Modeling the Coexistence of LTE and WiFi Heterogeneous Networks in Dense Deployment Scenarios

"Interference modeling: a step towards coordination"

Shweta Sagari With Ivan Seskar and Prof. Dipankar Raychaudhuri WINLAB, Rutgers University

Increase in Data Demand...

RUTGERS

LTE and Wi-Fi in Shared Spectrum

Need interference coordination to avoid performance degradation!

Challenge: Difference in their MAC operation

RUTGERS

Objective

To provide analytical framework for downlink interference characterization of densely deployed Wi-Fi and LTE

<u>Key evaluations:</u>

- Identification of throughput model of Wi-Fi and LTE along with their key features
- Interference characterization of single Wi-Fi and LTE
- Extension of interference model to dense co-channel deployment
- Throughput evaluation with exploitation of frequency diversity under three channel assignment approaches

Characterization of performance of: 1) Wi-Fi only 2) LTE Only

Wi-Fi Throughput Model

Clear Channel Assessment (CCA)

1) Carrier Sense

- Ability to detect and decode other Wi-Fi's preamble (CSMA/CA)
- Bianchi's throughput model for saturated traffic for N nodes
- Wi-Fi throughput

$$R_i = \alpha_i$$
 (channel rate_i), $i = 1,..,N$

with

α_i = Fraction of time to transmit payload at Wi-Fi *i* = f(N, random back-off, successful transmission, packet collision)
 channel rate _i = f(SINR _i)

[Ref: G. Bianchi, 'Performance analysis of the IEEE 802.11 distributed coordination function']
RUTGERS shsagari@winlab.rutgers.edu WINLAB

Wi-Fi Throughput Model

Clear Channel Assessment (CCA)

2) Energy Detection

- Ability to detect non-Wi-Fi energy (e.g. LTE) in channel
- Wi-Fi throughput

$$R = \begin{cases} 0 & \text{if } E_c \ge \lambda_c \\ f(\text{SINR}) & \text{if } E_c < \lambda_c \end{cases}$$

where

 E_c = received channel energy λ_c = CCA threshold (typically, 62 dBm)

MCS Index	Date Rate (Mbps)	Link SNR (dB)
0	6.5	9.3
1	13	11.3
2	19.5	13.3
3	26	17.3
4	39	21.3
5	52	24.3
6	58.5	26.3
7	65	27.3

IEEE 802.11n parameters (BW = 20 MHz, guard interval = 800 ns, SISO)

LTE: Throughput

Resource Block (RB)

- BW of 1 RB = 180 kHz
- Duration = 1 time slot of 0.5 ms
- Each time slot: 7 OFMA symbol (cyclic prefix = 5 μs)
- Resource elements: smallest unit of transmission of LTE

1 RB = 12 subcarriers * 7 symbols = 84 resource elements

LTE @20MHz BW: 16800 resource elements/ms

Subcarriers: 15 kHz separation

Structure of a resource block in LTE

LTE: Throughput

- CQI: based on link SINR
- bits/symbol: modulation w.r.t CQI
- coding rate: corresponding to CQI

Peak Throughput (bits/ms) = (RBs in given BW) * (bits/symbol) * (coding rate) * (channel overhead)

Parameter	Value
LTE	OFDMA FDD
Block error rate	10%
Transmission mode	1 (SISO)
Channel	Flat Rayleigh
Channel overhead (controlling)	30%

CQI	SINR (dB)	Modulation	Coding rate
1	1.95	QPSK	0.10145
2	4.00	QPSK	0.10145
3	6.00	QPSK	0.16232
4	8.00	QPSK	0.318841
5	10.00	QPSK	0.44221
6	11.95	QPSK	0.568116
7	14.05	16-QAM	0.365217
8	16.00	16-QAM	0.469565
9	17.90	16-QAM	0.563768
10	19.90	64-QAM	0.484058
11	21.50	64-QAM	0.60
12	23.45	64-QAM	0.692754
13	25.00	64-QAM	0.76087
14	27.30	64-QAM	0.888406
15	29.00	64-QAM	0.888406

LTE CQI and corresponding parameters (CQI: channel quality index)

RUTGERS

Interference Characterization of Coexistence

Wi-Fi Throughput in LTE Interference

Modeling throughput of a single Wi-Fi in the presence of a single LTE interference

IJ	^f No LTE then
	$C_{w} = f\left(\frac{P_{w}G_{w}}{N_{0}}\right)$
	$R_{w} = \alpha C_{w}$
е	<i>lse</i> when LTE is present
	If $E_c > \lambda_c$ then
	No Wi-Fi Transmission, $R_w = 0$
	else
	$C_{w} = f\left(\frac{P_{w}G_{w}}{P_{l}G_{wl} + N_{0}}\right)$
	$R_{w} = \alpha C_{w}$
	end
e	nd

Notation	definition
{ <i>w,I</i> }	WiFi and LTE indices, respectively
R _w	WiFi Throughput
C _w	Wi-Fi channel rate
α	Fraction of time for Wi-Fi payload transmission
P _i	Transmission power, <i>i</i> \in { <i>w,1</i> }
G_w	Channel gain of Wi-Fi link
G _{wl}	Channel gain(LTE HeNB Wi-Fi UE)
N ₀	Noise power
E _c	Channel energy at Wi-Fi AP
λ_c	CCA Threshold

Rutgers

LTE Throughput in Wi-Fi Interference

Modeling throughput of a single LTE in the presence of a single Wi-Fi interference

Notation	definition
{ <i>w,l</i> }	WiFi and LTE indices, respectively
R _I	LTE Throughput
P _i	Transmission power, <i>i</i> \in { <i>w,I</i> }
G _I	Channel gain of LTE link
G _{Iw}	Channel gain(Wi-Fi AP, LTE UE)
N ₀	Noise power
E _c	Channel energy at Wi-Fi AP
λ_c	CCA Threshold
η _ε , η _s	Fraction of time of Wi-Fi random backoff and successful transmission, respectively

Evaluation

Distance [m]	Throughput [Mbps]
< 21	$R_w = 0$ (CCA threshold)
< 56	$R_w = 0$ (SINR < min SINR)
56	$R_w + R_L = \text{lowest} (\sim 20)$
≥ 133	$R_w = $ highest (~60)
< 56, ≥ 104	$R_L = highest (~63)$

Throughput as a function inter-AP distance Equal Tx Power : 20 dBm (at maximum)

RUTGERS

Non-applicability of conventional inverse relation of throughput with interference distance for cochannel Wi-Fi-LTE

Aggregated system throughput

= f(network topology, Wi-Fi CSMA and CCA)

Interference Characterization of Dense Deployment

Distributed Wi-Fi CSMA

1

Graph theory based CSMA contention graph

[2]

MIS

- No simultaneous transmission of APs in CSMA
- <u>Maximum</u> Independent <u>Sets</u> (MIS)
 - Maximum cardinality
 - Equal probability for all MIS
- Throughput at Wi-Fi i

$$C_{i} = f(\text{SNR}),$$

$$\beta_{i} = \frac{\text{no. of MISi belongs}}{\text{total no. of MIS}},$$

$$R_{i} = f(\beta_{i}C_{i})$$

Ref: S.C. Liew, et al. 'Back-of-the-envelope computation of throughput distributions in csma wireless networks'.

 RUTGERS
 shsagari@winlab.rutgers.edu
 WINLAB
 16

Dense Wi-Fi/LTE Throughput

Wi-Fi Throughput

LTE Throughput

If No LTE then

- Compute **M** MIS for Wi-Fi
- Calculate $R_i, i \in W$

else when LTE is present

• CCA: Identify W' shut-off Wi-Fi

 $R_i = 0, i \in W'$

- Compute M' MIS for ON Wi-Fi
- Calculate $R_i, i \in (W W')$

considering LTE interference

If No Wi-Fi *then*

• Calculate $R_i, i \in L$ considering interference from other LTE links

else when Wi-Fi is present

- For each M' MIS
 - Consider Wi-Fis active in that MIS only
 - Calculate LTE throughput considering Wi-Fi interference

end

• Compute avg. $R_i, i \in L$, over M' MIS end

end

Rutgers

Evaluation

Aggregated throughput over each technology No. of (Wi-Fi links = LTE links), equal Tx Power (at maximum = 20 dBm)

RUTGERS

Upper-bound throughput approximation due to 1) Wi-Fi: No consideration of packet collision 2)LTE: simultaneous transmission at Wi-Fis in a MIS

97% Wi-Fi throughput degradation vs.
1% LTE throughput degradation

Need a coordination for fair throughput allocation!!

Frequency (Channel) Diversity

Frequency Diversity

Evaluation of Wi-Fi-LTE inter-network coordination in frequency domain under channel allocation schemes:

- Random channel assignment
- Intra-RAT coordination
 - GMCA across APs of same
 (Wi-Fi/LTE) technology
- Inter-RAT coordination
 - Joint GMCA across APs of both
 Wi-Fi and LTE

Graph multi-coloring like channel assignment (GMCA) (no two neighboring APs on the same channel)

Normalized Throughput gain per channel- random assignment: 3x, Intra/Inter RAT coordination: 4-5x

Similar sum-throughput of *Intra* & *Inter* RAT coordination, *in Inter*:

LTE throughput gain: elimination of dominant interference

Wi-Fi throughput drop: inefficient channel assignment at Wi-Fi in CSMA range

Need a optimized joint resource allocation!

RUTGERS

Conclusion

- Proposed an analytical interference model for Wi-Fi-LTE coexistence
- High Wi-Fi throughput drop compared to minimal LTE throughput drop for dense network
- 4-5x throughput gain due to frequency diversity

Future Work:

- Validation interference characterization model through experiments
- Inter-network coordination based on optimization

Thank You!

shsagari@winlab.rutgers.edu

