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ARQ with Doped Fountain Decoding
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Abstract—We analyze the benefits of an automatic repeat-
request (ARQ) scheme employed in doped belief-propagation
decoding for increasing the throughput of fountain encoded data
transmissions. The proposed doping mechanism selects doping
symbols randomly from the set of input symbols contributing to
degree-two output symbols. Here an output symbol is the encoded
symbol whose code-graph links to input symbols decoded thus
far have been severed. This doping approach always ensures
releasing of at least one output symbol, thus increasing the
number of degree-one output symbols (the ripple). Using a
random walk analysis, we study the belief propagation decoding
with degree-two random doping for a fountain code with symbols
drawn from an Ideal Soliton distribution. We show that the
decoding process is a renewal process whereas the process starts
all over afresh after each doping. The approximateinterdoping
process analysis revolves around a random walk model for the
ripple size. We model the sequence of the ripple size increments
(due to doping and/or decoding) as an iid sequence of shifted
and truncated Poisson random variables. This model furnishes
a prediction on the number of required doping symbols and,
furthermore, the ARQ throughput cost analysis. We also find
that the Ideal Soliton significantly outperforms the Robust Soliton
distribution in our ARQ-doping scheme.

I. I NTRODUCTION

The classical feedback protocols in most communication
systems are the automatic repeat request (ARQ) schemes.
Here, the receiving end examines packets and requests a
retransmission if an error is detected. The more efficient
incremental redundancy (IR) hybrid (H)ARQ protocol operates
as follows. At the transmitter, the information is encoded by a
”mother” code. Initially, only a subset of codeword symbolsis
transmitted. If the decoding is not successful, the transmitter is
requested to send additional (pre-determined) codeword sym-
bols through a 1-bit feedback. The second decoding attempt
is based on the new symbols combined with those previously
received, and so on. The standard measure of ARQ protocol
efficiency is throughputχ, defined as the average number
of information bits decoded successfully at the receiver per
transmitted encoded bit. Here we consider a communica-
tion scheme wherek symbols/packets are encoded using a
Fountain-type rateless code and a (log k)-bit feedback requests
transmission of those symbols/packets which will restart the
stalled message-passing decoding process. A fountain code
combines a random number (degree) of input symbols into an
encoded symbol independently for each symbol and based on a
given degree distributionΩ(d). Hence, this feedback protocol
can be viewed as an IR-HARQ scheme where the additional
degree-one code symbol sent by the transmitter is determined
by the decoding process. An analysis of an IR-HARQ scheme
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based on Raptor rateless codes [8] and maximum-likelihood
decoding is given in [9].

This scheme can also be viewed as a doping scheme,
where the stalled message passing decoding process is doped
with that input symbol which will enable its continuation.
Doping for improved decoding was first described in [10]
as a technique that enables iterative decoding of serially
concatenated codes. [1] reports a two-stage scheme where
a code is sent in the first stage, while in the second stage
the encoder maintains a dialog with belief-propagation (BP)
decoder, enhanced by a doping algorithm. In [4], we provide
numerical results which illustrate how doped BP decoding of
Fountain codes can be employed to reduce the delay of data
collection in a wireless sensor network.

In this work we analyze the benefits of doped BP decoding
for increasing the throughput of Fountain encoded data. In
our analysis, we use Fountain codes based on an Ideal Soliton
distribution of code symbol degrees, and also illustrate the
benefits of doped decoding for Robust Soliton based Fountain
codes, such as LT codes, using simulations. The proposed
doping mechanism selects doping symbols randomly from
the set of input symbols contributing to degree-two output
symbols. Here an output symbol is the encoded symbol whose
code graph links to all decoded input symbols have been
severed. This doping approach always ensures releasing of at
least one output symbol, thus increasing the number of degree-
one output symbols (the ripple). We refer to the set of such
input symbols as thereleasing set. Simulation results show that
random selection of a symbol from the releasing set performs
equally well as the greedy selection where the symbol present
in the largest number of degree-two output symbols is selected.
This fact simplifies our random-walk(RW) representation of
the ripple evolution process. The RW-based model represents
the key contribution of this paper. It furnishes the final cost
analysis with a prediction on the number of required doping
symbols.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a data source that producesk unique input
symbols, where each symbol is a binary vector of lengthq,
also referred to as packet. Let the encoder linearly combine
random subsets of input symbols into coded symbols of a
given degree distributionω(d). Hence, a random code from
the ensemble of Fountain codes with degree distributionω(d)
and its generating polynomialΩ(x) =

∑k
d=1 Ωdx

d, where
Ωd = ω(d), is produced. We assume a BP decoder that starts
decoding once it collectss ≥ k coded symbols. We allow the
decoder to request an input symbol from the source at any
time the decoding process stalls. The cost of requesting the
input symbol islog k. We refer to such a decoding process
as belief propagation with ARQ. We refer to the requested
input symbols asdoped symbols. Let the expected number
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Fig. 1. In the graphGt, representing the stalled decoding process at timet,
we identify nodes on the left side (input symbols corresponding to rows of the
incidence matrix) connected to right-hand-side nodes of degree two (output
nodes corresponding to columns of weight two, represented byblack nodes,
and pointed to by black arrows), and then uniformly at random select one
such input symbol to unlock the decoder. The set of symbols we are selecting
from is represented by red nodes, indicated by red arrows.

of doped symbols needed to complete the decoding ofk
symbols besd. We are interested in the total cost of decoding
st = sq + sd (q + log k) (in bits). We compare it with the
expected cost for decoding of LT codes, expressed in number
of coded symbols needed to decodek input symbols up to a
small error constantδ, which is of orderO(k +

√
k log2 k/δ).

The expected number of doped symbolssd is affected by the
choice ofΩ(x) and by the criterion for selecting doped input
symbols. Choosing a good distributionΩ(x) is not easy, as it
needs to satisfy many contradicting requirements. High-degree
code symbols are good for decreasing the probability of uncov-
ered packets. However, other requirements are more important
for proper behavior of the belief propagation decoding process,
especially the right amount of degree one and degree two code
symbols. We limit the set of candidate degree distributions
Ω(x) to Robust Soliton, being the best known practical solu-
tion for Fountain codes, as argued in [5], and Ideal Soliton
distribution, the best theoretical (asymptotic) solution[5], [7].
It is well known that Ideal Soliton’s expected behavior is
perfect for Fountain codes decoded by an iterative decoder,
but the large variance may cause the absence of degree-one
symbols (the ripple) in the collected sample of code symbols,
thus stalling the BP process. This is the reason why Robust
Soliton is used as a choice degree distribution for rateless
erasure codes. For Robust Soliton, the probability of one-
degree symbols is overdesigned in order to prevent stalling.
However, redistribution of the probability mass from higher
degrees to degree-one increases the likelihood of uncovered
packets.

With respect to doping criterion, we introduce a strategy
dubbeddegree-2 doping. Let us denote the graph describing
the decoding (BP) process at timet by Gt. To unlock the
belief propagation process stalled at time (iteration)t, the
degree-2 doping strategy selects the doping symbol from the
set of input symbols connected to degree-two output symbols
in graphGt, as illustrated in Figure 1.

III. D OPEDBELIEF PROPAGATION DECODING

According to our model, code symbols are linear com-
binations of k unique input symbols, indexed by the set
{1, · · · , k}. We start with a decoding matrixS0 = [sij ]k×k

,
where code symbols are represented by the columns, so that
sij = 1 iff the jth code symbol contains theith input symbol.
Number of ones in the column corresponds to the degree of

the associated code symbol. Input symbols covered by the
code symbols with degree one constitute the ripple. In the
first step of the decoding process, one input symbol in the
ripple is processed by being removed from all code symbols
which have it as a neighbor in the associated graphG0. If the
index of the input symbol ism, this effectively removes the
mth row of the matrix, thus creating the new decoding matrix
S1 = [sij ](k−1)×k

. We refer to the code symbols modified by
the removal of the processed input symbol as output symbols.
Output symbols of degree one may cover new input symbols
and thus modify the ripple. Hence, the distribution of output
symbol degrees changes toΩ1(x). At each subsequent step
of the decoding process one input symbol in the ripple is
processed by being removed from all output symbols which
have it as a neighbor and all such output symbols that
subsequently have exactly one remaining neighbor are released
to cover their remaining neighbor. Consequently, the support
of the output symbol degrees afterℓ input symbols have been
processed isd ∈ {1, · · · , k − ℓ} , and the resulting output
degree distribution is denoted byΩℓ(x).

Now, let us assume that input symbols to be processed are
not taken from the ripple, but instead provided to the decoder
as side information. We refer to this mechanism of processing
input symbols obtained as side information asdoping. We
model theℓth step of the decoding/doping process by selecting
a row uniformly at random from the set of(k − ℓ) rows in
the current decoding matrixSℓ = [sij ](k−ℓ)×k

, and removing
it from the matrix. Thus the degrees of the output symbols
are changing in the same manner as with the regular decoding
process, except for the ripple size, which does not decrease
by one with each processed input symbol.

We now present the model of such a doping (decoding)
process through the column degree distribution at each decod-
ing/doping round. Afterℓ rounds or, equivalently, when there
arek−ℓ rows in the decoding matrix, the number of ones in a
column is denoted byAk−ℓ. The probability that the column is
of degreed, when its length isk− ℓ− 1, ℓ ∈ {1, · · · , k − 2},
is defined iteratively

P (Ak−ℓ−1 = d) =

= P (Ak−ℓ = d)

(

1 − d

k − ℓ

)

+ P (Ak−ℓ = d + 1)
d + 1

k − ℓ
(1)

for 0 ≤ d ≤ k − ℓ, andP (Ak−ℓ−1 = k − ℓ) = 0.

Let the starting distribution of the column degrees (for the
decoding matrixS0 = [sij ]k×k

) be Ideal Soliton, denoted by
ρ(d),

ρ(d) =

{

1
k
, d = 1,
1

d(d−1) d = 2, · · · , k.
(2)

By construction, forl = 0, P (Ak = d) = ρ(d), which,
together with (1), completely defines the dynamics of the
doping process when the Fountain code is based on Ideal
Soliton. After rearanging and canceling appropriate terms, for
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Fig. 2. Density Evolution of Ideal Soliton distribution dueto uniform doping.
First graph is the distribution of the output symbols afterm decodings, for
k = 1000, second is the Ideal Soliton with support set{1, · · · , (1000 − m)}
as if we are starting with the matrix of the same size as the dopedmatrix.

the random doping case we obtain

P (Ak−ℓ = d) =











k−ℓ
k

(Hk − Hk−ℓ−1) d = 1,
k−ℓ

k
ρ(d) d = 2, · · · , k − ℓ,

0 d > k − ℓ,

(3)

whereHk is thekth harmonic number, andP (Ak−ℓ = 0) =
1 −∑d6=0 P (Ak−ℓ = d) ≈ ℓ

k
− k−ℓ

k
log k

k−ℓ
.

Note that there are approximately as many released coded
symbols as there are decoded input symbols. As the ratio
of unreleased symbols can be approximated withk−ℓ

k
, the

probability distributionωu
ℓ (d) of the unreleased output node

degrees at any timeℓ remains Ideal Soliton. For classical BP
decoding case, the evolution is the same for unreleased output
symbols. Hence,

ωu
ℓ (d) =

k

k − ℓ
P (Ak−ℓ = d) = ρ(d) for d = 2, · · · , k − ℓ.

(4)

A. Random Walk Model

There exist comprehensive and thorough analytical models
for the ripple evolution, characterizing the decoding of LT
codes [2], [3]. However, the comprehensive nature of those
models makes them very complex. For describing the dy-
namics of a doped decoder, it suffices to consider a simpler
model, which attempts to capture the evolution of the ripple
for Ideal Soliton in terms of the expected number of decoded
symbols before the ripple becomes empty. Figure 2 illustrates
how the Ideal Soliton distribution maintains its shape with
decoding/doping. This fact is our main motivator for selecting
Ideal Soliton Fountain codes for our ARQ-doping scheme.
For simplicity, our model ignores the influence of the ripple
size to the decoding process. In particular, we ignore the fact
that the larger the ripple size is, the higher is the probability
that a released symbol is not innovative, and hence does
not increase the ripple size. Our model aims to provide

a bound on the number of symbols decoded between two
dopings, herein referred to asinterdoping yield. With respect
to interdoping yield, we treat the ARQ-enhanced BP process as
a renewal process, where the process starts all over after each
doping. The time at which theith doping occurs (equivalently,
decoding stalls for theith time) is a random variableTi, and
the interdoping yieldTi − Ti−1 is an IID random variableY.
Our goal is to obtain the expected value ofY by modeling
the ripple evolution within this renewal process.

We assume that the number of collected encoded symbols
is s = k. Let us now assume that at timeℓ the number of
decoded symbols equalsℓ, and the number of (unreleased)
output symbols isn = k − ℓ, if the expected size of the
ripple is much smaller than the number of unreleased symbols.
The next decoding iteration processes a random symbol of
degree-one from the ripple. As the encoded symbols are
made by independently combining random input symbols, we
can assume that the input symbol covered by this degree-
one symbol is selected uniformly at random from the set of
undecoded symbols (again, we ignore the fact that not all
ripple symbols are unique). According to the presented matrix-
evolution model of the decoding process, this symbol defines
the row in the decoding matrixSℓ in which the decoder looks
for non-zero elements contributing to degree-two columns,
in order to identify the released output symbols. Recall that
the unreleased output symbol degree distribution polynomial
at time ℓ is Ωu

ℓ (x) =
∑

Ωd,ℓx
d, where d = 2, · · · , k − ℓ,

and Ωd,ℓ = ωu
ℓ (d). Releasing output symbols by processing

a ripple symbol is equivalent to performingn2 = nΩ2,ℓ

independent Bernoulli experiments with probability of success
p2 = 2/n, assuming that the ripple size is much smaller than
the number of output symbols.

Hence, the number of released symbols is modeled by
a discrete random variable∆ with Binomial distribution
B (nΩ2,ℓ, 2/n) , which for largen can be approximated with
a Poisson distribution of intensity2Ω2,ℓ

Pr{∆ = r} = (
n2

r )(p2)
r (1 − p2)

n2−r

≥ (n2)
r

r!
(p2)

r (1 − p2)
n2−r

≈ (2Ω2,ℓ)
r

r!
e−2Ω2,ℓ , r = 0, · · · , n2, (5)

where we first applied the Stirling approximation to the
Binomial coefficient and, also, assumed thatn2 is much larger
thanr.

According to (4), the number of degree-two output symbols
for Ideal Soliton based Fountain code is expected to be
n2 = ρ(2)n = n/2, for any decoding iterationℓ. Hence, the
number of released symbols at any decoding step is modeled
by random variable∆ℓ, with a (truncated) Poisson distribution
of intensity one (∆ℓ ∼ ℘(1) ≡ η(r), r = 0, 1, · · · )

η(r) = Pr{∆ℓ = r} =
[2ρ(2)]r

r!
e−2ρ(2)

=
e−1

r!
, r = 0, · · · , n/2. (6)

For each decoding iteration, one symbol is taken from the
ripple and∆ℓ symbols are added, so that the increments of the
ripple process can be described by IID random variablesXℓ

with the probability distribution described by the generating
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polynomialI(x) =
∑

η(d)xd−1, whered = 0, · · · , n/2.

Let us now describe a doping iteration. If the number
of (unreleased) output symbols at timeTi = ti is n, the
number of degree-two output symbols is again expected to
be n2 = ρ(2)n = n/2. Degree-two doping selects uniformly
at random a row in the decoding matrixSt,i that has one
or more non-zero elements in columns of degree two. The
number of released output symbols is equal to the number of
non-zero elements in the selected row, contributing to degree-
two columns. As the encoded symbols are made by indepen-
dently combining random input symbols, this is equivalent to
randomly selecting a column of degree two to be released, and
restarting the ripple with any of its two input symbols. This
leaves us with the decoding matrix that has its number of
degree-two columnsn2 − 1. However, sincen2 is assumed
to be large, this can be ignored. Hence, the doping ripple
incrementXD

ti
is a random variable described byID(x) =

∑

η(d)xd+1, which is equivalent to distributionI(x), shifted
by two to the right. The ripple size at timet ∈ [ti−1, ti] is
described withSt,i + 2 whereSt,i =

∑t
j=ti−1

Xj is a partial
sum of IID random variablesXj , with probability distribution
I(x). Hence,St,i is a zero mean random walk.

The expected interdoping yield is quantified by the expected
time it takes for the ripple random walkSt,i + 2 to become
zero. Using random walk terminology, we are interested in
the statistics of the random-walk stopping time. The stopping
time is the time at which the decoding process stalls (counting
from the previous doping, where the first decoding round
corresponds to the0th doping which occurred atT0 = 0).
Hence, thei-th stopping time (doping)Ti is defined as

Ti = min {ti : St,i + 2 ≤ 0} . (7)

The random walkSt,i does not lend itself nicely to a stopping-
time analysis based on the Wald Identity, having the zero mean
and a non-symmetric threshold at zero. Hence, we consider
its Markov Chain model. Here, each possible value of the
random walk represents a state of the Markov Chain(MC)
described by the probability transition matrixP. Statev, v ∈
{1, · · · , ⌈n/2⌉} corresponds to the ripple of sizev − 1. The
state 1 is the trapping state, with the transition probability
P11 = 1 modeling the stopped random walk. Hence, based
on (6), we have state transition probabilities

Pv(v+b) = η(1 + b),

for v = 2, · · · , ⌈n/2⌉, b = −1, · · · , ⌈n/2⌉ − v (8)

P11 = 1 (9)

Pvw = 0, otherwise, (10)

resulting in a transition probability matrix of the following
form

P =













1 0 0 · · · 0
η(0) η(1) η(2) · · · η(m − 1)
0 η(0) η(1) · · · η(m − 2)
· · · · · · · · · · · · · · ·
0 0 · · · η(0) η(1)













n2×n2

. (11)

The start of the decoding process is modeled by the MC being
in the initial statev = 3 (equivalent to the ripple of size two).
Based on that, the probability of transitioning into the trapping
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Fig. 3. Overhead (doping) percentage: we definest as the number of symbols
collected in both collection phases, and the collection overhead ratio as(st −
k)/k, which allows us to compare the overhead for the LT decoding ofk
original symbols and IS, the degree-two doped belief-propagation decoding
of k coded symbols with Ideal Soliton degree distribution. Finally, we show
the analytical bound obtained for IS doping percentage, based on (16)

state, while in the stept, is modeled by the following equation

pt = [0 0 1 0 · · · 0]Pt [1 0 0 · · · 0]
T

. (12)

After a series of matrix transformations, we obtain the follow-
ing recursive expression for the probability of stopping attime
t + 1

Pr{t + 1} = η(0)

(

℘(t)(t − 1) −
t−1
∑

i=1

Pr{t − i}℘(i)(1 + i)

)

,

(13)

where℘(s)(d) denotes Poisson distribution of intensitys, eval-
uated atd. We calculate the expected value of the interdoping
yield Y as

E [Y ] ≈
∑

tPr{t}. (14)

where the approximation is accurate to the extent that the
model in (5) is accurate and that the stopping time probability
computation in (13) is independent of the change in the
decoding iteration countℓ.

Recall that, due to doping, the decoding process is a renewal
process, and thus, the total durationDh of the decoding pro-
cess up tohth doping is the partial sum ofh epochs, modeled
by interdoping yields (IID random variablesYi = Ti − Ti−1).
Hence, Dh =

∑h
i=1 Yi. The expected number of dopings

sufficient for complete decoding is equivalent to the stopping
time of the random walkDh, where the stopping threshold is
k. The total number od dopings is the stopping time random
variableD defined as

D = min {h : Dh ≥ k} . (15)

Hence, since the interdoping yieldY is a non-zero-mean
random variable, the Wald Equality [6] implies that the mean
stopping time is

E [D] = k/E [Y ] . (16)

B. Cost Comparison

Our analysis is based on the Ideal Soliton for tractability
reasons. However, the simulation results show that this dis-
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tribution is a better choice for an ARQ-enhanced decoder
than the Robust Soliton, and that it indeed provides the
expected cost savings in combination with ARQ. Figure 3
illustrates the dramatic cost overhead(st − k)/k reduction
when employing doping with an Ideal Soliton distribution
relative to the overhead of Robust Soliton encoding without
doping. Note that heres = k. Figure 4 demonstrates that
Robust Soliton with doping performs markedly worse than
Ideal Soliton encoding. And, in particular, it illustratesthat
Ideal Soliton with doping demonstrates a very low variance
which is surprisingly different from the results without doping.

For the range ofk values presented in Figure 3, and Ideal
Soliton based codes, the results obtained analytically through
(13), (14) and (16) with the expectation sum in (14) computed
up to n2 = k/2 (hence neglecting the decoding/coping count,
i.e., assumingk ≫ ℓ) are close to the ones obtained using
simulation results obtained without any approximations.

The total cost of decoding (in bits) fors = k is

st = qk +
k(q + log k)

E [Y ]
. (17)

In Figure 5, we present an alternative measure of cost, referred
to as the overhead per bit (OBP)ot, whereot = (st−qk)/qk.
This measure is more convenient to express throughput bene-
fits of doped decoding, asχ = 1/(1 + ot).

IV. CONCLUSION

In this work, we present a BP decoding scheme for Fountain
codes that leverages some nice properties of Ideal Soliton
distribution by employing an ARQ mechanism to dope the
decoding process whenever it gets stalled. We introduce an
approximate random walk model of the BP decoding ripple
evolution process, and study the throughput improvements
over the classical BP decoder. The doping bound based on the
random walk stopping time analysis gives a close prediction
of a set of simulation results for a fountain code based on
an Ideal Soliton distribution. The elegant form of our random
walk stopping time result that avoids matrix multiplication, is a
contribution by itself, as it streamlines numerical calculations
which is particularly important for large number of input sym-
bolsk. Ideal Soliton distribution significantly outperforms the
Robust Soliton employed with LT codes when employed with
the proposed random two-degree doping ARQ mechanism.

There may be other benefits of the proposed decoding
scheme. An application of doped belief-propagation decoding
with ARQ to network-coded Fountain codes is described in
[4]. This application aims to achieve minimum-delay data
collection from a specific wireless sensor network, dubbedcir-
cular squad network, and offers an analysis of the impact the
coded symbol degree distribution and the doping mechanism
have on the collection delay.

Our future work will focus on extending the model by
dropping the assumption on the uniqueness of ripple symbols
and including the effects of the decoding/doping iteration
count. Apart from that, we plan to replace the assumption
that the number of initially transmitted (before doping) coded
symbols is s = k, with a more general assumption that
s = k (1 + δ) , where0 < δ << 1.
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