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Complementary Sequences for ISI Channel
Estimation

Predrag Spasojevitember, IEEEand Costas N. Georghiadé=llow, IEEE

Abstract—A merit factor based on the sequence autocorrela- sequences, see [6]-[9] and, more recently, [10]). As will be
tion function, whose minimization leads to the reduction in the shown, the constructed optimal sequences will require that

Cramer—Rao lower bound (CRLB) for the variance of “two-sided” e o pilot symbol blocks framing a data block differ in
intersymbol interference (I1SI) channel estimation is introduced.

Pairs of binary pilot symbol sequences (a preamble and a post- most C"’,‘ses ar.1d, .therefore' the OP“,ma' signaling will require
amble) for channel estimation are jointly designed to minimize this alternating periodically inserted training blocks.
merit factor. Given that the number of channel taps isL and the A merit factor based on the periodic autocorrelation func-

length of a pilot symbol sequence i$N+L—1), whereN > L,we tion (PACF) of the two binary pilot sequences framing a data
distinguish between the case wheiV is even and the case whenitis 1,5 s introduced. The minimization of this merit factor will

odd. For evenN, we show that complementary sequences not only S . . P
minimize the merit factor, but also the CRLB. For a subset of odd lead to the reduction in the channel estimation Cramer—Rao

N we construct almost-complementary periodic sequence pairs lower bound (CRLB). Previous merit factors that have been
that minimize the merit factor. The optimal pilot symbol block sig-  introduced attempt a reduction in the ratio of the autocorrela-
naling requires alternating between two (in most cases) different tion function energy at nonzero shifts to its value at the zero
binary sequences that form the merit-minimizing pair. shift (see, e.g., [11]). The proposed merit factor has a mini—-max
Index Terms—Autocorrelation merit function, complementary ~ form (similar to the criterion derived for pulse-position mod-
sequences, intersymbol interference (ISI) channels, pilot symbols. ylation (PPM) sequences in [12] and to the phase optimization
criterion for peak-to-average power reduction in orthogonal fre-
|. INTRODUCTION qqen_cy-d_omain multiplexing (OFDM) in [13]). The selecti(_)n
o ) criterion is based on an upper bound for the channel estima-
D IGITAL communications over mobile channels can be sginn, variance. This bound is derived using the Gerschgorin discs
verely degraded due to unknown time-variant fading Qfertaining to the eigenvalues of the two-sided pilot symbol ma-
the received signal. It is a common approach to periodically ifrix. The two-sided pilot symbol matrix is formed by summing
sert known symbols in order to reliably estimate the channgle autocorrelation matrices of the two pilot symbol sequences
parameters prior to detection (see, e.g., [1], for flat fading cha@aming the data-block. The optimal selection requires mini-
nels). In the case of time-variant multipath fading channelgzation of the maximum Gerschgorin disc radius. Unlike the
where the path delay spread is on the order of several symbolg gferia employed in [8] and [10], which are used mainly for
larger, pilot symbol blocks that span the channel memory neggmputer-aided search of optimal sequences, the merit factor
to be inserted (see, e.g., [2]). In deriving optimal, or some degjerived here aids in analytical construction of optimal sequences
sion-feedback detection and channel estimation algorithms, §ed on previously known binary sequences having good peri-
signal is frequently assumed to be quasistatic in an interval ic autocorrelation properties.
compassing a number of transmitted symbols (see, e.g., [2] (@n¢ne number of symbols per pilot symbol block is assumed

references therein) and [3]). _ tobe(N + L — 1), whereL is the number of channel taps.
As in [4] for pilot symbols, [5] has employed both pilotpor the case when the channel estimate is based on pilot

of data (as seen in Fig. 1) for estimation of the (quasi-statig quences ([14], [15]) as pilot symbol sequence pairs that not
channel coefficients pertaining to a particular data block. Th&ﬂy minimize the merit factor, but also achieve the minimum
approach we term “two-sided” channel estimation. Here, Watimation CRLB. Complementary sequences have previously
introduce optimal binary sequences for two-sided channglen employed for channel characterization in [16] due to their
estimation. Previously, only sequences for one-sided chan@gbd autocorrelation characteristicsAlso, authors in [17]
estimation have been considered (for training using binagyye suggested choosing one sequence from a complementary
pair as a good choice for estimation of long channels when an

. . . _ optimal single-sided pilot sequence can not be easily found.
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Fig. 1. lllustration of two-sided pilot symbol block insertion.

functions. Introduced sequence pairs are termetbst-com- DisaD + L —1 by L submatrix that holds all the data symbols
plementary periodisequences. For a different subset of ddd and2(L — 1) pilot symbols of which one half pertains to each
construction of sequence pairs that have a “good” merit factpitot symbol block. The received signal and the noise vector can
is also described. be decomposed into subvectors that correspond to submatrices

Section Il describes the signal model and the problem of Aasr = [r{ rZ 1] andn = [n{ n} ni]* suchthat, e.g.,
“two-sided” channel estimation. Section Ill discusses thg = Pih + n;.
sequence selection criterion. Section IV solves the two-sidedin this paper, unless otherwise specified, even periodic will be
estimation problem by suggesting optimal pilot symbol seéermed any sequence with a perityd and odd-periodic will be
quence pairs. Analysis of Section V addresses proximity termed a sequenag with a period2/V such that?, , = —u7,
the CRLB of the estimation variance, detection performander any:. When the pilot-symbol blocks are subsequences of ei-
improvement when using optimal sequence pairs, and ttheer odd- or even-periodic sequences, a pilot symbol submatrix
effects of an increase in the pilot symbol length. is completely defined by one of its columns.

First, we briefly analyze the situation in which the channel
estimate is provided only by the preamble. It is easy to show
that the maximume-likelihood (ML) (in this case, the same as

For simplicity, we assume that the received signal is a symbge |east-squares) estimate of the channel has a variance that
spaced sequence (the oversampled case can be treated in agifleves the Cramer—Rao bound

ilar manner). In this case, a normalized block of received sam-

Il. SIGNAL MODEL AND ESTIMATION VARIANCE

ples over which the channel is (quasi-)static can be expressed as No . .
follows (see, e.g., [5]): 7z PP}
r = Ah +n. whereH is the Hermitian transpose operator. Clearly, the esti-

mate variance will be unbounded if the data matrix is “short,”

ris areceived sampleD+2N + L —1) x 1 vectorn is avector 1-€., for N < L. In the following, we assume that the pilot
of a discrete white complex circular Gaussian noise process winPol blocks are of a length for which the one-sided channel
a two-sided power spectral density (PSE)/E,, whereE, is estimation can have a bounded variance. That is, any pilot
the symbol energyh is aL x 1 vector of coefficients of a linear Symbol block is of lengti N + L —1) > 2L —1,i.e,N > L.
(quasi-) time-invariant complex channel. Furthermore, we observe that the minimum attainable variance
A is a Toeplitz matrix corresponding to the transmitted s&f the “one-sided” channel estimate £ £ If one requires
quence of symbols whose elements are eitheor—1; Thejth N = L, it is known (see, e.g., [8]) thaf2 & can only be
column of A is a snapshot of the transmitted symbol sequenaétained forV € {1, 2, 4}. For N = 4 the minimizing binary
shifted byL — j symbols. We will assume that the transmitte§equence i§l, —1, —1, —1] and for N = 2% + L extended
sequence has the form given in Fig. 1 where any frame of datasequences can be used for attaining this lower bound [8].
symbols of lengthD is framed with two(N + L — 1) pilot For a subset of eveN > L, we will construct sequence pairs
symbols, a preamble and a postamble. Furthermore, it will Beat allow for the minimum achievable estimate variance of
assumed that the snapshot has been taken in such a manner that
the first and the last row of the matri& hold, respectively, the No L
first and the lasf. symbols of the preamble and the postamble. E, 2N
In this case, the matrid has the following form:

in the case of “two-sided” channel estimation. For a subset of

P, odd N, sequence pairs will be constructed for which the two-
A=|D s_idgd channel estimation CRLB is close to this absolute lower
P, limit.
Two-sided ML channel estimation is based on the

whereP, andP; areN by L pilot symbol submatrices adtis  Wo-sided” pilot-symbol matrix

aD+ L —1 by L data submatrix. The pilot symbol submatrices
are Toeplitz matrices consisting of only preamble and postamble p_ P, 1
symbol sequences of lengthV + L — 1) and no data symbols. T Py @)



SPASOJEVICAND GEORGHIADES: COMPLEMENTARY SEQUENCES FOR ISI CHANNEL ESTIMATION 1147

of size2N x L. P is not a Toeplitz matrix, on the other handminimum CRLB) cannot be achieved. Nevertheless, for a subset
P, and P, are unequal Toeplitz matrices in the general casef odd N we will show how to construct sequence pairs that

The variance of the ML channel estimate is now achieve the minimum possible merit factaf.. = 2L%J.
Ny . In addition to optimal sequences, we also define as “good” se-
. tr{R"} quence pairs those pairs for whiph,,, < 2N. Note that this
° condition onp,,,,,. assures that,,,;;, > 0 and, consequently, that
where the CRLB is bounded.
R=P'P-PIP 4 PIP, )

IV. SEQUENCEDESIGN
is the two-sided Grammian matrix of the column vectordof Given a sequenceof length NV, we define its even- and odd-

periodic extensions as, respectivaly, andw«®. The (periodic)
I1l. V ARIANCE BOUNDS AND THE MERIT FACTOR autocorrelation ofe is defined ask®(l) = Ei\:_ol TrpTrrl- 1IN

Our primary goal is to design Toeplitz matric® and P the following, the periodV will be impl_ieo! in all definiti(_)ns_ of
with elements from the set+1, —1} that minimizetr{R~*} the form R*(1), re_gar_dless of the pgrlodlcny_ af. In a similar
given N and L. This problem can be solved using computeflanner, the aperiodic a%ggc_){relatlon function of a sequance
aided methods, but this approach is cumbersome and canidefined asig (1) = 5> ;o™ wurr, for0 <7< N —1,
impossible for some sequence lengths. Our approach is to obtim (1) = £a,(=1), for =V 41 < 1 < 0 and zero, otherwise.

a related merit factor (selection criterion) whose minimization First, we investigate pilot-symbol sequence pairs that achieve

will allow for construction of sequence pairs with minimum orfmax = 0, 1-€., pi; = 0 forall i # j. From (2), we see that

at least, lomtr{R '}, pmax = 0 iff
For a nonsingulaR, tr{R™'} = Zf=1 1/X;, where\; are

; . . =[PP, + [P)P,);;
the eigenvalues aR. Thus, we can obtain the following bounds 0 =[Py Pilij + [Py Paliy

on CRLB: =[P1]'[P1]; + [Po)]'[P2]; ®3)
Mo L _ %tr{R_l} <No L for all i # j. Here,[P,];; and[P,];, denote, respectively, the
E, 2N — E, R D W, (i, j)th element and th&h column vector of?; . Same notation

oy . . . applies to any other matrix.
e ot e a1 e Since {71 1« napshot f a it premble bioc i i
discs (see, e.g., [18]) provide a lower bound on the minimuEasy to see that, for an arbitrary (|I}e., not necessanly_ periodic)
eigenvalue pilot-symbol sequence, the tefif, |/*[P1]; can be considered
as a partial correlation of a sequence whose period is larger then
Amin = min{2N — p;} N + L — 1. Here, we are considering only a snapshot of length
’ N + L — 1 of either an even- or an odd-periodic extension of
where a basic sequengg, of length NV to be used as a pilot-symbol
block. For such a pilot-symbol sequence the téf|[P;];
pi = Z |pij is equal to eithePi (i — j) or RPL(i — j). Clearly,[P1]/[P1];
g is only a function of the differencé — j. The corresponding
is the absolute sum of the off-diagonal elements of e WO-Sided Grammian matri is a Toeplitz matrix.
row/column ofR. p; is the radius an@N is the center of the Periodic sequence pairs whose autocorrelation values at
ith Gerschgorin disc. nonzero shifts add to a zero are called periodic complementary
Instead of directly minimizingr{R~'} we suggest mini- sequences. An example of such sequences are Golay com-
mizing the largest absolute sy, = max; {p; }. Intuitively, Plementary sequences [14]. Golay complementary sequences
minimization of the maximum Gerschgorin disc radius attempB&lisfy even a stronger condition: the aperiodic autocorrelation
a reduction in the eigenvalue spread and forces the marixOf & pair of complementary Golay sequences adds up to a zero
to have a form, which is as close as possible to the diagof@i "onzero shifts. Complementary Golay sequences exist only

H __9a b c H
form. The sequence pair that minimizes the merit faptoy, is [0 Periods = 2¢-10°-26°, whereq, b, andc are nonnegative
called the optimal pair. The two-sided pilot-symbol matrix corN"t€gers. Fortunately, Luke [15] has introduced odd-periodic

responding to the optimal sequence pair is complementary sequences that exist for most evesmaller
than 50 (exceptN = 38 and N = 46). Therefore, for most
pP= arg min Prax even N < 50 we can achievey,,,,., = 0 and the minimum
P possible CRLB offe k..
whereP has the form given in (1). Next, we introduce almost-complementary periodic se-

Whenp,,. = 0 the Grammian matridR is the diagonal ma- quences with an odd period. These sequences achieve the
trix 2N - I, wherel is the identity matrix. The ML channel minimum possiblep,,... for odd N. Before presenting these
estimation based on the corresponding sequence pair achi@aezpiences we first introduce several lemmas and theorems.
the absolute minimum variance lower bou%r;ld % Inthe next They prove (among other facts) that there are no periodic
section, we will suggest sequence pairs for ebethat achieve complementary sequences with an odd period and that the
pmax = 0. Unfortunately, whenV is odd, this equality (and the minimum achievablep,,,.. is 2L%J when N is odd. They
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also lead to the construction of sequences that achieve this
minimum.

Lemma 1: No three mutually orthogonal vectors with ele-
ments in{£1} of length2V, whereN is an odd humber, exist.
Furthermore, ifa andb andb ande are mutually orthogonal,
thena ande are either equal or differ in an even number of po-
sitions. : :

Proof: Two vectors with elements ift-1} of length2/ vV N A
are orthogonal iff they differ in’V positions. Let us assume
that pairs of vectora andb andb and¢ are mutually orthog- Fig. 2. Locations of single zeros per column/row after permutations.
onal. It is easy to see thatande can be equal or can differ in
2,4,...,N—1, N+1, ..., 2N positions. That is, they have
to differ in an even number of positions. Since in this cAsis
an odd number, they cannot be orthogonal. O

Theorem 1:Let M be a squard. x L Grammian matrix
M = 8”8, where column vectors & are of lengtreN, N
is an odd number, and the elementsSoére in{+1}. There is
at least one row/column & with the number of zeros less than
[434].

Proof: First, we will demonstrate the proof for odd The  Fig. 3. possible location of zeros in the first column/row while satisfying the

proof is aided with Figs. 2 and 3. Clearly, the diagonal elemensnditions of Lemma 1.
of M are all equal t&N. A diagonal element is denoted with
ae in Figs. 2 and 3. If there is a column/row that has no ele- Proof: First, we state two known results (see, e.g., [19]).
ments equal to zero then the theorem is satisfied. Let us assurhe autocorrelation functions of even- and odd-periodic exten-
that each column/row has at least one zero and that the zesiahs ofu (andw) are related to the aperiodic autocorrelation
are distributed as shown in Fig. 2. If they are not distributefidnction ofx as follows:R*" (1) = Ry (D) + Ry (N — |I]) and
in the shown way, we can arrive to this form by permuting the*" (1) = R% (1) — R%,(N — |I|) for 0 < |I| < N — 1.
rows/columns of the matrix. A permutation does not change theThe aperiodic autocorrelation functionsiéndw are related
number of zeros per row/column, it only changes their positionss follows:RY (1) = (_1)1Rgp(z) for all shifts!.
Note that, sincd. is an odd number, there has to be at least onel|t follows that
row/column that holds two zeros. R () =R® (1) + R® (N — 1)

Lemma 1 says that no three binary vectors of ler@h - o
(whereX is odd) can be mutually orthogonal. It is easy to see =\
that this constraint implies that no rectangle such that one of its = (—1)I[R’;p(l) — R, (N = 1)]
corners is a diagonal element, can have zeros on all of its other _ (_1)1Ru°(1)7 0<|<N-1
three corners, as shown in Fig. 3" in this figure denotes a . ) _ -
nonzero element. Shadedand “X” denote possible location SIEEeN In Ogod' Equation (4) f.ollows-when we observe that
of zero and nonzero elements M. Lemma 1 implies that ele- £ (1) @nd£* (1) have respective periods and2.. O
ment[M]; 3 has to be nonzero and this element is not shaded Corollary 2: Theorems 1 and 2 imply that sequences having
Furthermore, only one of the elemeiidd],, 4 and[M];,; can an odd periodV with the propertyl R**(I)] = 1for 1 < I <

IO%XO

Il

(—1)'Re, () + (D)W RY (N — 1)

be zero. The same applies to the pairs of elements N —1 allow for construction of almost-complementary periodic
sequences that achiew@np p,.« = 2L%J. The minimiza-
([M]1,6, M1, 7). ([M]1, 5, [M]1,0), . ([M]1, -1, [M]1, 1) tion is taken over all sequence pairs not necessarily periodic.
Clearly, the number of zeros in the first row cannot be larger periodic extensions of Barker sequences having odd lengths
thanl + (L —3)/2 = (L - 1)/2 < (L +1)/2. 3, 5, 7, 11, and13, andm-sequences of period§ = 2 — 1

For evenL, we can use the same approaph to show th_at theygisfy this property. Other sequences for whight’ (1)] = 1
cannot be a row with more thaliy2 zeros. Since the matridd  can be derived based on cyclic difference sets. These sequences
is symmetric, the same arguments apply to columm®of LI jnclude (see, e.g., [20]) quadratic residue (or Legendre) se-

Corollary 1: There are no even- and odd-periodic complgiueénces of periog = (3 mod 4), wherep is a prime, and

mentary sequences with respective fundamental pefibdad Win-prime sequences of periqdp + 2), wherep is also a
2N, whereN is odd. prime. Therefore, for odd

N 3,5, 7,11, 13, 15, 19, 23, 31, 35, 43, 47
Theorem 2: Letw andw be two sequences of lenghh, where < {, P D Rh B 29y 2 29 95 _O’ o ' )
N is an odd number, related to each other as follows= We can design almost-complementary periodic sequence pairs.
(=1)iu; for0 < i < N — 1. Then Snapshots of almost-complementary sequences of le¥gth

L — 1 can be used as pilot symbol blocks minimizing the merit
R (1) + R (1) = [1 4+ (=D']R" (D). (4)  factor pyax.
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TABLE |
NORMALIZED CRLB FOR OPTIMAL SEQUENCEPAIRS OF ODDLENGTH BASED ON BARKER SEQUENCES

N 3 5 7 11 13
Normalized CRLB 0.5417 | 0.5298 | 0.5375 | 0.5298 | 0.5124
Increase Relative to 0.5 in dB | 0.3479 | 0.2514 | 0.3141 | 0.2414 | 0.1064

-2

T I
: +—- L=3: lower bound
—& L=3: optimal sequence pair CRLB
— - L=5: lower bound

-8 —%— L=5: optimal sequence pair CRLB I

T ...............................

B R N

T I e

Normalized CRLB [dB]

8- e ............................ k

ok NG

-1 ) 1
5 10 15 20
Length of a pilot symbol block: N+L-1

Fig. 4. Normalized CRLB for optimal sequence pairs and channel ledgtes3 andL = 5.

For a subset ofNV prime andN = 1mod 4 (for N € for N =L are given in Table I. For evetV, the constructed
{17, 29, 37, 49}), sequences that have half of their PACBequences have a normalized CRLBOd. It is clear that the
values equal to 1 and the other half equal +@ exist. CRLBs of the constructed sequences for dddare slightly
Their construction is given in [21]. The ensuing sequendarger than0.5 (within 0.35 dB). We have left as an open
pairs evaluate the merit factor t|(L — 1)/2|. Note that problem whether other optimal sequence pairs introduced in
by using such sequences we can generate “good” sequeterens of the mini-max criterion also allow for a close(td
pairs defined earlier as the pairs for whigh,.x < 2/N. normalized estimation CRLB.

This condition guarantees that the two-sided Grammian Fig. 4 demonstrates the impact of an increase in the pilot-
is positive definite and that the ML estimation variance isymbol block length for channels of lengths three and five on
bounded. the normalized ML estimation variance in decibels for the con-
structed optimal sequence pairs. We can see that an increase in
the number of pilot symbols by three féar = 3 and by four

for L = 5 allows for a reduction in the estimation variance by

It is clear that the complementary sequence pairs thegiproximately 3 dB. From this plot it is again clear that con-
minimize pnax for even N also minimize the normalized structed optimal sequence pairs for affdallow for close to
ML estimation varianceir(R'). However, it is not clear minimal ML estimation variance.
whether the optimal sequence pairs for ddidalso minimize In order to determine the significance of the two-sided op-
the ML estimation variance. In a limited attempt to determingmal sequence design for data detection we study the perfor-
an answer, we have compared the CRLB for two sequenm@ance of a ML receiver that assumes that the channel estimate
pairs constructed based on Barker sequences of ledgtes3 obtained based on the two-sided pilot-symbol sequences is the
and N = 5 to arbitrary pairs of sequences of the same lengttue channel. Detection performance is studied for two cases.
using an exhaustive computer search. The resultsVfes L, In the first case, the length = 3 channel impulse response
indicate that the same minimum possible normalized variandess an independent and identically distributed (i.i.d.) complex
of 0.5417 for N = 3 and 0.5298 for N = 5 are achieved Gaussian vector having a different realization at each simulated
with the constructed sequence pairs. Normalized CRLBs fblock. The results in this case assess the error-probability per-
sequence pairs based on all Barker sequences of odd lendihsiance of the pilot sequences, averaged over a large number

V. ANALYSIS
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I I T T
:| -8 Optimal two-sided pilot sequence
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Fig. 5. ML sequence detection performance based on optimal two-sided and optimal one-sided pilot symbol sequence pairs: random channel.

of ISI channels. The second case analyzes the maximum-likgler information bit energy is fixed, an increase in the number
hood sequence estimation (MLSE) performance for a real (aoftransmitted information symbol® decreases the symbol en-
fixed) channel responde = [0.407 0.815 0.407] with spec- ergy E,, which affects both the estimation variance and the de-
tral nulls for a set of frequencies (see [22]). tection error rate. Of course, an increase in the number of pilot
We analyze the bit-error-rate performance for two two-sidexymbols also expands the required bandwidth for a given in-
pilot sequence pairs with sequences of length 5iand 6. The formation rate. To illustrate the existance of an optinvalve
first pair is optimally designed as per Section IV: have plotted in Fig. 7 the signal-to-noise ratio (SNR) loss rela-
(1,1, 1,1, 1], [1, =1, -1, -1, 1]). tive to the knowrj channel (nonpilot symbol ai_ded) case at_the bit
) ] i ) error rate of 10° versusN. The results are given for the fixed
The cqrrespondmg pair of autocorrelaupn functions hayg,annel responske = [0.407 0.815 0.407]7, D = 6, and the
values in({3, —1, =1}, {3, 1, —1}) and their sum has valuesgeqyence pair that minimizes the merit fagtgr,. at eachn.
in {6, 0, —2}. The second pair consists of two equal sequencgsg clear, that the optimal generating sequence leng¥ is 4

(1,1, -1,1,1], [1,1, -1, 1, 1]) in which case the optimal two-sided sequence pair is

where([1, 1, —1, 1, 1] minimizes the CRLB of the one-sided (1,1, =1, 1,1, 1], [1, 1, =1, 1, 1, 1]).

ML channel estimate. The sum of autocorrelation functions fgq is, in this special case a periodic insertion of a single se-

these two sequences has valuefiin—2, —2}. Normalized es- guence optimal for single-sided channel estimation is also op-

timation varlances are equgl 005417 gnd0.75 (a gain C,)f 1.4 timal for two-sided channel estimation. The gain overihe- 3

d.B) for, respectlvely_, the ppt|mal two-sided and the optimal onﬁéﬁe is less than 0.5 dB and the bandwidth expansion is 9%.

sided sequence pairs. Fig. 5 shows that for the random channe

the performance degradation due to the use of an optimal single-

sided pilot sequence is above 1 dB at an error-rate of Hhd

lower. On the other hand, from Fig. 6 we see that the increasedSnapshots of periodic complementary sequence pairs are op-

estimation variance for a fixed real channel can cause a perfémal for two-sided ISI channel estimation for evéh > L,

mance degradation of more than 1 dB for error rates lower thatiere(V + L — 1) is the length of a pilot-symbol block anid

1073, is the number of channel taps. These sequence pairs allow for
For a fixed E;, /Ny (E, is the energy per information bit re-the minimum possible estimation varian%% % for channel

lated toF, asEy, = E,D/(D+ N + L —1)) and givenD (pos- €stimation that attains the CRLB. The minimum possible vari-

sibly determined to ensure the quasi-static property of chaniagice, 7> %, of the “one-sided” channel estimator is attainable

coefficients and/or based on complexity considerations)landwhen either, < 4 andN € {1, 2, 0mod 4} or N = 2L + L

an optimalV exists. This is due to the fact that an increase ifsee [8]).

N reduces the estimation variance and, thus, allows for a deNo complementary sequences exist for dddnd, therefore,

crease in the detection error. On the other hand, given that the minimum ML estimation variance is larger th@%« - for

VI. CONCLUSION
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Fig. 7. ML sequence detectidit, /N, loss for the symbol error rate of 10 due to the two-sided channel estimation error and/or pilot sequence insertion relative
to the case of a known channel and no pilot sequence insertion: fixed channel.

odd V. An upper bound on the estimation CRLB is based on thsible merit factorp,,,., = 0. Periodic sequence pairs that min-
Gerschgorin discs of the matrix formed by summing the autonize the merit factop.,.. have been constructed for a subset
correlation matrices of the two training sequences that frametodd V. We have shown that these pairs achieve the minimum
data block. This upper bound can be minimized by minimizingossiblep,,. = 2| (L — 1)/2] for odd N. The pairs with odd

Pmax = IMAX; Zj £i |pij| over all sequence pairs. For evéh) NV that achieve,,,.x have been termed almost-complementary
periodic complementary sequences achieve the minimum peeguences.
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For two constructed almost-complementary sequences wgs]
have shown that they allow for channel estimation variance

that is slightly larger thar{% X

possible variance for given pilot-symbol block lengths.

and equal to the minimum

9]

Simulations have demonstrated that a significant detection 0
performance improvement can be achieved when optimal pild&L

symbol sequence pairs are used for given paramatef3, and

L. Furthermore, an optimization ovéf which neglects the ef-

(11]

fect of bandwidth expansion can provide an additional perfor-

mance gain.
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