CRLB). Previous merit factors that have been
introduced attempt a reduction in the ratio of the autocorrela-
tion function energy at nonzero shifts to its value at the zero
shift (see, e.g., [11]). The proposed merit factor has a mini–max
form (similar to the criterion derived for pulse-position mod-
ulation (PPM) sequences in [12] and to the phase optimization
criterion for peak-to-average power reduction in orthogonal fre-
quency-domain multiplexing (OFDM) in [13]). The selection
criterion is based on an upper bound for the channel estima-
tion variance. This bound is derived using the Gerschgorin discs
pertaining to the eigenvalues of the two-sided pilot symbol ma-
trix. The two-sided pilot symbol matrix is formed by summing
the autocorrelation matrices of the two pilot symbol sequences
framing the data-block. The optimal selection requires mini-
mization of the maximum Gerschgorin disc radius. Unlike the
criteria employed in [8] and [10], which are used mainly for
computer-aided search of optimal sequences, the merit factor
derived here aids in analytical construction of optimal sequences
based on previously known binary sequences having good peri-
odic autocorrelation properties.

The number of symbols per pilot symbol block is assumed
to be , where is the number of channel taps.
For the case when the channel estimate is based on pilot
symbol blocks with even , we suggest complementary
sequences ([14], [15]) as pilot symbol sequence pairs that not
only minimize the merit factor, but also achieve the minimum
estimation CRLB. Complementary sequences have previously
been employed for channel characterization in [16] due to their
good autocorrelation characteristics.1 Also, authors in [17]
have suggested choosing one sequence from a complementary
pair as a good choice for estimation of long channels when an
optimal single-sided pilot sequence can not be easily found.
Nevertheless, our paper is a first study that derives the com-
plementary sequence pairs as optimal sequences for two-sided
channel estimation. Furthermore, for a subset of odd, we
have constructed merit-minimizing sequence pairs based on a
sufficient condition satisfied by their periodic autocorrelation

1The authors would like to thank the anonymous reviewers for suggesting
[13] and [16].
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Fig. 1. Illustration of two-sided pilot symbol block insertion.

functions. Introduced sequence pairs are termedalmost-com-
plementary periodicsequences. For a different subset of odd
construction of sequence pairs that have a “good” merit factor
is also described.

Section II describes the signal model and the problem of
“two-sided” channel estimation. Section III discusses the
sequence selection criterion. Section IV solves the two-sided
estimation problem by suggesting optimal pilot symbol se-
quence pairs. Analysis of Section V addresses proximity to
the CRLB of the estimation variance, detection performance
improvement when using optimal sequence pairs, and the
effects of an increase in the pilot symbol length.

II. SIGNAL MODEL AND ESTIMATION VARIANCE

For simplicity, we assume that the received signal is a symbol-
spaced sequence (the oversampled case can be treated in a sim-
ilar manner). In this case, a normalized block of received sam-
ples over which the channel is (quasi-)static can be expressed as
follows (see, e.g., [5]):

is a received sample vector; is a vector
of a discrete white complex circular Gaussian noise process with
a two-sided power spectral density (PSD) , where is
the symbol energy; is a vector of coefficients of a linear
(quasi-) time-invariant complex channel.

is a Toeplitz matrix corresponding to the transmitted se-
quence of symbols whose elements are either1 or 1; The th
column of is a snapshot of the transmitted symbol sequence
shifted by symbols. We will assume that the transmitted
sequence has the form given in Fig. 1 where any frame of data
symbols of length is framed with two pilot
symbols, a preamble and a postamble. Furthermore, it will be
assumed that the snapshot has been taken in such a manner that
the first and the last row of the matrix hold, respectively, the
first and the last symbols of the preamble and the postamble.
In this case, the matrix has the following form:

where and are by pilot symbol submatrices and is
a by data submatrix. The pilot symbol submatrices
are Toeplitz matrices consisting of only preamble and postamble
symbol sequences of length and no data symbols.

is a by submatrix that holds all the data symbols
and pilot symbols of which one half pertains to each
pilot symbol block. The received signal and the noise vector can
be decomposed into subvectors that correspond to submatrices
of as and such that, e.g.,

.
In this paper, unless otherwise specified, even periodic will be

termed any sequence with a period, and odd-periodic will be
termed a sequence with a period such that ,
for any . When the pilot-symbol blocks are subsequences of ei-
ther odd- or even-periodic sequences, a pilot symbol submatrix
is completely defined by one of its columns.

First, we briefly analyze the situation in which the channel
estimate is provided only by the preamble. It is easy to show
that the maximum-likelihood (ML) (in this case, the same as
the least-squares) estimate of the channel has a variance that
achieves the Crámer–Rao bound

where is the Hermitian transpose operator. Clearly, the esti-
mate variance will be unbounded if the data matrix is “short,”
i.e., for . In the following, we assume that the pilot
symbol blocks are of a length for which the one-sided channel
estimation can have a bounded variance. That is, any pilot
symbol block is of length , i.e., .
Furthermore, we observe that the minimum attainable variance
of the “one-sided” channel estimate is . If one requires

, it is known (see, e.g., [8]) that can only be
attained for . For the minimizing binary
sequence is and for extended

-sequences can be used for attaining this lower bound [8].
For a subset of even , we will construct sequence pairs

that allow for the minimum achievable estimate variance of

in the case of “two-sided” channel estimation. For a subset of
odd , sequence pairs will be constructed for which the two-
sided channel estimation CRLB is close to this absolute lower
limit.

Two-sided ML channel estimation is based on the
“two-sided” pilot-symbol matrix

(1)
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of size . is not a Toeplitz matrix, on the other hand,
and are unequal Toeplitz matrices in the general case.

The variance of the ML channel estimate is now

where

(2)

is the two-sided Grammian matrix of the column vectors of.

III. V ARIANCE BOUNDS AND THEMERIT FACTOR

Our primary goal is to design Toeplitz matrices and
with elements from the set that minimize
given and . This problem can be solved using computer-
aided methods, but this approach is cumbersome and can be
impossible for some sequence lengths. Our approach is to obtain
a related merit factor (selection criterion) whose minimization
will allow for construction of sequence pairs with minimum or,
at least, low

For a nonsingular , , where are
the eigenvalues of . Thus, we can obtain the following bounds
on CRLB:

where . The lower bound is achieved iff all the
off-diagonal elements of are equal to zero. Gerschgorin
discs (see, e.g., [18]) provide a lower bound on the minimum
eigenvalue

where

is the absolute sum of the off-diagonal elements of theth
row/column of . is the radius and is the center of the
th Gerschgorin disc.

Instead of directly minimizing we suggest mini-
mizing the largest absolute sum . Intuitively,
minimization of the maximum Gerschgorin disc radius attempts
a reduction in the eigenvalue spread and forces the matrix
to have a form, which is as close as possible to the diagonal
form. The sequence pair that minimizes the merit factor is
called the optimal pair. The two-sided pilot-symbol matrix cor-
responding to the optimal sequence pair is

where has the form given in (1).
When the Grammian matrix is the diagonal ma-

trix , where is the identity matrix. The ML channel
estimation based on the corresponding sequence pair achieves
the absolute minimum variance lower bound . In the next
section, we will suggest sequence pairs for eventhat achieve

. Unfortunately, when is odd, this equality (and the

minimum CRLB) cannot be achieved. Nevertheless, for a subset
of odd we will show how to construct sequence pairs that
achieve the minimum possible merit factor .
In addition to optimal sequences, we also define as “good” se-
quence pairs those pairs for which . Note that this
condition on assures that and, consequently, that
the CRLB is bounded.

IV. SEQUENCEDESIGN

Given a sequenceof length , we define its even- and odd-
periodic extensions as, respectively,and . The (periodic)
autocorrelation of is defined as . In
the following, the period will be implied in all definitions of
the form , regardless of the periodicity of. In a similar
manner, the aperiodic autocorrelation function of a sequence
is defined as , for ,

, for and zero, otherwise.
First, we investigate pilot-symbol sequence pairs that achieve

, i.e., for all . From (2), we see that
iff

(3)

for all . Here, and , denote, respectively, the
th element and theth column vector of . Same notation

applies to any other matrix.
Since is a snapshot of a shifted preamble block it is

easy to see that, for an arbitrary (i.e., not necessarily periodic)
pilot-symbol sequence, the term can be considered
as a partial correlation of a sequence whose period is larger then

. Here, we are considering only a snapshot of length
of either an even- or an odd-periodic extension of

a basic sequence of length to be used as a pilot-symbol
block. For such a pilot-symbol sequence the term
is equal to either or . Clearly,
is only a function of the difference . The corresponding
two-sided Grammian matrix is a Toeplitz matrix.

Periodic sequence pairs whose autocorrelation values at
nonzero shifts add to a zero are called periodic complementary
sequences. An example of such sequences are Golay com-
plementary sequences [14]. Golay complementary sequences
satisfy even a stronger condition: the aperiodic autocorrelation
of a pair of complementary Golay sequences adds up to a zero
for nonzero shifts. Complementary Golay sequences exist only
for periods , where , , and are nonnegative
integers. Fortunately, Luke [15] has introduced odd-periodic
complementary sequences that exist for most evensmaller
than 50 (except and ). Therefore, for most
even we can achieve and the minimum
possible CRLB of .

Next, we introduce almost-complementary periodic se-
quences with an odd period. These sequences achieve the
minimum possible for odd . Before presenting these
sequences we first introduce several lemmas and theorems.
They prove (among other facts) that there are no periodic
complementary sequences with an odd period and that the
minimum achievable is when is odd. They
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also lead to the construction of sequences that achieve this
minimum.

Lemma 1: No three mutually orthogonal vectors with ele-
ments in of length , where is an odd number, exist.
Furthermore, if and and and are mutually orthogonal,
then and are either equal or differ in an even number of po-
sitions.

Proof: Two vectors with elements in of length
are orthogonal iff they differ in positions. Let us assume
that pairs of vectors and and and are mutually orthog-
onal. It is easy to see thatand can be equal or can differ in

positions. That is, they have
to differ in an even number of positions. Since in this caseis
an odd number, they cannot be orthogonal.

Theorem 1: Let be a square Grammian matrix
, where column vectors of are of length ,

is an odd number, and the elements ofare in . There is
at least one row/column of with the number of zeros less than

.
Proof: First, we will demonstrate the proof for odd The

proof is aided with Figs. 2 and 3. Clearly, the diagonal elements
of are all equal to . A diagonal element is denoted with
a in Figs. 2 and 3. If there is a column/row that has no ele-
ments equal to zero then the theorem is satisfied. Let us assume
that each column/row has at least one zero and that the zeros
are distributed as shown in Fig. 2. If they are not distributed
in the shown way, we can arrive to this form by permuting the
rows/columns of the matrix. A permutation does not change the
number of zeros per row/column, it only changes their positions.
Note that, since is an odd number, there has to be at least one
row/column that holds two zeros.

Lemma 1 says that no three binary vectors of length
(where is odd) can be mutually orthogonal. It is easy to see
that this constraint implies that no rectangle such that one of its
corners is a diagonal element, can have zeros on all of its other
three corners, as shown in Fig. 3. “” in this figure denotes a
nonzero element. Shaded “” and “ ” denote possible location
of zero and nonzero elements of. Lemma 1 implies that ele-
ment has to be nonzero and this element is not shaded.
Furthermore, only one of the elements and can
be zero. The same applies to the pairs of elements

Clearly, the number of zeros in the first row cannot be larger
than

For even , we can use the same approach to show that there
cannot be a row with more than zeros. Since the matrix
is symmetric, the same arguments apply to columns of.

Corollary 1: There are no even- and odd-periodic comple-
mentary sequences with respective fundamental periodsand

where is odd.

Theorem 2: Let and be two sequences of length, where
is an odd number, related to each other as follows:

for . Then

(4)

Fig. 2. Locations of single zeros per column/row after permutations.

Fig. 3. Possible location of zeros in the first column/row while satisfying the
conditions of Lemma 1.

Proof: First, we state two known results (see, e.g., [19]).
The autocorrelation functions of even- and odd-periodic exten-
sions of (and ) are related to the aperiodic autocorrelation
function of as follows: and

for .
The aperiodic autocorrelation functions ofand are related

as follows: for all shifts .
It follows that

since in odd. Equation (4) follows when we observe that
and have respective periods and .

Corollary 2: Theorems 1 and 2 imply that sequences having
an odd period with the property for

allow for construction of almost-complementary periodic
sequences that achieve . The minimiza-
tion is taken over all sequence pairs not necessarily periodic.

Periodic extensions of Barker sequences having odd lengths
and and -sequences of periods

satisfy this property. Other sequences for which
can be derived based on cyclic difference sets. These sequences
include (see, e.g., [20]) quadratic residue (or Legendre) se-
quences of period , where is a prime, and
twin-prime sequences of period , where is also a
prime. Therefore, for odd

we can design almost-complementary periodic sequence pairs.
Snapshots of almost-complementary sequences of length

can be used as pilot symbol blocks minimizing the merit
factor .
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TABLE I
NORMALIZED CRLB FOR OPTIMAL SEQUENCEPAIRS OF ODDLENGTH BASED ON BARKER SEQUENCES

Fig. 4. Normalized CRLB for optimal sequence pairs and channel lengthsL = 3 andL = 5.

For a subset of prime and (for
), sequences that have half of their PACF

values equal to 1 and the other half equal to3 exist.
Their construction is given in [21]. The ensuing sequence
pairs evaluate the merit factor to . Note that
by using such sequences we can generate “good” sequence
pairs defined earlier as the pairs for which .
This condition guarantees that the two-sided Grammian
is positive definite and that the ML estimation variance is
bounded.

V. ANALYSIS

It is clear that the complementary sequence pairs that
minimize for even also minimize the normalized
ML estimation variance . However, it is not clear
whether the optimal sequence pairs for oddalso minimize
the ML estimation variance. In a limited attempt to determine
an answer, we have compared the CRLB for two sequence
pairs constructed based on Barker sequences of lengths
and to arbitrary pairs of sequences of the same length
using an exhaustive computer search. The results for ,
indicate that the same minimum possible normalized variances
of for and for are achieved
with the constructed sequence pairs. Normalized CRLBs for
sequence pairs based on all Barker sequences of odd lengths

for are given in Table I. For even , the constructed
sequences have a normalized CRLB of. It is clear that the
CRLBs of the constructed sequences for oddare slightly
larger than (within 0.35 dB). We have left as an open
problem whether other optimal sequence pairs introduced in
terms of the mini–max criterion also allow for a close to
normalized estimation CRLB.

Fig. 4 demonstrates the impact of an increase in the pilot-
symbol block length for channels of lengths three and five on
the normalized ML estimation variance in decibels for the con-
structed optimal sequence pairs. We can see that an increase in
the number of pilot symbols by three for and by four
for allows for a reduction in the estimation variance by
approximately 3 dB. From this plot it is again clear that con-
structed optimal sequence pairs for oddallow for close to
minimal ML estimation variance.

In order to determine the significance of the two-sided op-
timal sequence design for data detection we study the perfor-
mance of a ML receiver that assumes that the channel estimate
obtained based on the two-sided pilot-symbol sequences is the
true channel. Detection performance is studied for two cases.
In the first case, the length channel impulse response

is an independent and identically distributed (i.i.d.) complex
Gaussian vector having a different realization at each simulated
block. The results in this case assess the error-probability per-
formance of the pilot sequences, averaged over a large number
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Fig. 5. ML sequence detection performance based on optimal two-sided and optimal one-sided pilot symbol sequence pairs: random channel.

of ISI channels. The second case analyzes the maximum-likeli-
hood sequence estimation (MLSE) performance for a real (and
fixed) channel response with spec-
tral nulls for a set of frequencies (see [22]).

We analyze the bit-error-rate performance for two two-sided
pilot sequence pairs with sequences of length 5 and . The
first pair is optimally designed as per Section IV:

The corresponding pair of autocorrelation functions have
values in and their sum has values
in . The second pair consists of two equal sequences

where minimizes the CRLB of the one-sided
ML channel estimate. The sum of autocorrelation functions for
these two sequences has values in . Normalized es-
timation variances are equal to and (a gain of 1.4
dB) for, respectively, the optimal two-sided and the optimal one-
sided sequence pairs. Fig. 5 shows that for the random channel
the performance degradation due to the use of an optimal single-
sided pilot sequence is above 1 dB at an error-rate of 10and
lower. On the other hand, from Fig. 6 we see that the increased
estimation variance for a fixed real channel can cause a perfor-
mance degradation of more than 1 dB for error rates lower than
10 .

For a fixed ( is the energy per information bit re-
lated to as ) and given (pos-
sibly determined to ensure the quasi-static property of channel
coefficients and/or based on complexity considerations) and,
an optimal exists. This is due to the fact that an increase in

reduces the estimation variance and, thus, allows for a de-
crease in the detection error. On the other hand, given that the

per information bit energy is fixed, an increase in the number
of transmitted information symbols decreases the symbol en-
ergy , which affects both the estimation variance and the de-
tection error rate. Of course, an increase in the number of pilot
symbols also expands the required bandwidth for a given in-
formation rate. To illustrate the existance of an optimalwe
have plotted in Fig. 7 the signal-to-noise ratio (SNR) loss rela-
tive to the known channel (nonpilot symbol aided) case at the bit
error rate of 10 versus . The results are given for the fixed
channel response , , and the
sequence pair that minimizes the merit factor at each .
It is clear, that the optimal generating sequence length is
in which case the optimal two-sided sequence pair is

That is, in this special case a periodic insertion of a single se-
quence optimal for single-sided channel estimation is also op-
timal for two-sided channel estimation. The gain over the
case is less than 0.5 dB and the bandwidth expansion is 9%.

VI. CONCLUSION

Snapshots of periodic complementary sequence pairs are op-
timal for two-sided ISI channel estimation for even ,
where is the length of a pilot-symbol block and
is the number of channel taps. These sequence pairs allow for
the minimum possible estimation variance for channel
estimation that attains the CRLB. The minimum possible vari-
ance, , of the “one-sided” channel estimator is attainable
when either and or
(see [8]).

No complementary sequences exist for oddand, therefore,
the minimum ML estimation variance is larger than for
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Fig. 6. ML sequence detection performance based on optimal two-sided and optimal one-sided pilot symbol sequence pairs: fixed channel.

Fig. 7. ML sequence detectionE =N loss for the symbol error rate of 10 due to the two-sided channel estimation error and/or pilot sequence insertion relative
to the case of a known channel and no pilot sequence insertion: fixed channel.

odd . An upper bound on the estimation CRLB is based on the
Gerschgorin discs of the matrix formed by summing the auto-
correlation matrices of the two training sequences that frame a
data block. This upper bound can be minimized by minimizing

over all sequence pairs. For even,
periodic complementary sequences achieve the minimum pos-

sible merit factor . Periodic sequence pairs that min-
imize the merit factor have been constructed for a subset
of odd . We have shown that these pairs achieve the minimum
possible for odd . The pairs with odd

that achieve have been termed almost-complementary
sequences.
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For two constructed almost-complementary sequences we
have shown that they allow for channel estimation variance
that is slightly larger than and equal to the minimum
possible variance for given pilot-symbol block lengths.

Simulations have demonstrated that a significant detection
performance improvement can be achieved when optimal pilot
symbol sequence pairs are used for given parameters, , and

. Furthermore, an optimization over which neglects the ef-
fect of bandwidth expansion can provide an additional perfor-
mance gain.
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