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Abstract—We analyze the benefits of an automatic repeat- based on Raptor rateless codes [8] and maximum-likelihood
request (ARQ) scheme employed in doped belief-propagation decoding is given in [9].
decoding for increasing the throughput of fountain encoded data This scheme can also be viewed as a doping scheme

transmissions. The proposed doping mechanism selects doping h h led ina d di is d d
symbols randomly from the set of input symbols contributing to where the stalled message passing decoding process Is dope

degree-two output symbols. Here an output symbol is the encode With that input symbol which will enable its continuation.
symbol whose code-graph links to input symbols decoded thus Doping for improved decoding was first described in [10]
far have been severed. This doping approach always ensuresas a technique that enables iterative decoding of serially
releasing of at least one output symbol, thus increasing the concatenated codes. [1] reports a two-stage scheme where

number of degree-one output symbols (the ripple). Using a . . . L
random walk analysis, we study the belief propagation decoding a code is sent in the first stage, while in the second stage

with degree-two random doping for a fountain code with symbols the encoder maintains a dialog with belief-propagatiBR)(
drawn from an Ideal Soliton distribution. We show that the decoder, enhanced by a doping algorithm. In [4], we provide
decoding process is a renewal process whereas the process tstar nymerical results which illustrate how doped BP decoding of

all over afresh after each doping. The approximateinterdoping ¢ tain codes can be employed to reduce the delay of data
process analysis revolves around a random walk model for the L .
collection in a wireless sensor network.

ripple size. We model the sequence of the ripple size increments
(due to doping and/or decoding) as an iid sequence of shifted In this work we analyze the benefits of doped BP decoding
and truncated Poisson random variables. This model furnishes for increasing the throughput of Fountain encoded data. In
ﬁj r?;‘;?riﬁg?; ‘t)h”e tg% SU{L‘POGJ ﬁf Jf%‘g;?dar?;’lpgg ?X/?ch)lsso al}if;% our analysis, we use Fountain codes based on an Ideal Soliton
that the Ideél Soliton significa?wtli)/ outperforms){he Robust Soliton dlstrlb_utlon of code Sy”?bo' degrees, and_ also illustrate th.
distribution in our ARQ-doping scheme. benefits of doped decoding for Robust Soliton based Fountain
codes, such as LT codes, using simulations. The proposed

doping mechanism selects doping symbols randomly from

I. INTRODUCTION the set of input symbols contributing to degree-two output

§I¥mbols. Here an output symbol is the encoded symbol whose

The classical feedback protocols in most communicati de araph links to all decoded inbut symbols have been
systems are the automatic repeat request (ARQ) schenfgse drap s lo all decode put Symbols have bee

Here, the receiving end examines packets and request exered. This doping approac_h always ensures releasing of a
retransmission if an error is detected. The more efficie ast one output symbol, thus increasing the number of degre

incremental redundancy (IR) hybrid (H)ARQ protocol opesat one output symbols (the ripple). We refer to the set of such

as follows. At the transmitter, the information is encodgdab 'rnFr’]l:jt Srr): mbflstﬁsnth?leag;gbsﬁt% rSIrrnnltJLatI?nI res:Jr:ts Shtow tr?artm
"mother” code. Initially, only a subset of codeword symbisls ea ua?l V\S/;F;sotheo ?e:)é sglec?ion wi\e?ee'ilse Sg fneborl)e tgse:
transmitted. If the decoding is not successful, the tratienmis quaily 9 y y P

requested to send additional (pre-determined) codeward s n t.heflartge_st nll.meber of deg(;ee-twoloutput symbolst '?. mibcf:t
bols through a 1-bit feedback. The second decoding atte s fact simplifies our random-walfRW) representation o

is based on the new symbols combined with those previoui ripple evqlutiqn Process. The RW—baged model represent
received, and so on. The standard measure of ARQ proto X key co_ntrlbutlon .Of. this paper. It furnishes th? final tcc_>s

efficiency is throughputy, defined as the average numbe nalysis with a prediction on the number of required doping
of information bits decoded successfully at the receivar paymbOIS'

transmitted encoded bit. Here we consider a communica-

tion scheme wheré symbols/packets are encoded using a Il. SYSTEM MODEL AND PROBLEM FORMULATION

Fountain-type rateless code and@(k)-bit feedback requests We consider a data source that produdesinique input
transmission of those symbols/packets which will restaet tS mbols, where each symbol is a binary vector of length
stalled message-passing decoding process. A fountain c%¥e '

mbin random numbedefr f inout symbols into an So referred to as packet. Let the encoder linearly combine
co €s a random nu efiree) of input symbols into a random subsets of input symbols into coded symbols of a

e_ncoded symb(_)l in_dependently for each_ symbol and based q Ven degree distribution(d). Hence, a random code from
given degree distributiofu(d). Hence, this feedback prOtO.C.OIth? ensemble of Fountain codes with degree distributitf)
can be viewed as an IR-HARQ scheme where the add|t|or‘1jland its generating polynomia(z) — Zk 0l where
degree-one code symbol sent by the transmitter is detedmi 9 9 poy — Lad=1°"d

: ; = w(d), is produced. We assume a BP decoder that starts

by the decoding process. An analysis of an IR-HARQ SChena'gcoding once it collects > k coded symbols. We allow the
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the associated code symbol. Input symbols covered by the
code symbols with degree one constitute the ripple. In the
first step of the decoding process, one input symbol in the
ripple is processed by being removed from all code symbols
which have it as a neighbor in the associated gr@ph If the
index of the input symbol isn, this effectively removes the
mth row of the matrix, thus creating the new decoding matrix
- e S1 = [84j](5_ 1) - We refer to the code symbols modified by
the removal of the processed input symbol as output symbols.
Fig-_dl- In thedgrapra, rle?tresdenting the Steltjlleld decoding gdr)ocess 6:} ’ﬂme Output symbols of degree one may cover new input symbols
Incidence malr) connected to righthand-side nodes ofaieguo (ouput 2nd thus modify the ripple. Hence, the distribution of outpu
nodes corresponding to columns of weight two, representedlank nodes, Symbol degrees changes b (z). At each subsequent step
and pointed to by black arrows), and then uniformly at randetecs one of the decoding process one input symbol in the ripple is
s ot ymbel o urlock e cecoder T et o ol weseclng. processed by being removed from all output symbols which
have it as a neighbor and all such output symbols that
subsequently have exactly one remaining neighbor aresetea
of doped symbols needed to complete the decodingt ofto cover their remaining neighbor. Consequently, the stippo
symbols bes,;. We are interested in the total cost of decodingf the output symbol degrees aftémput symbols have been
s = sq + sq(q+logk) (in bits). We compare it with the processed isl € {1,---,k— ¢}, and the resulting output
expected cost for decoding of LT codes, expressed in numislegree distribution is denoted ().
of coded symbols needed to decddénput symbols up to a
small error constani, which is of orderO(k 4 vk log? k/4). _
The expected number of doped symbajsis affected by the Now, let us assume that mput symbols _to be processed are
choice ofQ(x) and by the criterion for selecting doped inpuf'©t taken from the ripple, but instead provided to the decode
symbols. Choosing a good distributiél{z) is not easy, as it 85 side information. We refer to th!s mechqnlsm of processin
needs to satisfy many contradicting requirements. Higjree iNPut symbols obtained as side information @sping. We
code symbols are good for decreasing the probability of uncgnodel thefth step of the decoding/doping process by selecting
ered packets. However, other requirements are more imort@ "W uniformly at random from the set ¢k — ¢) rows in
for proper behavior of the belief propagation decoding pss¢ the current decoding matri®, = [si;],_,),,. and removing
especially the right amount of degree one and degree two cdgéom the matrix. Thus the degrees of the output symbols
symbols. We limit the set of candidate degree distributio®€ changing in the same manner as with the regular decoding
Q(z) to Robust Soliton, being the best known practical soli"0Cess, except for the ripple size, which does not decrease
tion for Fountain codes, as argued in [5], and Ideal Solitd¥ ©one with each processed input symbol.
distribution, the best theoretical (asymptotic) solutjbh [7].

It is well known that Ideal Soliton’s expected behavior is Wi t th del of h a dooi decodi
perfect for Fountain codes decoded by an iterative decoder, € now present the model of such a doping (decoding)
ess through the column degree distribution at eachddeco

but the large variance may cause the absence of degree-.%rr? oD d. After q valentl hen th
symbols the ripple) in the collected sample of code symbols',ng Oping round. After rounds or, equivaiently, when there
k— ¢ rows in the decoding matrix, the number of ones in a

thus stalling the BP process. This is the reason why Rob® . - :
Soliton is used as a choice degree distribution for rateleggumn IS denoted_ o ¢ The probability that the column is
f degreed, when its length isc —¢—1, ¢ € {1,--- |k — 2},

erasure codes. For Robust Soliton, the probability of ong defined iterativel
degree symbols is overdesigned in order to prevent stalliﬁﬁ elined rteratively
However, redistribution of the probability mass from highe p (4, , ; =d) =

degrees to degree-one increases the likelihood of unadvere d d+1

packets. =PAyr=d)|1——— | +P(Ap_r=d+1)——

. . o . k—1¢ k—¢
With respect to doping criterion, we introduce a strategy 1

dubbeddegree-2 doping. Let us denote the graph describing

the decoding (BP) process at timeby G¢. To unlock the for0<d<k—¢, andP (Ay_o—1 =k —1)=0.

belief propagation process stalled at time (iteration}the

degree-2 doping strategy selects the doping symbol from the ) o

set of input symbols connected to degree-two output symboIsLet the starting distribution of the column degrees (for the

in graph G, as illustrated in Figure 1. decoding matrixSo = [sy;],.,) be Ideal Soliton, denoted by
p(d),
I1l. DOPEDBELIEF PROPAGATIONDECODING 1 d=1
According to our model, code symbols are linear com- p(d) =4 * 1 5 )
aan d=2 .k

binations of k£ unique input symbols, indexed by the set
{1,---,k}. We start with a decoding matri®, = [s;;],,,, By construction, forl = 0, P(Ax =d) = p(d), which,
where code symbols are represented by the columns, so together with (1), completely defines the dynamics of the
s;; = 1 iff the jth code symbol contains thih input symbol. doping process when the Fountain code is based on Ideal
Number of ones in the column corresponds to the degree Qdliton. After rearanging and canceling appropriate terfiors



Modified distribution without decoded symbols and the ripple(degree 0 and 1) a bound on the number of SymbO|S decoded between two
o4 ‘ ‘ ‘ ‘ ‘ dopings, herein referred to asterdoping yield. With respect
03¢ 1 to interdoping yield, we treat the ARQ-enhanced BP procsss a
02l i a renewal process, where the process starts all over afthr ea
doping. The time at which th&h doping occurs (equivalently,
decoding stalls for théth time) is a random variabl&;, and

0.1 B

% 0 0 2 100 120 the interdqping yieI(_iTl- —T;_1 is an 1ID random variabl_éf.
_ ) Our goal is to obtain the expected value ¥6fby modeling
Ideal Soliton for 845 input symbols (1000-"decoded" symbols) h B L. .
08 ; : : : ; the ripple evolution within this renewal process.
o6k i We assume that the number of collected encoded symbols

is s = k. Let us now assume that at tinfethe number of
decoded symbols equals and the number of (unreleased)
0.2y 1 output symbols isn = k — ¢, if the expected size of the
ol . ‘ ‘ ‘ ‘ ripple is much smaller than the number of unreleased symbols
The next decoding iteration processes a random symbol of
degree-one from the ripple. As the encoded symbols are
Fig. 2. Density Evolution of Ideal Soliton distribution dt@uniform doping. Made by mdependently combining random input Symb0|5, we
First graph is the distribution of the output symbols afterdecodings, for can assume that the input symbol covered by this degree-
k = 1000, second is the Ideal Soliton with support §&t - - - , (1000 —m)}  gne symbol is selected uniformly at random from the set of
as if we are starting with the matrix of the same size as the dapestdx. . .
undecoded symbols (again, we ignore the fact that not all
ripple symbols are unique). According to the presentediraatr
_ _ evolution model of the decoding process, this symbol defines
the random doping case we obtain the row in the decoding matrig, in which the decoder looks
k=t (H, —H ) d=1 for non-zero elements contributing to degree-two columns,
PlAr = d) = kﬁz K kot ’ in order to identify the released output symbols. Recalt tha
(Ap—e = d) = § *F-p(d) d=2, k=Lt the unreleased output symbol degree distribution polyabmi
0 d>Fk—{, at time ¢ is QU (z) = 3. Qqx?, whered = 2,k — ¢,
(3) andQ,, = w¥(d). Releasing output symbols by processing
whereHy, is the kth harmonic number, ané (A4;,_, =0) = & ripple symbol is equivalent to performing, = n;,
1— PlAr s —d) L — k=t]oe & independent Bernoulli experiments with probability of sess
Zd;ﬁo ( k—£ )N % 7 108 - . . . .
o 2/n, assuming that the ripple size is much smaller than

Note that there are approximately as many released cod@

symbols as there are decoded input symbols. As the rafity Number of output symbols.

of unreleased symbols can be approximated Wi, the ~ Hence, the number of released symbols is modeled by
probability distributionw?(d) of the unreleased output node? discrete random variablé\ with Binomial distribution
degrees at any timé remains Ideal Soliton. For classical BPB (7{22,¢,2/n) , which for largen can be approximated with
decoding case, the evolution is the same for unreleaseditoutp Poisson distribution of intensiBA2, ,

0.4r B

ymbols. Henee PrA =7} = (F)(p)" (1= p)™
u — — — o e — n " r ng—1r
wi(d) = =P (Ap—g=d) =p(d) ford=2,---k (é.) > (:f (p2)" (1 —p2)
4 !
20 4)"
~ ( 2)8) 6_292‘[774 = 0) s, N, (5)

where we first applied the Stirling approximation to the

A. Random Walk Modél Binomial coefficient and, also, assumed thatis much larger
There exist comprehensive and thorough analytical modefgn .

for the ripple evolution, characterizing the decoding of LT according to (4), the number of degree-two output symbols

codes [2], [3]. However, the comprehensive nature of thog§ |deal Soliton based Fountain code is expected to be

modgls makes them very co.mple>.<. For descr.ibing thg dy;, — p(2)n = n/2, for any decoding iteratiod. Hence, the

namics of a doped decoder, it suffices to consider a simplgimper of released symbols at any decoding step is modeled

model, which attempts to capture the evolution of the ripplg, random variable\,, with a (truncated) Poisson distribution
for Ideal Soliton in terms of the expected number of decodeq intensity one (, ~ (1) =n(r),r=0,1,---)

symbols before the ripple becomes empty. Figure 2 illussrat

how the Idea] Solitqn distribution maintaips its shape with n(r) =Pr{A, =r} = [QP(?)]T{%@)
decoding/doping. This fact is our main motivator for selegt 717‘
Ideal Soliton Fountain codes for our ARQ-doping scheme. _ ¢ ,—0... n/2. (6)

For simplicity, our model ignores the influence of the ripple 7

size to the decoding process. In particular, we ignore the fd-or each decoding iteration, one symbol is taken from the
that the larger the ripple size is, the higher is the prolitgbil ripple andA, symbols are added, so that the increments of the
that a released symbol is not innovative, and hence dagsple process can be described by IID random variables
not increase the ripple size. Our model aims to provideith the probability distribution described by the generat



p0|yn0mla| I(I) = Z n(d)xdil, Whered = O, Y n/2 Overhead for IS (Ideal Soliton with degree-2 doping) and L (LT emulation)

60

—— LT overhead bound
Let us now describe a doping iteration. If the numbe N I emead perceage
of (unreleased) output symbols at tiflé = ¢; is n, the o 15 doping bound
number of degree-two output symbols is again expected ol —
be ny = p(2)n = n/2. Degree-two doping selects uniformly . T
at random a row in the decoding matr$ ; that has one a0 ° D
or more non-zero elements in columns of degree two. Tl
number of released output symbols is equal to the number 2or
non-zero elements in the selected row, contributing to eksgr
two columns. As the encoded symbols are made by indept
dently combining random input symbols, this is equivalent 1 o = - =
randomly selecting a column of degree two to be released, ¢ K number of symbols to decode
restarting the ripple with any of its two input symbols. Thic
ldesgiise-ltjvflowcl:gutrziﬁieioglnaovmvzsg): t:iitc;;agsisltsa:suur;t;eé lglfg 3. O_verhead (dopi_ng) percentage: we deﬁnas_the number_ of symbols
’ collected in both collection phases, and the collectiontowad ratio ags; —
to be large, this can be ignored. Hence, the doping ripplg/k, which allows us to compare the overhead for the LT decoding of

incremethD is a random variable described H?(:L) _ original symbols and I_S, the degrge—two doped_ be'lief?prapa_g decoding
i of k coded symbols with Ideal Soliton degree distribution. Hinale show

>on(d)zt, WhiCh is eqUiYalem FO diStri_bUtiom(x)7 Shift(:_"d the analytical bound obtained for IS doping percentagecas (16)
by two to the right. The ripple size at timee [t;_1, t;] is

described withS, ; + 2 whereS; ; = E;ZtH X; is a partial
sum of IID random variables(;, with probability distribution
I(x). Hence,S;; is a zero mean random walk. p=[0010---0]P[100---0]". (12)

The expected interdoping y|e|d is quantified by the expectéiter a series of matrix tranSformationS, we obtain thedeH
time it takes for the ripple random walk, ; + 2 to become iNg recursive expression for the probability of stoppingrae
zero. Using random walk terminology, we are interested it 1
the statistics of the random-walk stopping time. The stogpi t—1
time is the time at which the decoding process stalls (cagntiPr{t + 1} = 1(0) <p(t)(t —1) =Y Prit—i}p" 1+ i)) ,
from the previous doping, where the first decoding round i=1
corresponds to théth doping which occurred aly = 0). (13)

Hence, thei-th stopping time (doping) is defined as wherep(®) (d) denotes Poisson distribution of intensityeval-
T, =min{t; : S,;, +2 < 0}. ) uated atd. We calculate the expected value of the interdoping

yield Y as
The random walkS, ; does not lend itself nicely to a stopping-

time analysis based on the Wald Identity, having the zeramea E[Y]~ ) tPr{t}. (14)

and a non-symmetric threshold at zero. Hence, we CO”S'%\%ere the approximation is accurate to the extent that the

its (I;/Iarkov I(Izhain model. Here, ee;chh possibkle valuaem?f Model in (5) is accurate and that the stopping time prokigbili
random wa represents__a state o the Markov CHaC) computation in (13) is independent of the change in the
described by the probability transition matdx Statev,v € decoding iteration count

{1,---,[n/2]} corresponds to the ripple of size— 1. The — pacy that, due to doping, the decoding process is a renewal
state 1 is the trapping state, with the transition prObab'“térocess, and thus, the total duratibn, of the decoding pro-
P11 = 1 modeling the StOPPed randorrll'\'/valk. Hence, bas %ss up tohth doping is the partial sum df epochs, modeled
on (6), we have state transition probabilities by interdoping yields (IID random variablé§ — T, — T}_,).
Py(vib) =1(1+b), Hefpce,D? = 2%1 Yi.d Th(ij expected nlilmber Or]: dopings
P 1 B sufficient for complete decoding is equivalent to the stogpi
forv=2,-,n/2l,b==1-,[n/2[ —v (8) time of the random walkD;,, where the stopping threshold is

+

+
2500 3000

state, while in the stefy is modeled by the following equation

Pu=1 ©) k. The total number od dopings is the stopping time random
P.w =0, otherwise (10) variable D defined as
resulting in a transition probability matrix of the folloag D =min{h: D, > k}. (15)
form
Hence, since the interdoping yield is a non-zero-mean
1 0 random variable, the Wald Equality [6] implies that the mean
n0) n() n2) - nlm-1) stopping time is
P=1|0 70 nd - nim-2) . (11)
E[D]=k/E[Y]. (16)
0 0 - nO0) @) |, ..

The start of the decoding process is modeled by the MC beiRlg Cost Comparison
in the initial statev = 3 (equivalent to the ripple of size two). Our analysis is based on the Ideal Soliton for tractability
Based on that, the probability of transitioning into theppilng reasons. However, the simulation results show that this dis
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Fig. 4. Doping percentage with Ideal Soliton degree distidn vs Robust
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IV. CONCLUSION

In this work, we present a BP decoding scheme for Fountain
codes that leverages some nice properties of Ideal Soliton
distribution by employing an ARQ mechanism to dope the
decoding process whenever it gets stalled. We introduce an
approximate random walk model of the BP decoding ripple
evolution process, and study the throughput improvements
over the classical BP decoder. The doping bound based on the
random walk stopping time analysis gives a close prediction
of a set of simulation results for a fountain code based on
an ldeal Soliton distribution. The elegant form of our ramdo
walk stopping time result that avoids matrix multiplicatjas a
contribution by itself, as it streamlines numerical caftidns
which is particularly important for large number of inpunsy
bols k. Ideal Soliton distribution significantly outperforms the
Robust Soliton employed with LT codes when employed with
the proposed random two-degree doping ARQ mechanism.

There may be other benefits of the proposed decoding
scheme. An application of doped belief-propagation dewpdi
with ARQ to network-coded Fountain codes is described in
[4]. This application aims to achieve minimum-delay data
collection from a specific wireless sensor network, dubtied
cular squad network, and offers an analysis of the impact the
coded symbol degree distribution and the doping mechanism
have on the collection delay.

Our future work will focus on extending the model by
dropping the assumption on the uniqueness of ripple symbols
and including the effects of the decoding/doping iteration
count. Apart from that, we plan to replace the assumption

Fig. 5. Cost Comparison (in overhead per bit) of Ideal Soltered Fountain that the number of initially transmitted (before dopingded

decoding with ARQ and doping versus the emulated cost of LTesptbr

q € 1,16,256 bits andd = 0.01. The overhead plotted is the actual cost
s¢ decreased byk, which is the minimum cost needed for decoding, the

divided by k.

tribution is a better choice for an ARQ-enhanced decod .
than the Robust Soliton, and that it indeed provides the
expected cost savings in combination with ARQ. Figure 33

illustrates the dramatic cost overhe&gl — k)/k reduction

when employing doping with an Ideal Soliton distribution

relative to the overhead of Robust Soliton encoding without
k. Figure 4 demonstrates that [5
Robust Soliton with doping performs markedly worse tharjg)

doping. Note that herg =

Ideal Soliton encoding. And, in particular, it illustratésat

Ideal Soliton with doping demonstrates a very low variance”]

which is surprisingly different from the results withoutpdiog.

For the range of; values presented in Figure 3, and Ideal

Soliton based codes, the results obtained analyticalkyut

symbols iss = k, with a more general assumption that

$=k(149), where0 < 4§ << 1.
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