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Adaptive Transmission With Finite Code Rates
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Abstract—This work examines a transmission system which
adapts a finite set of code rates and a continuously varying
transmit power. We propose a technique for finding the average
reliable throughput (ART)-maximizing policy satisfying an av-
erage power constraint for a slow fading additive white Gaussian
noise (AWGN) channel. ART is a measure motivated by the infor-
mation outage and can, for example, be argued to characterize
the long-term average throughput of a data packet transmission
system with a transmit queue and a feedback protocol which
requests retransmission of erroneously received packets.

Given the size of the code rate set L, the ART-maximizing policy
has the following properties.

1. For a given set of code rates, the optimum allocation policy
suggests quantizing the fading state space into a set of L + 1
corresponding intervals. For each quantization interval the
optimal policy specifies a minimum transmitted power as-
signment which guarantees zero information outage. The op-
timum average power assignments across quantization in-
tervals have a waterfilling relationship with respect to the
interval channel quality measure.

2. The joint optimization of quantization intervals and the
corresponding rate assignments are shown to have multiple
local maxima. Nevertheless, this optimization problem
can be reduced to a simple one-dimensional search over a
parameter which determines the outage interval.

Numerical results show that, in a Rayleigh-fading channel, there is
only a 1-dB gap between the ergodic capacity and the throughput
of a two-rate adaptive transmission system when the throughput
is less than 6 bits/s/Hz. A special case of our optimal policy assign-
ment is the optimal power and rate policy for an adaptive M -QAM
system.

Index Terms—Adaptive coded modulation, adaptive transmis-
sion, average reliable throughput (ART), bit loading, block-fading
channels, delayed constrained communications, information
outage, M -QAM.

1. INTRODUCTION

N [1], two adaptive transmission policies are compared: the

truncated inversion policy with continuously variable trans-
mitted power but a fixed code rate and the fixed transmitted
power with continuously variable code rates. It is shown that the
latter is superior in terms of the maximum average throughput.
Both policies represent limiting cases of practical policies that
support a finite set of code rates and power levels.
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In [2], the optimization of a discrete adaptive transmission
design based on information outage has been studied. In this
case, the problem formulation was limited to the case where the
number of code rates and transmitted power levels are the same.
However, this restriction may not necessarily reflect practical
design constraints; it is common to have significantly fewer code
rates than power levels. For instance, in an IS-95 system [3],
which has been available commercially for more than 10 years,
the transmission power adapts on a grid of 1-dB steps over a
dynamic range of 60 dB or more. On the other hand, even for
the most recent adaptive system designs [4], [5], the number of
code rates is only around 10.

In this paper, we examine an extreme case of a system
design with a finite number of code rates and a continuously
variable transmitted power. Though similar problems for
adaptive M-QAM systems have been studied in [6], [7], this
paper emphasizes the optimum system design with the physical
constraints of average power and a number of codebooks. The
primary design problem will be the selection of code rates and
the corresponding assignments of rate and power for any given
channel state.

We assume additive white Gaussian noise (AWGN) and a
slow multiplicative fading environment with a channel state
which is constant during the transmission of a codeword. It
is assumed that the exact current channel state information is
known at both the transmitter and the receiver. The channel
state space is partitioned into a countable number of intervals.
Upon each transmission, a message is encoded at a rate cor-
responding to the current channel state interval and a power
level corresponding to the current channel state. Since each
codeword experiences an AWGN channel, random Gaussian
codes organized in multiple codebooks are employed. Similar
scenarios with channel state uncertainty are examined in [8].

For the proposed adaptive system, it is possible that the
instantaneous mutual information corresponding to a channel
state is less than the assigned code rate. In this case, an in-
formation outage event occurs. The information outage is an
intrinsic characteristic of communications over fading channels
with a decoding delay constraint [9], [10] or, alternatively,
with codewords not long enough to experience ergodic fading.
One extreme case of such a scenario is the above-mentioned
slow-fading channel assumption where the channel is constant
during the transmission of a codeword. For delay-limited
cases, the strict sense Shannon capacity is zero [9]. During an
outage, a transmission is not considered reliable and, thus, it is
frequently convenient to assume that the transmitted data can
be ignored [11]. This assumption leads to the capacity versus
outage problem which focuses on the tradeoff between the
outage probability and the supportable rate; see, for example,
[12], [13]. The practice of ignoring data received during an
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outage is supported by the fact that the outage probability
matches well the error probability of actual codes [14], [15].
Consequently, we characterize the performance of a system
design based on the concept of average reliable throughput
(ART), defined as the average data rate assuming zero rate
when the channel is in outage [2].

As a motivation for the ART metric, consider a system where
the transmitter has a transmit queue, and in each block, a packet
of r(s)n bits, where n is the length in dimensions of the slot,
and s is the fading state, is transmitted over the channel at rate
r(s). In addition, suppose that any decoding error is revealed
with probability 1. When an information outage occurs and re-
sults in a decoding error, the corresponding packet is left in the
queue; otherwise, the packet is removed from the queue. In this
case, the ART is the average service rate. Under mild condi-
tions, if the queue is fed by an ergodic stationary arrival process
of rate )\, also measured in bits per dimension, then the queue
is stable if and only if X is less than ART. Since most existing
data packet systems have some feedback protocols that ask for
retransmission of erroneously received packets, ART charac-
terizes the long-term average throughput of such systems and
determines the arrival rates for which there exists a policy that
makes the queue stable.

Following the formulation of the finite code rate set problem,
we explore optimum (ART-maximizing) policies where a
policy is defined by a channel state space partition together with
the corresponding transmitted power and rate allocation. In
this work, we will show that, for an optimum policy, there are
no outages in the sense that the transmitted power is nonzero
only if the sender employs a code rate that allows for reliable
decoding at the receiver. Furthermore, the transmitter employs
a zero transmission power policy only for a subset of worst
channel states. We show that an optimum policy employing L
codebooks can uniquely be characterized by a partition of the
channel state space with L + 1 intervals: the zero rate/power
interval in addition to L intervals corresponding to L nonzero
code rates. In particular, the optimum power allocation has a
water-filling character which is uniquely determined by the
channel state space partition.

Unlike in [2], the joint optimization over the channel state
space partitions and the code rate/power assignments considered
here can be reduced to a one-parameter search. This outcome is
quite surprising since the throughput maximization problem is
generally not a convex optimization problem and can have mul-
tiple local maxima for an arbitrary distribution of the channel
state. In this paper, the channel state distribution is only con-
strained to be continuous and differentiable.

In addition, we have obtained the optimum partition for a
given set of rates to be assigned and a given average power
constraint. Such a solution is of particular interest to practical
heuristic designs where codes can be selected only from a lim-
ited set of good channel codes before one chooses an optimum
channel state partition. Though not surprisingly, our derivation
also shows that a partition of L 4 1 channel state intervals is
indeed the optimum choice. As a byproduct, we also provide
an optimum solution for the M-QAM spectral efficiency maxi-
mization problem introduced in [6] and addressed in [7], [16].
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Finally, numerical results show that, for a Rayleigh-fading
channel, there is a gap of only 1 dB between the ergodic ca-
pacity and the throughput of a two-rate adaptive transmission
system when the throughput is less than 6 bits/s/Hz. Thus, in
comparison with the results in [2], we find that power adapta-
tion can indeed be very helpful for adaptive transmission with
discrete code rates. This agrees with the conclusion for power
adaptation in M-QAM systems in [7].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiplicative flat-fading channel model sim-
ilar to that in [1]. The complex received signal

Y =VSX+W 1)

where S is the channel (fading) state, X is the complex trans-
mitted signal, and W is a circularly symmetric AWGN with
variance Ng. The channel state S is a real random variable of
unit mean with a probability density function (pdf) f(s), a con-
tinuous cumulative distribution function (cdf) F'(s), and a do-
main S = {s|s > 0}. Only in Section IV, is F(s) assumed
to be continuous, differentiable, and strictly increasing in s. In
this paper, fading is assumed to be sufficiently slow so that the
channel state is constant during the transmission of a codeword.

A generalized adaptive transmission system can be modeled
as follows. At any channel state s, the transmitter trans-
mits codewords coded at a rate r(s) with a power level
p(s) = E{|X|?|s}, where E {-} denotes expectation. The
code rate 7(s) is chosen from a set Rg = {ro = 0} U R where
R = {ry,...,rr}. Without loss of generality, we assume that
r—1 < rpforl = 1,..., L. An adaptive transmission policy
can uniquely be specified by the assigned code rate r(s) and
the corresponding allocated power level p(s). Such a policy is
denoted by the tuple (R, r(s),p(s)). Let

V= {s|r(s) =}, l=0,...,L 2)
denote the set of channel fading states in which rate r; is em-
ployed. Each policy specifies a partition of the set of channel
states S = UILZOVI. In general, V; can be a countable union
of intervals in S or simply a measurable set of channel states.
Since there are L nonzero code rates, we call (R, r(s), p(s)) an
L-level policy.

Since (1) is an AWGN channel for any given s € S, the cor-
responding maximum mutual information is given by log(1 +
p(s)s/No). Adopting the notation

R(¢) =log(1+ ¢/No), ¢ >0 3)
the maximum mutual information associated with any state s
is R(p(s)s). For any s € V), given a code rate r; of a ca-
pacity-achieving Gaussian codebook, and a power allocation
p(s), the information is guaranteed to be successfully received
iff R(p(s)s) > r;. We define the binary outage indicator func-
tion

1, R(p(s)s)<r

Iout (T7 87p(8)) = { 01 otherwise. (4)
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The expected value of I, (7, s, p(s)) over the channel states .S
is the information outage introduced in [13].
Given a policy (R, r(s), p(s)), the ART is

Rp(Rr(s),p(s)) = Y 11 | [L= Lout(ri 5,p(s)] f(s) ds.

1=0 Vi
(5)
Let
_Jf(s)/Pr[seV], seW
fi(s) = {0, otherwise ©)

denote the conditional pdf of the channel state given that it be-
longs to V;. The conditional average power given s € V) is

Fi= [ sl ds, ™
Vi
Also, the average transmitted power for the policy
(R, 7(s),p(s)) is
L
pr(R,7(s),p(s)) = Z PPriseV]. (8)

=0

Throughout this paper, we only consider the policies with
r(s) and p(s) such that both (5) and (7) are meaningful, i.e., the
integrals are either Riemann or Lebesgue integrable. The objec-
tive will be to maximize ART Ry, (R,r(s),p(s)) subject to an
average power constraint and a constraint that there are L code-
books of L distinct nonzero rates

max RL(R,r(s),p(s)) )
R,r(s),p(s)

subject to  pr(R,7(s),p(s)) <P (9a)

IR|=L (9b)

r(s) ERo={ro=0}UR (9¢)

p(s) 20 (9d)

r(s) > 0. (%e)

In (5), for any V; with either ; = 0 or P, = 0, there is zero
contribution toward ART and, consequently, it is optimum to
assign p(s) = 0 over all such V;. For a V; with nonzero r; and
P, we observe that an optimum policy must be locally optimum
over V. Local optimality requires that given V;, P, and 7, p(s)
must be the solution of

max 7 / [1— Lout(ri, s,0(5))] fi(s) ds (10)
p(s) Vi
subject to / p(s)fi(s)ds < P (10a)
JV
p(s) > 0. (10b)

Given any nonnegative 7, (10) is equivalent to the following
local outage minimization problem:

min / Tout (71,8, p(8)) f1(s) ds (11)
p(s) Vi
subject to / p(8)fi(s)ds < P (11a)
SV
p(s) > 0. (11b)

1849

The solution of (11) is presented in [12, Proposition 4] and will
be summarized here. We define a channel inversion power allo-
cation

Ah_(er

P(s,r) = {of

-1), s>0,r>0

0 (12)

which represents the minimum power required to communicate
reliably at rate r for channel state s. Let

T;r = max{r (13)

(s, 1) fi(s)ds < PI}
Vi
denote the largest possible assigned rate over V; without outage
given the average power allocation P; over V;. If r; < r;r, the
solution of (11) is trivial; we allocate power (s, r;) and achieve
zero outage over V;. On the other hand, if ; > 7, outage within
V), is inevitable and the corresponding optimum power alloca-
tion is the truncated channel inversion

_J0, s €VI\W
p(s) = {w(s,rl), seV
where V; C V) is a subset of better channel states in V), i.e.,

s1 € Vz\]_)l and s € V) implies s; < so. Moreover, the set Y
is chosen to satisfy the average power constraint

(14)

Pr= [ (s,m)fi(s)ds. (15)
ISV

Note that (s, ) is not defined for s = 0 and » > 0. This is

due to the fact that, in the vicinity of s = 0, the channel is too

poor to support any positive rate. Thus, the following must hold:

r(0) = 0 and p(0) = 0.

In the optimization problem (10), we assume that r; is known.
However, for any )}, given the conditional average power P, we
can also choose r; to maximize the conditional ART. Specifi-
cally, local optimality implies that the optimum rate/power al-
location must solve

max max rl/ [1 = Toue(rr, 8,p(8))] fi(s)ds  (16)
e p(s) v

subject to / p(s)fi(s)ds < P, (16a)
Vi

p(s) > 0. (16b)

Since rate r;r defined by (13) is achievable under (16), any rate
< T;L is suboptimal for (16). For any r; > TZT, outage proba-
bility within V) is nonzero. Thus, for any optimum rate 7;, the
optimum power allocation in (16) has the form (14). Since there
is no transmission for s € Vl\f)l, we can incorporate this set of
channel states into the set of zero-power zero-rate channel states
Vo = {s|r(s) = 0} and redefine V; = V). For the new policy,
there is no outage for states s € Vp; we reliably achieve zero
rate by using zero power. Moreover, the assigned rate 7(s) and
the corresponding power p(s) satisfy

p(s) =(s, ), seV
r(s) = log(1 + p(s)s).

Note that (17) and (18) are consistent with the definition of V)
which implies that s € V; whenever r(s) = r;. Consequently, it

7)
(18)
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is clearly sufficient to denote any optimum policy by (R, r(s)).
Moreover, (18) and (9d) imply (9e).

From (5), (7), and (8), the corresponding overall average
power and ART are

Z
jzju/n rif(s

Our objective is to maximize Ry (R, r(s)) subject to both the
average power constraint pr,(R,r(s)) < P and the constraint
that the rate set {r(s)} has a cardinality L + 1 and includes the
zero rate 79 = 0.

Even though (20) is much simpler than (5), a simple solution
is not available. In the next two sections, we will obtain neces-
sary and sufficient conditions for optimum policies by applying
the Lagrange multiplier method and the Karush—Kuhn—Tucker
(KKT) conditions [17]. Given these conditions, the optimum
policies can be found by a relatively simple search method.

1/) s,r)f(s)ds (19)

(20)

III. PARTITION OPTIMIZATION

In this section, we address the subproblem of finding the op-
timum 7(s) given a specific rate set Rg. This problem is of in-
terest since a valid strategy for designing adaptive transmission
systems is to choose a subset of good error control codes be-
fore deciding r(s), i.e., the channel state partition {V;}. Fur-
thermore, since this subproblem and the M-QAM spectral ef-
ficiency maximization problem in [6] (solved only in a sub-
optimal manner in [6]) are closely related, the optimum solu-
tion presented here is also the optimum solution of the problem
in [6].

For a given rate set R including L distinct positive rates, the
throughput maximization problem (9) becomes

m(a§< RL(R,r(s)) (21
subjectto  pr(R,r(s)) <P (21a)
r(s) € Ro. (21b)

In comparison with the problem (9), (21) has fewer constraints.
Specifically, given R, with (21b), (9b) and (9e) are redundant.
In addition, with (21a), we implicitly take p(s) in the form spec-
ified in (17), which further implies that (9d) is automatically sat-
isfied.

The maximization problem (21) is a variation of the
bit-loading problem in [18]. Both problems belong to the
general class of Knapsack problems (KPs) [19]. The traditional
bit-loading problem is to optimize the rate/power allocation
over a finite number of parallel channels where any rate as-
signed to a channel can only be an integer. In this work, the
rate/power allocation is over S, which is an uncountable set.
Furthermore, elements of R are not necessarily integers.

A. Related KPs

A good example of a KP is the Fractional Knapsack problem
(FKP). For an FKP, there is a knapsack of size ¢ > 0 and an
integer number n objects each with a reward value r; > 0 and
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a weight w; > 0,7 = 1,...,n. An FKP studies how to fill
the knapsack in order to maximize the total value of the objects
inside the knapsack

max TiT5 22)
(Z15eyy) ;

subject to Z riw; < ¢ (22a)
i=1

€ [0,1], 1=1,...,m. (22b)

Because the FKP allows a fraction of an object to be placed
in the knapsack, (22) can be solved by a greedy algorithm that
keeps putting the objects into the knapsack in descending value-
size ratio r; /w; order until the capacity c is reached.

Without loss of generality, we assume that the value-size ra-
tios corresponding to the n objects are distinct. Therefore, an
optimum solution can be described by two parameters, i.e., a
boundary value-size ratio « and a fraction value z € [0,1]. In
order to achieve the optimum, all objects with a value-size ratio
larger than « must be put into the knapsack. In addition, there
is an item with a value-size ratio equal to « and only a fraction
x of that item is put in the knapsack. The rest of the objects are
left untouched.

When z; is constrained to be 0 or 1 in (22), the problem be-
comes a 0—1 KP. The optimum solution of a 0—1 KP can be ob-
tained by dynamic programming using Bellman recursion [20].
A more efficient algorithm can be obtained based on the results
in [21]. Different from FKP, the optimum solution of a 0—1 KP
cannot typically be described analytically by a few parameters.
However, it should be clear that the solution of an FKP provides
an upper bound of the solution of a 0-1 KP.

A more complex knapsack problem is the generalized
multiple-choice knapsack problem (GMCKP) introduced by
Pisinger [22]. For a GMCKP, there are L knapsacks. For
knapsack [, there is a set of n; objects where the ith object has
reward r; and weight wy;, respectively. A simplified special
case of the GMCKP is then

max Z Z Tl (23)
e} 33

subject to Z Z T W, < C (23a)
=1 i=1

x; €4{0,1}, I=1,...,Li=1,..., n;. (23b)

Again, a GMCKP does not typically have a simple analytical so-
lution due to (23b). With a proper procedure, it is demonstrated
in the next subsection that (23) is similar to the fixed rate set
problem (21). For (21), the number of knapsacks is infinite and
all objects can only contribute an infinitely small amount in ei-
ther value or size. Hence, similar to FKP, we can find a simple
analytical solution for (21). However, a practical system may
not have the advantage from the fractional scenario and, thus,
the references provided here become useful.

B. Optimum Partition

In [18] (see also [23]), it is proved that a greedy rate/power
allocation is the optimum solution for the bit-loading problem
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in parallel channels. We will show that the same allocation is in-
deed optimum for (21). Moreover, such a solution implies that
quantization is the optimum partition. The optimum quantiza-
tion partition boundaries are also derived.

Fig. 1 depicts a policy with an arbitrary, and not particularly
intelligent, rate and partition assignment. The wave-like power
assignment in Fig. 1(b) is the result of the local optimization
in (16). The average rate Rr,(R,7(s)) in (20) is the integral of
the rate pulses in Fig. 1(a) weighted by the channel state pdf
f(s). Similarly, the average power pr(R,7(s)) in (19) is the
integral of the wave crests of Fig. 1(b) weighted by f(s). To
express these integrals in a more useful form, we introduce the
incremental rate and power functions

==y (24)
P (s) = (s, m) — (s, r1-1) (25)
for/ = 1,..., L. Since elements in R are a strictly increasing

sequence, the incremental rates 77> and power pi*(s) are both
positive.

At any channel state s, the transmitted code rate and the cor-
responding required transmitted power assignments can be ex-
pressed as sums of 7> and p(s)

L

r(s) =Y Ti(s)ri (26)
=1

p(s) =Y _ Ni(s)pi*(s) 27)

Illustration of an arbitrary policy satisfying (17) and (18). Note that Vo = S\U;_, V, is not shown. (a) Rate assignment. (b) Power allocation.

where the coefficients, {I;(s)|l =1,..., L}, in (26) and (27)
is a set of binary 0/1-value functions. Since r; > rp for I’ =
1,...,1, (26) implies that

Vl:{s

A given rate set R specifies the incremental rates {ri}
and the incremental powers {pi(s)}. Thus, given R,
Z = {ILi(s)|l=1,...,L} describes a policy of interest.
The corresponding ART and average power are

Il/(s) = l,ll < l7 and Il/(s) = O,ZI > l} . (28)

L [e')

RL(T) = ; /0 L(s)rP f(s)ds (29)
L 00

(D) =3 / L)) f(s)ds.  (30)
1=170

The maximization problem (21) now becomes a problem of
searching for the optimum Z. Note that (28) requires a valid
policy to satisfy the precedence constraint

I (s) > Ii(s), <l 3D
The precedence constraint simply says that if [;(s) = 1, then
I;/(s) = 1foralll’ <. Inaddition,if [;(s) = 0,then I} (s) = 0
for all I’ > [. Later, it is shown that the precedence constraint
can be lifted because it is always satisfied by an optimal policy.
In the absence of the precedence constraint, the maximization
problem (21) can be viewed as a version of the GMCKP (23)

in which each knapsack can have an infinite number of objects
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and the objects have infinitesimal rewards r;; = 77 f(s) ds and
weights wy; = pi(s) f(s) ds.

In order to identify a policy that provides an optimum solution
to the throughput maximization problem (21), we introduce the
incremental efficiency (or, simply, efficiency)

TR s m—rig f(S) £0
m(s) =<4 pPEf(s) ~ Noet—e=1>
0, f(s)=0

(32)

which is a ratio between an increment in the throughput from
ri—1f(s) to rf(s) at state s and the corresponding power
expenditure pi*(s) f(s). Note that in (32), it requires nonzero
pi(s) for s € S that is satisfied by the definitions of (s, 7)
and pi(s) in (12) and (25), respectively.

For optimization with integer rates, the efficiency concept
may not be necessary [23]. Nevertheless, it is a key for solving
the problem with noninteger code rates.

Lemma 1: The incremental efficiency #;(s) has the fol-

lowing properties:

a) m(0) = 0 for all [;
b) for fixed [, 7;(s) increases in s;
c) for fixed s, n;(s) decreases in I.

From (29), ART can now be expressed in terms of the incre-
mental efficiency as

L oo
Ry(D) =Y / L(sym(s)pP(s)f(s) ds.  (33)
=1

Together with the constraint (30), the maximization of Ry, (7)
forms a KP [19], which is solved by the following policy.

Definition 1: The most power-efficient
(MPEQ) is a policy Z* = {I}(s)} where

quantization

I (s) = {1’ m(s) 2 Aalr) g (34

0, otherwise

7

and the positive constant Ay;(7) is determined by the average
power constraint pr,(Z*) = p.

The existence of an MPEQ is guaranteed. The procedure
for finding the MPEQ solution is the same as that for an FKP.
Starting from all I;(s) = 0, we repeatedly assign I;(s) = 1 to
the highest remaining 7;(s) until P is reached. Such a procedure
is always successful since in (30), p#(s) is continuous and
f(s) is bounded due to the continuity of F'(s). Note that the
uniqueness of the efficiency lower bound Ay () and MPEQ is
an issue discussed later in the subsection.

For any MPEQ, s € V,_; and s’ € V), imply that for some
A(r) > 0, If(s) = 0and I} (s") = 1, ie, m(s) < m(s)
and, consequently, s < s’. Thus, MPEQ leads to a quantization
in the sense that s € V;_1 and s’ € V; imply that s < s’. In
addition, Lemma 1 part c¢) guarantees that MPEQ satisfies the
precedence constraint (31).

Theorem 1: For any policy Z = {I;(s)} satisfying the av-
erage power constraint pr(Z) < p

Rr(I) < Rr (7). (35)
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We emphasize that Theorem 1 holds regardless of whether
the policy I;(s) satisfies the precedence constraint (31) or not.

The MPEQ solution is easy to obtain analytically. An MPEQ
policy is fully determined by the efficiency threshold Ay (r)
where r(s) > r; iff 9(s) > Aum(r). From Lemma 1 and the
continuity of the domain S, there exists ¢; such that 7;(q;) =
Am(r) and 7;(s) > A(r) iff s > ¢;. Thus, g is the boundary
separating V;_; and V. It follows from (32) and the equality
771((]1) = )\M(T) that

Am(r)No (e —em'-1)
q = )
T —Ti—1

I=1,...,L. (36

Since 7;(s) decreases in [ for fixed s, (36) is an increasing se-
quence of L boundaries q1, . . ., gr,. Moreover, these boundaries
indicate that for a given set of rates R, an optimum policy is
given by a quantization of the channel state set S into exactly
L + 1 intervals corresponding to the set of rates R. Thus, an

optimum policy for a given R can be represented by the vector
g=lq..-,a]’ (37)

An MPEQ policy is illustrated in Fig. 2, where g = 0.
To study the uniqueness of MPEQ, we assume Z* = {I;(s)}
and 7*" = {Z*}(s)} be two MPEQs corresponding to A ()

and A}, (r), respectively. The corresponding boundaries of the
partition intervals are ¢ and ¢’ = [¢}, ..., q}]".

Proposition 1: If A\ (1) > Xy (r), we have
a) I}'(s) = 1 wherever I}(s) = 1,
b) pr(T*) < pr(T*);

¢) ¢ < q,foralll =1,...,L;

d) pr(Z7) ZLP'L(I*') if f(s) =

0, for all s € [q],q),

Proposition 1 part d) implies the following theorem.

Theorem 2: MPEQ is unique if f(s) > 0 for s € S\ {0}.

C. MQAM Spectral Efficiency Maximization

Problem (21) is closely related to a special case of the
spectral efficiency maximization problem for an adaptive
M-QAM system [6], which suggests employing a set of
L + 1 predetermined M-QAM constellations of sizes in
M = {My=1,My,...,Mr}. The My = 1 constellation
corresponds to turning off the transmitter. The transmission
scheme requires that given a channel state s in 1, a transmitter
transmits a quadrature amplitude modulation (QAM) symbol
constellation of size M (s) = M;, M; € M, with power p(s).

Without loss of generality, we assume M;_; < M, forl =
1,..., L. To guarantee a specified bit-error rate (BER) P}, for

all channel states, the transmitted power is

M(s)—1

Ks (38)

p(s) =
where K = —1.5/log(5P;,) [6].
Let 1, = log(M;), 1 = 0,...,L. Consequently, r(s) =

log (1 4 p(s)sK). The spectral efficiency maximization prob-
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Fig. 2. Tllustration of an MPEQ policy. (a) Rate staircase. (b) Power staircase.

lem for L+ 1 QAM signaling and a continuously varying power
is as follows:

m(a;c Rr(R,r(s)) (39)
subject to /p(s)f(s) ds <P (39a)
S
r(s) € Ro (39b)
r(s) —1 ,
pls) = e = “’(;;V(j)) (39¢)

where Rg = {ro} UR and R = {ry,...,r}. Following the
procedure derived in this section, we obtain the optimum parti-
tion as a quantization with boundaries
Ae™ —e"-1)

K (’I”l — 7"1_1) ’
where A is determined by the average power constraint. An eval-
uation of this policy in Rayleigh fading is given in Section V-C.

q = I=1,...,L (40)

IV. OPTIMUM POLICIES

In the previous sections, we have demonstrated that an ART-
maximizing policy, defined in Section II, with a rate set R must
be an MPEQ corresponding to Ry. More specifically, Theorem
1 shows that any candidate ART-maximizing policy with a rate
set R must have channel states partitioned into |Ro| intervals.
Furthermore, we found that the optimum solution employs rate
r(s) = r; € Ry in the interval Q; = [qi, q14+1), Where g is
defined in (36) with go = 0 and ¢;z,| = co. In addition

p(s) =(s,m), s€Q,1=0,1,....|Rl.  (41)

Consequently, any policy of interest can be specified by (r, q)
where the vectors

T :[Tl,...,T|R‘]T

q=[n,. . 1

(42)

AR (43)
with the corresponding p(s) given by (41). An optimum policy
is denoted by (r*, ¢*).

Clearly, for a policy specified by (r, q), if the ¢; are not dis-
tinct, the policy degrades to a policy with fewer than |R| dis-
tinct rates. Consequently, without loss of generality, we concen-
trate on ¢ with |R| distinct elements. For an L = |R|level policy
(r,q), the corresponding ART is

L
Ri(r.q) =Y ik, (44)
=1
where
F=Prlse Q. (45)
The conditional average power in the interval Q; is
P(r.q) = | o(s,m)fils)ds (46)
JQ
where the conditional pdf of channel state s is
_J )/ F, seQ
fi(s) = {07 otherwise. “7)
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For an interval Q;, the conditional average channel quality w; is
defined by

-/ &fl(s) ds

wq Q, S

I=1,...,L. (48)

Here, w; is normalized by Ny in order to simplify the latter
derivations and 0 < w; < --- < wr. Equations (12), (46),
and (48) imply

(e -1)

wi

Pi(r,q) = (49)

The original ART maximization problem (9) now becomes

max Rp(r,q) (50)
r.q
subjectto  pr(r,q) <p (50a)
where
L L
Ri(r.q) =) Fr Z z/ f(s (51)
1= 1 =1 Ql
L N,
ZF[P[ ‘I‘q = Z / —Of(s)ds
=1 Ql s
(52)

We note that problem (50) can have multiple local maxima. For
example, when L = 1, pr,(r, q) becomes

— f(s)ds (33)

pr(rs ) = (7 — 1) /

1

A Ry (g¢1) with a simple piecewise linear f(s) has three local maxima. Arrows show the corresponding local maxima before and after magnification.

Now, since p1(r1,g1) = P is necessary to achieve the maximum
ART, r; must be a function of ¢; defined by

~ 1o S —
r1—1g<1+f;oN0f() )

Consequently, Ry, (r,q) becomes R;(r1, 1) which is simply a
function of ¢; given by

Rl(Ql) = log (1 + m) '/ql f(S) ds.  (55)

An illustration of R1(¢;) with multiple local maxima is shown
in Fig. 3. Note that in Fig. 3, the f(s) violates the continuity
assumption in Section II. However, it is not very hard to imagine
that a continuous f(s) similar to that in Fig. 3 will lead to a
similar scenario with multiple local maxima.

(54)

A. Water-Filling Power Allocation

According to (49), given a channel state partition ¢ that spec-
ifies the conditional average channel quality w;, the rate r; is
uniquely expressed in terms of the conditional average power

P, in the interval Q; as
r; =log (1 + Puwi). (56)

Given a fixed ¢, the ART maximization problem (50) can be
written as

P,
1 F, 57
1r’r.ljau’XL Z og ( ) l (57)
subject to ZPle <p (57a)
I=1
P, >0, l=1,...,L. (57b)
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It is straightforward to show using the KKT conditions that the
optimum solution of (57) for given q is

Pi(a) = <# - i>+ (58)
Aw(g)  w
where 1/Aw(q) is the water-filling level which satisfies
L
p=)Y FPFl(g). (59)
1=1

We have shown that an optimum policy (r*,¢*) must have
|R| = L. Hence, (56) implies that P;* = P/(q*) > 0 for
I =1,..., L. That is, for optimum policies, the operator (-)™

in (58) should not have any impact. This in turn enforces
the implicit requirement on ¢* in the form of Aw(¢*) < w}

for /| = 1,...,L, for policies of interest. Consequently, (59)
implies
1 P[0 R f(s)ds ©0)
Aw(q) 1—F(q)

and (56) implies that the optimum rates corresponding to ¢ are

given by
r=lo < i ) )
: & Aw(q)

Since w; characterizes the channel states of interval Q;, the
water-filling result is analogous to those in both the original
continuous adaptive transmission problem [1] and the parallel
Gaussian channel problem [24].

Note that the water-filling power allocation (58) is optimum
within the set of policies (7, g) that explicitly require p(s) in the
form of (41). For a poorly chosen partition g, (r, g) policies with
p(s) given by (41) may not be even locally optimum within the
interval Q;. Therefore, the water-filling power allocation (58)
must be used with some caution.

Moreover, because Ry, (r, ¢) can have multiple local maxima,
hill-climbing techniques based on alternating optimization of
the partition g and rates 7 can at best only reach a local maxima.
In the following, we show how the necessary conditions for op-
timality and ¢7, the first element of ¢* uniquely specify an op-
timum policy. Thus, the search for optimum policies is reduced
to a line search over ¢ .

(61)

B. Necessary Conditions for Optimum Policies

The corresponding Lagrangian function for (50) is

L(‘l", q, /\) = RL(T7Q) + /\[p - pL(T, Q)]

The Lagrangian function has a positive multiplier A. The unit of
the Lagrangian function is the same as ART.

Given fixed r and variable g, (50) becomes the partition op-
timization problem studied in Section III. Formally, the partial
derivative of the Lagrangian function with respect to q; is

OL(r,q,)\)
oq

(62)

= f(a) {—m — 7o)+ A (e — et %}
(63)
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Note that it is here where F'(s) is required to be continuous and
differentiable. However, this is not required for the MPEQ in
Section III. The necessary conditions for optimality

OL(r,q,\)

I=1,....L (64)

imply

(65)

where the last equality is from (36). Therefore, the optimum
Lagrange multiplier A* is equal to the incremental efficiency at
q; defined in (32).

On the other hand, a similar optimization problem can be for-
mulated from (50) for given g and variable r. This problem is
the power allocation problem studied in Section IV-A. The nec-
essary conditions for the optimum policies are

OL(r,q,\)

oy r=r',g=g* A=\

1
=F {1 —Xe"t —}
wy

implying

r=r",g=¢",A=\"

M= e Wk = \o(q¥) (67)
where the last equality is due to (61). Therefore, the optimum
Lagrange multiplier A* is the reciprocal of the water level of the
water-filling power allocation obtained in Section IV-A.

Both (65) and (67) imply that for an optimum policy (r*, ¢*)

/\M(‘I‘*) = Aw(q*> (68)

For convenience, we define w§ = Aw/(g*) obtained from (58).
Thus, from (65), (67), and (68), we obtain a set of necessary
conditions for optimum policies as

(erl* _ erlil)
o = w(q") | ~———"

E3
=T

(69)

- 1=1,2,...,L (70)

by substituting (61).

C. Search for Optimum Policies

Since w; and Aw/(g*) depend on g*, (70) provides L equa-
tions for the L unknowns ¢;. The only inconvenience is that
(70) are nonlinear and ¢ are limits of integrals defining w;" and
Aw (g*). Therefore, it is hard to solve ¢/ by using any direct sub-
stitution. However, in the following, based on the monotonic re-
lationship between ¢, and w}’, a simple algorithm can be found
to search for the optimum solution.

Naturally, the average channel quality w; becomes better
when Q; is enlarged by adding more good channel states. Such
an intuition brings two monotonic relations below.

Lemma 2: qf is strictly increasing in wy'.

Lemma 3: wj_1 is strictly increasing in g;.
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1) i=1

a) Given ¢;, use (60) to uniquely solve for Aw(q*) and, thus, obtain wg = Aw(q*);
b) Given ¢} and wf, use (70) to uniquely solve for w; [Lemma 2].

2) 1>1:

a) Given ¢/, and w;_,, use (71) to uniquely solve for ¢; [Lemma 3];
b) Given ¢ and w; |, use (70) to uniquely solve for w; [Lemma 2].

3) Repeat step 2) from [ =2 to [ = L, we will have q*.

Fig. 4. An algorithm searching for optimum policies started from ¢; .

In particular, Lemma 3 follows from the following restate-
ment of (48):

1 @ N,
—:/ f(s)ds, 1=2,...,L.
S

Wi-1 qi—1

(71)

These two lemmas are the building blocks of a constructive pro-
cedure for finding the optimum policy given ¢j described in
Fig. 4. Particularly, in steps 1b and 2b, Lemma 2 implies the
existence of a unique solution w;* and in the step 2a, Lemma 3
implies the existence of the unique solutions g; .

Theorem 3: For each value of ¢7, there exists a unique policy
(r*, g*) that satisfies the necessary conditions (70).

Overall, (48) and (70) offer 2L equalities. With ¢}, we repeat-
edly use (48) and (70) to uniquely determine other ¢, and all w;'.
Indeed, at the step [ = L, given ¢ , w}, can be determined by ei-
ther (70) or by (48) with q+1 = 0o. These two approaches are
distinct and must agree for the optimum policies. In this sense,
the 2L equalities (48) and (70) implicitly restrict ¢7. However,
since (70) are only necessary conditions obtained from (68), it
implies that all local optimum satisfy all 2L equalities, i.e., (48)
and (70). Therefore, the optimum g7 will not be unique when
multiple local maxima achieve the same objective value. In this
case, there will be multiple optimum policies (r*, ¢*).

Since there is only one undetermined parameter ¢, a line
search over ¢; solves the problem of maximizing ART subject
to a power constraint and a finite code rate set. However, it is not
yet clear whether the search is well behaved for general fading
distributions.

Finally, let the maximum ART for any L-level policy be

Cr = Ri(r",q") (72)
where (r*, ¢*) is any L-level optimum policy.
Theorem 4: Forall L > 1
Cr>Cr_1. (73)

V. NUMERICAL RESULTS

In this section, following the approach in [12], we let Ng = 1
and evaluate the system performance numerically.

A. Optimum Code Rates and Partition

Theorem 3 suggests that it is possible to perform a line-search
on the single parameter ¢; to find (r*,¢*) and obtain Cf,. In
Fig. 5, we present a comparison between C, and several known

throughputs for a Rayleigh-fading channel. C is the ergodic
capacity given in [1]. C', proposed in [2], is the maximum
ART corresponding to a discrete adaptive transmission policy
with L code rates and L power levels. Cy requires about 3 dB
less average transmitted power than C; to achieve the same
throughput.

Since C, is obtained through exhaustive search, the required
computation complexity increases exponentially with respect to
L and itis not desirable to evaluate C, for large L. In [2], by em-
ploying a greedy iterative algorithm initialized with an asymp-
totically optimum solution of Cp, a good lower bound RIL of
Cr, is found. In Fig. 5, Rfo is about 1 dB away from C.

We observed that Cy > Rfo, which suggests employing
adaptive systems with a small number of code rates and a large
number of power levels. Finally, it can be shown that C is only
a fraction of a decibel away from C' for throughput values less
than 8 bits/s/Hz.

Therefore, an important message embedded in these results
is that for a practical power-limited adaptive system design, a
combination of a few optimized coding rates and variable trans-
mitted power buys almost all the available ergodic capacity.
Moreover, it is shown in [8] that the claim still holds for sce-
narios when the precise channel state information is not avail-
able.

B. Optimum Partition for Preset Code Rates

Here, we have a comparison between the performance of the
optimum partition and that of a partition motivated by the design
in [6]. Given a code rate set  with g = 0, a suboptimal partition
is

0, 1=0
ql_{qe”, 1=1,2,...,L—1 74

where ¢ is a parameter tuned to satisfy the power constraint

(21a) since p(s) = (s, 71), s € Q.
Fig. 6 shows the results of two partition methods for

7

_ O

=0
= =1 (75)
1=2,3

7
2(1—1), ,
Using the optimum partition can reduce the transmitted power
requirement by as much as 0.5 dB in comparison with using the
other suboptimal partition for L. = 5. However, for a small L,
there is only a negligible difference between the results corre-
sponding to the optimum partition and the suboptimal partition.
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Fig. 5. A comparison of C', C',, R}, and C, for Rayleigh fading.

C. Spectral Efficiency

In Fig. 7, we show the results of spectral efficiency of adaptive
M-QAM systems with a P, = 1075, The results show that for
three regions (L. = 3), there is a negligible difference between
the spectral efficiency corresponding to the optimum partition
and the suboptimal partition [6]. The difference becomes dis-
tinguishable when there are more regions (larger L). Overall,
the suboptimal solution of Goldsmith and Chua [6] for variable
M-QAM is indeed very close to the optimum.

VI. CONCLUSION

In this paper, the average reliable throughput maximization
problem for adaptive transmission systems with a finite number
of code rates and continuously varying power level is formu-
lated. By exploring the properties of the optimum policies, we
can obtain C', through a simple line-search algorithm.

Moreover, while studying the properties of the optimum poli-
cies, we discovered the optimum partition given an increasing
rate assignment. This is particularly useful for designing adap-
tive systems with the channel codes selected from a limited set
of good codes. The approach used in solving our maximization
problem can be applied to solve a spectrum efficiency maxi-
mization problem formulated in [6].

APPENDIX
PROOFS

A. Proof: Lemma I

Claim a) is straightforward since, regardless of how much the
transmitted power is, we cannot have nonzero rate for reliable
communication when s = 0. Combining (12), (25), (24), and
(32), we have

s T —7Ti-1
m(s) = Nyet —er1
Hence, claim b) follows. For claim c), we notice that e is
strictly convex in r;. For any strictly convex function g(z), we
have for zo > x1

(76)

0 - 0
9(x) < 9laz) —g(a1) _ dg(w) a7
o |,_,, Ty — T1 o |,_,,
Consequently, for any 1 < z2 < x3
_ o _
9(x2) = g(z1) _ 9g(x) < 9lzs) = g(z2) (78)
To9 — T ox R T3 — T
Therefore, with g(z) = e, it follows from (76) that
S _ eTl — e"’l*l erl+1 . e"'l _ S . (79)
Nom(s) — r—ri-1 g1 —711 Nomya(s)
Since 7;(s) is positive, we have (c). O

B. Proof of Theorem 1

Given an arbitrary power allocation [;(s) and the MPEQ al-
location I} (s), we observe that

17 (s) = Il (s)L(s) + I (s) [1 = Li(s)] - (80)
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For pr, (Z) given by (30)

pL (%)= pr ({1 (5)})
=pL({I7 (s)L(s)})+pL({I7 (s) 1= L(s)]}) -

It follows from (33) and (80) that the MPEQ policy achieves
ART

rz)=y | I mi(s)pi () fs) ds
1=1 79

L 00
=rt 30 [ R@n-Tmr (s 6
=1

81

(82)

where

> /°° I ()L (s)m(s)pp (s) f(s)ds.  (84)
1=1 70

Consequently

L " OO0
RyT) >+ / L)1 Ti(s) A (P)p(s)f (s)ds (85

— k4 Maa(r) (pz (T°) = po ({T} () 1i(s)})
>k + Au(r) (pr (T) — pr ({L(s)IF (5)}))
where (85) holds since 7;(s) > Ay (r) for channel states s with

I} (s) = 1; (86) is due to (30) and (81); and (87) is true because
P = pr(Z*) > pr(T). We then observe that

(86)
(87)

L )
RyT) > nt> / L(s)[L= I} ()i (F)pf () F(s)ds (88)
=1

>ty [ H - 06 ds 69

L oo

=3 [ nemn )5 ds ©0)
1=1"0

=Rr(T) ©1)

since applying (81) on Z instead of Z* will confirm that the
right-hand side of (88) equals the right-hand side of (87); (89)
is valid because 7;(s) < Am(r) for channel states s with [1 —
I} (s)] = 1; and (90) is found by substituting « from (84) and
applying the relation of (80) on Z again. O

C. Proof of Proposition 1

The claim a) is a direct consequence of Definition 1. Specifi-
cally, Definition 1 implies that I;}/(s) = 1 wherever I}(s) = 1
if Am(r) > A (r). Therefore,

I (s) = I ()17 (s). (92)
Consequently
L oo
=Y / I (s )f(s)ds (93)
=170
L oo
= Z I ()17 ()i ()£ (s) ds (94)

Il
-
S
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(95)
=1
L oo
-3 / I ()P () £(s) ds %)

<,
=pr(Z*) (97)

where (95) is due to the fact that the second term on the right-
hand side is nonnegative. Hence, the claim b) holds.
Note that (36) implies

_ )\M(T)NO (6 —e - ) (98)
T —Ti—1
/ TL _ pTi—1
> A(r)No (e er-1) (99)
T —Ti—1
=q. (100)

Thus, claim c¢) holds.
For Avi(r) > Ny (r), if pr.(Z*) = pr(Z*") = P, according
to (95), we have

L 0o
S [ HO =R @b =0 don
Since pi*(s) > 0, we have
L 0o
> [ re0- e ds =0 o
1=1"0

For s € [q],q), I}(s) = 1 and I}(s) = 0. Therefore, (102)
implies

f(s) =0,
Consequently, claim d) also holds. O

E[q;7ql)7 l:17L (103)

D. Proof of Lemma 2

Note that % decreases in x for z > 0.
Defining = [log (wi) — log (wi—1)], (70) can be written as

et —1
Q= wi—_1. (104)
Since z strictly increases in wj, the lemma follows. O
E. Proof of Lemma 3
_ _ 1
From (48),let g(a1) = wi-1 = T— L.
I—1
d 1 1
Z(ql) f(ql) [/ <___) f(S) ds| >0
q1 |:fQ /S d8i| Q0,1 \S
(105)

since F(s) strictly increases in s. Therefore, w;_; strictly in-
creases in ¢;. O

E. Proof of Theorem 4

An optimum (r*, ¢*) policy with L — 1 distinct nonzero g;
can be expanded to an (7, q) policy with L distinct nonzero ¢
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by splitting any of its L intervals (including zero-power interval
[0, ¢7)) into two intervals.

If the first interval [0, ¢} ) is split, without changing p(s), the
new (7, q) policy will have the same ART as the original.

On the other hand, we can split any intervals of the original
(r*,q*) policy with nonzero power and re-allocate power ac-
cording to (58). The newly split intervals will increase their con-
tribution to ART while the contribution from the other intervals
stays the same. Therefore, the new (r,q) policy has a higher
ART than that one corresponding to the original (r*, g*) policy.
We have

Cr > Rp(r,q) > Rp—1(r*,q") = Cp_1. (1006)

O
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