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ABSTRACT OF THE DISSERTATION

Multiple Antenna Wireless Systems and Channel State

Information

by Dragan Samardzija

Dissertation Director: Professor Narayan B. Mandayam

The use of multiple antennas in wireless systems have been shown to provide tremendous capac-

ity gains. A key factor in realizing such gains is the knowledge of the channel state information

(CSI) at the receiver and transceiver. In this thesis we study the fundamental limits of multiple

antenna multiuser systems in the following contexts: (1) pilot-assisted channel state estimation,

(2) transmitter optimization with delayed CSI and (3) CSI feedback schemes.

We first analyze the effects of pilot assisted MIMO channel estimation on achievable data

rates (lower bound on information capacity) over a frequency flat time-varying channel. Under

a block-fading channel model, the effects of the estimation error are evaluated in the case of the

estimates being available at the receiver only (open loop), and in the case when the estimates are

fed back to the transmitter allowing water pouring transmitter optimization (closed loop). Using

a characterization of the effective noise due to estimation error, we analyze the achievable rates

as a function of the power allocated to the pilot, the channel coherence time, the background

noise level as well as the number of transmit and receive antennas. We observe that as the

number of transmit antennas increases, the sensitivity to the channel response estimation error

is more pronounced (while keeping the same number of receive antennas). It is also seen that in

certain cases, it is better to use the open loop scheme as opposed to the closed loop scheme. The

analysis presented here can be used to optimally allocate pilot power for various system and

channel operating conditions, and also to determine the effectiveness of closed loop feedback.

Next, we consider multiple antenna transmitter optimization schemes that are based on
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linear transformations and transmit power optimization, while keeping the average transmit

power conserved. We consider the downlink of a wireless system with multiple transmit antennas

at the base station and a number of mobile terminals (i.e., users) each with a single receive

antenna. We consider the maximum achievable sum data rates in the case of (1) zero-forcing

spatial pre-filter, (2) modified zero-forcing spatial pre-filter and (3) triangularization spatial pre-

filtering coupled with dirty paper coding transmission scheme. Using a multiple input single

output (MISO) channel model with temporal and spatial correlations, we study the effect of

delayed CSI on these schemes. It is seen that as the CSI delay increases, spatially uncorrelated

channels perform worse than spatially correlated channels, which is in contrast to the case of

zero delay CSI. A linear minimum mean squared error (MMSE) predictor of the channel state

is introduced which can improve the performance in all cases. Further, the predictor increases

the tolerable maximum CSI delay for which the performance on spatially uncorrelated channels

is higher than that of the correlated case.

Finally, we propose a CSI feedback scheme based on unquantized and uncoded (UQ-UC)

transmission. We consider a system where a mobile terminal obtains the downlink CSI and

feeds it back to the base station using an uplink feedback channel. If the downlink channel is an

independent Rayleigh fading channel, then the CSI may be viewed as an output of a complex

independent identically distributed Gaussian source. Further, if the uplink feedback channel is

AWGN, it can be shown that that UQ-UC CSI transmission (that incurs zero delay) is optimal

in that it achieves the same MMSE distortion as a scheme that optimally (in the Shannon

sense) quantizes and encodes the CSI while theoretically incurring infinite delay. Since the UQ-

UC transmission is suboptimal on correlated wireless channels, we propose a simple linear CSI

feedback receiver that can be used to improve the performance of UQ-UC transmission while

still retaining the attractive zero-delay feature. We provide bounds on the performance of the

UQ-UC CSI feedback and also explore the performance in multiple antenna multiuser wireless

systems.
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Chapter 1

Introduction

For several emerging wireless data services, the application of multiple antenna sys-

tems appears to be one of the most promising solutions leading to even higher data

rates and/or the ability to support greater number of users. Multiple transmit and

multiple receive antenna systems that embody an implementation of the multi-input

multi-output (MIMO) concept in wireless systems [1], have been shown to be able to

provide the necessary capacity and also flexibility required for supporting a variety

of high data rate applications. Theoretical capacity gains in a single-user system that

have been shown to scale (approximately) linearly in the number of antennas [1,2], have

fueled further studies related to various aspects of MIMO systems: propagation [3–5],

detection [6–14], space-time coding and implementation aspects [15–24], to name a

few. There have also been a host of considerations for multiple antenna systems with

multiple users (see for example, [25–33]).

A key attribute required of any multiple antenna technique is the need for reliable

channel state information (CSI). Such CSI is absolutely necessary at the receiver to

realize the potential capacity gains. Further, the CSI is also necessary at the transmitter

in the case of transmitter optimization techniques used in conjunction with multiple

antennas.

The challenges in estimating CSI in MIMO systems (compared to single-input single-

output (SISO) systems) is not only greater because of the large number of parameters

that have to be estimated, but it is further exacerbated by the need to support wider

channel bandwidths, mobility and the migration of future wireless data services to

higher carrier frequencies. For example, wider channel bandwidths result in greater
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frequency selectivity, while using higher carrier frequencies results in more spatial vari-

ations of the electro-magnetic field. While the fundamental limits of the performance of

multiple antenna systems have been characterized in terms of unreliable and/or absent

CSI [34, 35], there have been relatively few efforts in relating such fundamental limits

to the specifics of signal processing algorithms required for enabling knowledge of CSI.

A few efforts in this direction including our own work have been [36–39].

Further, the tremendous capacity gains due to transmitter optimization in multiple

antenna multiuser wireless systems [25–27, 32, 33, 40] rely heavily on the availability of

the CSI at the transmitter. In such scenarios, aside from the issue of how to estimate the

CSI, another interesting question is how to transmit (or feedback) the CSI? For example,

what are the most efficient ways of transmitting the CSI back to the transmitter for the

purposes of transmitter optimization? These are just a few motivations for studying

the implications of channel variations on achievable data rates in wireless systems.

In Chapter 2 we analyze the effects of pilot assisted MIMO channel estimation on

achievable data rates (lower bound on information capacity) over a frequency flat time-

varying channel [39,41]. Under a block-fading channel model, the effects of the estima-

tion error are evaluated in the case of the estimates being available at the receiver only

(open loop), and in the case when the estimates are fed back to the transmitter allowing

water pouring transmitter optimization (closed loop). Using a characterization of the

effective noise due to estimation error, we analyze the achievable rates as a function of

the power allocated to the pilot, the channel coherence time, the background noise level

as well as the number of transmit and receive antennas. We observe that as the number

of transmit antennas increases, the sensitivity to the channel response estimation error

is more pronounced (while keeping the same number of receive antennas). It is also

seen that in certain cases, it is better to use the open loop scheme as opposed to the

closed loop scheme. The analysis presented here can be used to optimally allocate pilot

power for various system and channel operating conditions, and also to determine the

effectiveness of closed loop feedback.

In Chapter 3 we consider multiple antenna transmitter optimization schemes that

are based on linear transformations and transmit power optimization, while keeping
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the average transmit power conserved. We consider the downlink of a wireless system

with multiple transmit antennas at the base station and a number of mobile terminals

(i.e., users) each with a single receive antenna. We consider the maximum achievable

sum data rates in the case of (1) zero-forcing spatial pre-filter, (2) modified zero-forcing

spatial pre-filter and (3) triangularization spatial pre-filtering coupled with dirty paper

coding transmission scheme. Using a multiple input single output (MISO) channel

model with temporal and spatial correlations, we study the effect of delayed CSI on

these schemes. It is seen that as the CSI delay increases, spatially uncorrelated channels

perform worse than spatially correlated channels, which is in contrast to the case of zero

delay CSI. A linear minimum mean squared error (MMSE) predictor of the channel state

is introduced which can improve the performance in all cases. Further, the predictor

increases the tolerable maximum CSI delay for which the performance on spatially

uncorrelated channels is higher than that of the correlated case.

Finally in Chapter 4 we propose a CSI feedback scheme based on unquantized and

uncoded (UQ-UC) transmission [42]. We consider a system where a mobile terminal

obtains the downlink CSI and feeds it back to the base station using an uplink feedback

channel. If the downlink channel is an independent Rayleigh fading channel, then the

CSI may be viewed as an output of a complex independent identically distributed Gaus-

sian source. Further, if the uplink feedback channel is AWGN, it can be shown that

that UQ-UC CSI transmission (that incurs zero delay) is optimal in that it achieves

the same MMSE distortion as a scheme that optimally (in the Shannon sense) quan-

tizes and encodes the CSI while theoretically incurring infinite delay. Since the UQ-UC

transmission is suboptimal on correlated wireless channels, we propose a simple linear

CSI feedback receiver that can be used to improve the performance of UQ-UC transmis-

sion while still retaining the attractive zero-delay feature. We provide bounds on the

performance of the UQ-UC CSI feedback and also explore the performance in multiple

antenna multiuser wireless systems.

We conclude in Chapter 5.
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Chapter 2

Pilot Assisted Estimation of MIMO Fading Channel

Response and Achievable Data Rates

In this chapter we analyze how the estimation error of the channel response affects

the performance of a MIMO wireless system. Considering the practical importance of

SISO systems, we analyze them as a subset of MIMO systems. Following terminol-

ogy in the literature (see [43] and references therein), the channel response estimate

is termed CSI. We assume a frequency-flat time-varying wireless channel with addi-

tive white Gaussian noise (AWGN). More precisely, a quasi-static block-fading channel

model is used. Furthermore, the temporal variations of the channel are characterized

by the correlation between successive channel blocks. The above system may also cor-

respond to one subchannel (i.e., carrier) of an OFDM wireless system [44]. We consider

two pilot (training) arrangement schemes in this study. The first scheme uses a single

pilot symbol per block with different power than the data symbol power. The second

scheme uses more than one pilot symbol per block, whose power is the same as the data

symbol power. For the given pilot schemes, in both cases, maximum-likelihood (ML)

estimation of the channel response is considered [45]. In the MIMO case, orthogonality

between the pilots assigned to different transmit antennas is assumed. The effects of

the estimation error are evaluated in the case of the estimates being available at the

receiver only, and in the case when the estimates are fed back to the transmitter al-

lowing water pouring optimization. The presented analysis may be viewed as a study

of mismatched receiver and transmitter algorithms in MIMO systems. The analysis

connects results of information theory (see [34, 35] and references therein) with practi-

cal wireless communication systems (employing pilot assisted channel estimation) and
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generalizing it to MIMO systems. Previously published studies on MIMO channel es-

timation and its effects include [36] and [37]. An elaborate information theoretic study

analyzing different training schemes, and optimizing their parameters to maximize the

open loop MIMO capacity lower bounds, is also presented in [38]. We will highlight the

similarities and differences of the work presented here to that in [38] in the subsequent

sections. We believe that the results presented here are directly applicable to current

and next generation wireless systems [21–23,46]. Furthermore, the results may be used

as baseline benchmarks for performance evaluation of more advanced estimation and

transmitter optimization schemes, such as anticipated in future systems.

2.1 System Model

In the following we present a MIMO communication system that consists of M transmit

and N receive antennas (denoted as a M × N system). At the receiver we assume

sampling with the period Tsmp = 1/B, where B is the signal bandwidth, thus preserving

the sufficient statistics. The received signal is a spatial vector y

y(k) = H(k)x(k) + n(k), y(k) ∈ CN ,x(k) ∈ CM ,n(k) ∈ CN ,H(k) ∈ CN×M (2.1)

where x(k) = [g1(k) · · · gM (k)]T is the transmitted vector, n(k) = [n1(k) · · · nN (k)]T is

the AWGN vector with (E[n(k)n(k)H] = N0 IN×N ), and H(k) is the MIMO channel re-

sponse matrix, all corresponding to the time instance k. We assign index m = 1, · · · ,M

to denote the transmit antennas, and index n = 1, · · · , N to denote the receive anten-

nas. Thus, hnm(k) is the nth row and mth column element of the matrix H(k). Note

that it corresponds to a SISO channel response between the transmit antenna m and

the receive antenna n. gm(k) is the transmitted signal from the mth transmit antenna

The nth component of the received spatial vector y(k) = [y1(k) · · · yN(k)]T (i.e., signal

at the receive antenna n) is

yn(k) =
M∑

m=1

hnm(k)gm(k) + nn(k). (2.2)

To perform estimation of the channel response H(k), the receiver uses a pilot (training)

signal that is a part of the transmitted data. The pilot is sent periodically, every K



6

sample periods. We consider the transmitted signal to be comprised of two parts: one

is the data bearing signal and the other is the pilot signal. Within the pilot period

consisting of K symbols, L symbols (i.e., signal dimensions) are allocated to the pilot,

per transmit antenna. As a common practical solution (see [21–23,47]), we assume that

the pilot signals assigned to the different transmit antennas, are mutually orthogonal.

For more details on signal design for multiple transmit antenna systems see also [7,48].

This assumption requires that K ≥ LM . Consequently we define a K-dimensional

temporal vector gm = [gm(1) · · · gm(K)]T, whose kth component is gm(k) (in (2.2)), as

gm =
K−LM∑

i=1

ad
imd

d
imsd

i

︸ ︷︷ ︸
Data

+
L∑

j=1

ap
jmd

p
jms

p
jm

︸ ︷︷ ︸
Pilot

. (2.3)

In the above the first sum is the information, i.e., data bearing signal and the second

corresponds to the pilot signal, corresponding to the transmit antenna m. Superscripts

”d” and ”p” denote values assigned to the data and pilot, respectively. dd
im is the

unit-variance circularly symmetric complex data symbol. The pilot symbols (dp
jm, j =

1, · · · , L) are predefined and known at the receiver. Without loss of generality, we

assume that |dp
jm|2 = 1. We also assume that the amplitudes are ad

im = A, and

ap
jm = AP , and they are known at the receiver. Further, the amplitudes are related

as AP = αA. Note that the amplitudes are identical across the transmit antennas

(because we assumed that the transmit power is equally distributed across them).

Furthermore, sd
i = [sd

i (1) · · · sd
i (K)]T and s

p
jm = [sp

jm(1) · · · sp
jm(K)]T, (i = 1, · · · , (K−

LM), j = 1, · · · , L, and m = 1, . . . M) are waveforms, denoted as temporal signatures.

The temporal signatures are mutually orthogonal. For example, sd
i (or s

p
jm) could be a

canonical waveform such as a TDMA-like waveform, where sd
i (or s

p
jm) is the unit-pulse

at the time instance i. Alternately, sd
i (or s

p
jm) could also be a K-dimensional CDMA

sequence spanning all K sample intervals [46]. Note that the above model while being

general enough is particularly suitable for MIMO implementations over CDMA systems

(see [47]).

As said earlier, we assume that the pilot signals are orthogonal between the transmit

antennas. The indexing and summation limits in (2.3) conform to this assumption, i.e,
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temporal signatures s
p
jm(j = 1, · · · , L) are uniquely assigned to the transmit antenna

m. In other words, transmit antenna m must not use the temporal signatures that

are assigned as pilots to other antennas and assigned to data, which is consequently

lowering the achievable data rates (this will be revisited in the following sections).

Unlike the pilot temporal signatures, the data bearing temporal signatures sd
i (i =

1, . . . , (K−LM)) are reused across the transmit antennas, which is an inherent property

of MIMO systems, potentially resulting in high achievable data rates. It is interesting

to note that the assumptions regarding the orthogonality between the pilots (motivated

by practical considerations) are also shown to be optimal in [38], maximizing the open

loop capacity lower bound. Similar conclusions are drawn in [7, 36]. We rewrite the

received spatial vector in (2.1) as

y(k) = H(k)(d(k) + p(k)) + n(k), d(k) ∈ CM ,p(k) ∈ CM (2.4)

where d(k) is the information, i.e., data bearing signal and p(k) is the pilot portion of

the transmitted spatial signal, at the time instance k. The mth component of the data

vector d(k) = [d1(k) · · · dM (k)]T (i.e., data signal at the transmit antenna m) is

dm(k) =
K−LM∑

i=1

ad
imd

d
ims

d
i (k). (2.5)

The mth component of the pilot vector p(k) = [p1(k) · · · pM (k)]T (i.e., pilot signal at

the transmit antenna m) is

pm(k) =
L∑

j=1

ap
jmd

p
jms

p
jm(k). (2.6)

Let us now describe the assumed properties of the MIMO channel H(k). The channel

coherence time is assumed to be greater than or equal to KTsmp. This assumption

approximates the channel to be constant over at least K samples (hnm(k) ≈ hnm, for

k = 1, · · · ,K, for all m and n), i.e., approximately constant during the pilot period. In

the literature, channels with the above property are known as block-fading channels [44].

Furthermore, we assume that the elements of H are independent identically distributed

(iid) random variables, corresponding to highly scattering channels. In general, the

MIMO propagation measurements and modeling have shown that the elements of H
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are correlated (i.e., not independent) [3–5]. The effects of correlation on the capacity of

MIMO systems is studied in [49]. Assuming independence is a common practice because

the information about correlation is usually not available at the receiver and/or the

correlation is time varying (not stationary) and hard to estimate. Based on the above,

the received temporal vector at the receiver n, whose kth component is yn(k) (in (2.2)),

is

rn = [yn(1) · · · yn(K)]T =
M∑

m=1

hnmgm + nn, rn ∈ CK (2.7)

where nn = [nn(1) · · · nn(K)]T and E[nnn
H
n ] = N0 IK×K.

Note that when varying the number of transmit antennas, the total average trans-

mitted power must stay the same, i.e., conserved. This is a common assumption in

MIMO systems [1,2]. Also, the power is equally distributed across the transmit anten-

nas. The average transmit power (from all transmit antennas) is

Pav = M

(∑K−LM
i=1 (ad

im)2 +
∑L

j=1(a
p
jm)2

)

K
= M

((K − LM) + Lα2)A2

K
. (2.8)

Thus

A =

√
K

((K − LM) + α2L)

Pav

M
. (2.9)

As seen from the above, we assume that the total average transmitted energy (within

the pilot period) is the same, but differently distributed between the data bearing

portion of the signal and the pilot. Consequently, we observe the performance of the

system with respect to the amount of transmitted energy that is allocated to the pilot

(percentage wise). This percentage is denoted as µ and is given as

µ =
Lα2

(K − LM) + Lα2
100 [%]. (2.10)

As said earlier, in this study we consider two different pilot arrangements:

1. L = 1 and AP 6= A. The amplitude is

A1 =

√
K

((K −M) + α2)

Pav

M
. (2.11)

In the remainder of the chapter, the above pilot arrangement is referred to as

case 1. For example, in SISO systems the above pilot arrangement is applied in
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CDMA wireless systems (e.g., IS-95 and WCDMA [46]). In MIMO systems, it

is applied in narrowband MIMO implementations described in [21–23]. It is also

applied in a wideband MIMO implementation based on 3G WCDMA [47]. Note

that under certain assumptions to be pointed out in the next section, the above

pilot arrangement scheme is equivalent to the scheme in [38]

2. L ≥ 1 and AP = A (α = 1). The amplitude is

A2 =

√
K

(K − L(M − 1))

Pav

M
. (2.12)

In the remainder of the chapter, the above pilot arrangement is referred to as case

2. Note that the above pilot arrangement is frequently used in SISO systems, e.g.,

wire-line modems [50] and some wireless standards (e.g., IS-136 and GSM [44]).

This arrangement is typically not used in MIMO systems.

In Section 2.5 we will analyze the performance of these two cases because they are

widely applied in different communication systems.

2.2 Estimation of Channel Response

Due to the orthogonality of the pilots and assumption that the elements of H are iid,

it can be shown that to obtain the maximum likelihood estimate of H it is sufficient

to estimate hnm (for m = 1, · · · ,M, n = 1, · · · , N), independently1. This is identical

to estimating a SISO channel response between the transmit antenna m and receive

antenna n. The estimation is based on averaging the projections of the received signal

on dp
jms

p
jm (for j = 1, · · · , L and m = 1, · · · ,M) as

ĥnm =
1

LAP

L∑

j=1

(dp
jms

p
jm)Hrn

=
1

L

L∑

j=1

(hnm + (dp
jms

p
jm)Hnn/AP )

1Based on the above assumptions it can be shown that in this particular case the ML estimate is
equal to the LMMSE estimate considered in [38].
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= hnm +
1

LAP

L∑

j=1

(dp
jms

p
jm)Hnn (2.13)

where ĥnm denotes the estimate of the channel response hnm. It can be shown that for

a frequency-flat AWGN channel, given the pilot signal and the assumed properties of

H, (2.13) is the maximum-likelihood estimate of the channel response hnm [45]. The

estimation error is

ne
nm =

1

LAP

L∑

j=1

(dp
jms

p
jm)Hnn. (2.14)

ne
nm corresponds to a Gaussian random variable with distribution NC(0, N0/(L(αA)2)).

Thus, the channel matrix estimate Ĥ is

Ĥ = H + He (2.15)

where He is the estimation error. Each component of the error matrix He is an inde-

pendent and identically distributed random variable ne
nm given in (2.14) (where ne

nm is

the nth row and mth column element of He).

Having the channel response estimated, the estimate of the transmitted data that

is associated with the temporal signature sd
i is obtained starting from the following

statistics

zni =
1

A
(sd

i )
Hrn (2.16)

where the amplitude A is assumed to be known at the receiver. zni corresponds to the

nth component of the vector

zi = [z1i · · · zNi]
T = H di +

1

A
ni, i = 1, . . . ,K − LM (2.17)

where the mth component of di = [dd
i1 · · · dd

iM ]T is dd
im (data transmitted from the

antenna m and assigned to the temporal signature sd
i ). Further, E[nin

H
i ] = N0 IN×N .

It can be shown that zi is a sufficient statistic for detecting the transmitted data. Using

zi a MIMO receiver would perform detection of the transmitted data. Detection of the

spatially multiplexed data which is not a focus of this study can be done for example,

using the VBLAST algorithm [6, 47].

As a common practice, the detection procedure assumes that the channel response

is perfectly estimated, and that Ĥ corresponds to the true channel response. Let us
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rewrite the expression in (2.17) as

zi = (H + He) di +
1

A
ni −He di = Ĥ di +

(
1

A
ni −He di

)
. (2.18)

The effective noise in the detection procedure (as a spatial vector) is

n̄i =

(
1

A
ni −He di

)
. (2.19)

For the given Ĥ, the covariance matrix of the effective noise vector is

Υ = Υ(A) = E
n̄i|Ĥ

[n̄in̄
H
i ] =

N0

A2
I + E

He|Ĥ
[HeHe

H] (2.20)

and it is a function of the amplitude A. As said earlier He is a matrix of iid Gaussian

random variables with distribution NC(0, N0/(L (αA)2)).

It can be shown that for a Rayleigh channel, where the entries of H are iid Gaussian

random variables with distribution NC(0, 1), the above covariance matrix is

Υ =
N0

A2
I +M

1

1 + L (αA)2/N0
I +

(
1

1 + L (αA)2/N0

)2

ĤĤH. (2.21)

2.3 Estimates Available to Receiver:

Open Loop Capacity

Assuming that the channel response estimate is available to the receiver only, we de-

termine the lower bound for the open loop ergodic capacity as follows.

C ≥ R =
K − LM

K
E

Ĥ

[
log2 det

(
IM×M + ĤĤHΥ−1

)]
. (2.22)

The term (K −LM)/K is introduced because L temporal signature per each transmit

antenna are allocated to the pilot. Also, the random process Ĥ has to be stationary and

ergodic (this is a common requirement for fading channel and ergodic capacity [43,51]).

We assume that the channel coding will span across great number of channel blocks

(i.e., we use the well known infinite channel coding time horizon, required to achieve

error-free data transmission with rates approaching capacity [52]).

In the above expression, equality holds if the effective noise (given in (2.19)) is

AWGN with respect to the transmitted signal. If the effective noise is not AWGN,
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then the above rates represent the worst-case scenario, i.e., the lower bound [38,53]. In

achieving the above rates, the receiver assumes that the effective noise is interference

(which is independent of the transmitted data) with a Gaussian distribution and spatial

covariance matrix Υ. In addition, in the above expression R represents an achievable

rate for reliable transmission (error-free) for the specific estimation procedure assumed.

Knowing the channel response perfectly or using a better channel estimation scheme

(e.g., decision driven schemes) may result in higher achievable rates.

Note that the capacity lower bounds for MIMO channel estimation independently

derived in [38] assume the time multiplexing of data and pilot (i.e., training) symbols.

The authors also present analytical results on the optimal properties required of the

training sequences, their duration and power. The signal model presented here is more

general than that and the distinguishing feature of this study is the mismatched closed

loop transmission analysis presented in the next section.

In the following we compare the above result in equation (2.22) to an informa-

tion theoretic result presented in [43] (page 2641, expression (3.3.55)). The result is

presented for the conventional SISO case, introducing a capacity lower bound for mis-

matched decoding as

C ≥ R∗ = Eĥ


log2


1 +

ĥ2P

Eh|ĥ(|h − ĥ|2)P +N0




 (2.23)

where h and ĥ are the SISO channel response and its estimate, respectively. The above

result is quite general, not specifying the channel response estimation procedure. The

bound in (2.22) is an extension of the information theoretic bound in (2.23), capturing

the more practical pilot assisted channel response estimation scheme and generalizing

it to the MIMO case. Consequently,

Proposition 1 For the SISO case (M = 1, N = 1), the rate R in (2.22) and R∗ in

(2.23), are related as

R =
K − L

K
R∗, for P =

K

(K − L) + α2L
Pav (2.24)

where ĥ is obtained using the pilot assisted estimation.
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2.4 Estimates Available to Transmitter and Receiver:

Closed Loop Capacity

In MIMO systems, when the channel state H is perfectly known at the transmitter, to

maximize the capacity (under constrained transmit power), the transmitter performs

optimization known as the water pouring on eigen modes. For SISO systems the water

pouring algorithm is given in [54]. In practical communication systems, the channel

state H has to be estimated at the receiver, and then fed to the transmitter. In the

case of a time varying channel, this practical procedure results in noisy and delayed

(temporally mismatched) estimates being available to the transmitter to perform the

optimization.

As said earlier, the MIMO channel is time varying. Let Hi−1 and Hi correspond to

consecutive block faded channel responses. In the following, the subscripts i and i− 1

on different variables will indicate values corresponding to the block channel periods i

and i − 1, respectively. The temporal characteristic of the channel is described using

the correlation

E
[
h(i−1)nm h∗inm

]
/Γ = κ, (2.25)

where Γ = E[hinmh
∗
inm], and hinm is a stationary random process (form = 1, · · · ,M and

n = 1, · · · , N , denoting transmit and receive antenna indices, respectively). We assume

that the value of the correlation κ is not known at the receiver and the transmitter.

Note that the above channel is modeled as a first order discrete Markov process2.

Adopting a practical scenario, we assume that the receiver feeds back the estimate

Ĥi−1. Because the ideal channel state Hi is not available at the transmitter, we assume

that Ĥi−1 is used instead to perform the water pouring transmitter optimization for

the ith block. In other words the transmitter is ignoring the fact that Hi 6= Ĥi−1.

The water pouring optimization is performed as follows. First, the estimate is

decomposed using singular value decomposition (SVD) as Ĥi−1 = Ûi−1Σ̂i−1V̂
H
i−1 [55].

Then, if the data vector d(k) is to be transmitted (in equation (2.4)), the following

2Note that in the case of the Jakes model, κ = J0(2πfdτ ), where fd is the maximum Doppler
frequency and τ is the time difference between h(i−1)nm and hinm.
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linear transformation is performed at the transmitter

d̄(k) = V̂i−1Sid(k), (2.26)

where the matrix Si is a diagonal matrix whose elements sijj (j = 1, · · ·M) are de-

termined by the water pouring algorithm per singular value of Ĥi−1, i.e., the diagonal

element of Σ̂i−1 (denoted as σ̂(i−1)jj , j = 1, · · ·M). The diagonal element of Si is

defined as

s2ijj =





1
γ0

− N0
|σ̂(i−1)jj |2A2 for |σ̂(i−1)jj |2A2/N0 ≥ γ0

0 otherwise
(2.27)

γ0 is a cut-off value, and it depends on the channel fading statistics. It is selected such

that the average transmit power stays the same Pav [54]. Consequently, at the time

instant k, the received spatial vector is

y(k) = HiV̂i−1Sid(k) + Hip(k) + n(k) = Gd(k) + Hip(k) + n(k) (2.28)

and

G = HiV̂i−1Si. (2.29)

The water pouring optimization is applied on the data bearing portion of the signal

d(k), while the pilot p(k) is not changed. The receiver knows that the transformation in

(2.26) is performed at the transmitter. The receiver performs estimation of the channel

response matrix as given in section 2.2, resulting in Ĝ = ĤiV̂i−1Si and the error matrix

Ge = HeiV̂i−1Si. In this case, the effective noise in (2.19) and its covariance matrix

in (2.20) are modified accordingly resulting in

ΥWP = ΥWP (A) =
N0

A2
I + E

Ge|Ĝ
[GeGe

H]. (2.30)

In the above and following expressions the superscript ”WP” denotes water pouring.

Note that the above application of the water pouring algorithm per eigen mode is

suboptimal, i.e., it is mismatched (because Ĥi−1 is used instead of Hi). Consequently,

the closed loop system capacity is bounded as,

CWP ≥ RWP =
K − LM

K
E

Ĝ

[
log2 det

(
IM×M + ĜĜH(ΥWP )−1

)]
. (2.31)
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Similar to the comments related to the result in (2.22), the random process Ĝ has to

be stationary and ergodic. Also, the channel coding will span across infinite number

of channel blocks to achieve error-free data transmission approaching the above rates.

Again, the equality holds if the effective noise is AWGN with respect to the transmitted

signal and if not, then the above rates represent the worst-case scenario, i.e., the lower

bound [53]. In achieving the above rates, the receiver assumes that the effective noise

is interference which is independent of the transmitted data with Gaussian distribution

and spatial covariance matrix ΥWP . Knowing the channel response perfectly or using

a better channel estimation, or prediction scheme may result in higher achievable rates.

There has also been some recent work in [56] on closed loop MIMO OFDM transmission

over a parametric frequency selective channel model.

2.5 Examples and Numerical Results

2.5.1 SISO Systems

To illustrate the above analysis we start with SISO systems. In the SISO case, all

previously defined spatial vectors and related matrices are now single dimensional (e.g.,

di, H, Ĥ and Υ are now scalars di, h, ĥ and υ, respectively). In Figure 2.1, we present

the rate R in (2.22) as a function of the power allocated to the pilot (equation (2.10)).

In this example, a pilot period K is 10 and coincides with the coherence time. A

frequency-flat Rayleigh fading channel is assumed. The results are shown for the pilot

arrangements corresponding to both case 1 and case 2. For ideal knowledge of the

channel response we apply the ergodic capacity formula [43]. Regarding the achievable

rates, from the above results we observe that case 1 is less sensitive to the pilot power

allocation than case 2 (i.e., in case 2, R is dropping faster if the allocated power is

different than the one that results in the maximum value). Further, case 1 is achieving

higher maximum achievable rates than case 2.

For the given SNR, we define the capacity efficiency ratio η as the ratio between the

maximum rate R (maximized with respect to the pilot power) and the ergodic capacity
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Figure 2.1: Achievable open loop rates vs. power allocated to the pilot, SISO system,

SNR = 4, 12, 20dB, coherence time K = 10, Rayleigh channel.

Cm×n in the case of the ideal knowledge of the channel response, i.e.,

ηm×n =
maxµR

Cm×n
. (2.32)

The indexm and n correspond to number of transmit and receive antennas, respectively.

In Figure 2.2, we show that the capacity efficiency ratio η1×1 increases with the channel

coherence time. From the above results we conclude that case 1 is a more efficient

scheme than case 2.

2.5.2 MIMO Systems

In Figure 2.3, we present the rate R in (2.22) as a function of the power allocated

to the pilot (equation (2.10)), for different number of transmit and receive antennas.

In this and the following numerical examples we consider only the pilot arrangement

case 1 (viewing case 2 as impractical for MIMO systems). We observe the rates for

the Rayleigh channel, SNR = 12dB and the channel coherence time length K = 40.

Solid lines correspond to a system with the channel response estimation, and dashed
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Figure 2.2: Capacity efficiency ratio vs. channel coherence time (K = 10, 20, 40, 100), SISO

system, SNR = 4, 20dB, Rayleigh channel.

lines to a system with the ideal knowledge of the channel response. Further, in Figure

2.4 we show the capacity efficiency ratio η for different number of transmit and receive

antennas vs. different channel coherence time lengths. We observe that as the number

of transmit antennas increase, the sensitivity to the channel response estimation error

is more pronounced (while keeping the same number of receive antennas). For example,

for the same channel coherence time length, the capacity efficiency ratio of the 4 × 4

system is lower than that in the case of the 3 × 4 system.

In Figure 2.5 we present open loop (solid lines) and closed loop (dashed lines)

ergodic capacities. Idealized conditions are assumed, i.e., the ideal knowledge of the

channel response is available to the transmitter and receiver and perfect temporal match

Hi−1 = Hi (for the water pouring optimization) is assumed. Comparing the closed loop

and open loop capacity, we observe that the gains are more pronounced for lower SNR

(e.g, for 4 × 4 system at 0dB, the gain of the closed loop system is approximately

2dB, while at 12dB, it drops below 0.5dB). Further, we note that in the case of 2 × 4

and 1 × 4 systems, the gain practically disappears. This is explained as an effect of
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Figure 2.3: Achievable open loop rates vs. power allocated to the pilot, MIMO system,

SNR = 12dB, coherence time K = 40, Rayleigh channel, solid line corresponds to a system

with the channel response estimation, and dashed line to the case of the ideal channel response

knowledge.
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Figure 2.4: Capacity efficiency ratio vs. channel coherence time (K = 10, 20, 40, 100), MIMO

system, SNR = 12dB, Rayleigh channel.
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multiple receive antennas (greater than the number of transmit antennas) providing

already sufficient degree of diversity, eliminating any need for transmitter optimization.

Instead of the ergodic capacities, when observing the cumulative distribution function

(cdf) of the capacity, the difference is more pronounced (Figure 2.6, for SNR = 4dB)

(see more on the ”capacity versus outage” approach in [43]).
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Figure 2.5: Ergodic capacity vs. SNR, MIMO system, ideal knowledge of the channel response,

Rayleigh channel, solid line corresponds to open loop capacity, and dashed line to closed loop

capacity (perfect temporal match Hi−1 = Hi is assumed).

From the results in Figure 2.7, we observe how the temporal mismatch between

successive channel responses (Hi−1 6= Hi) affects the achievable rates RWP in (2.31).

As said earlier, the temporal mismatch is characterized by the correlation κ. We observe

the cases when the ideal channel response (dashed lines) and channel response estimates

(solid lines) are available at the transmitter and the receiver. Solid lines correspond

to the channel response estimation where the pilot power is selected to maximize the

achievable rate RWP . We observe the rates for the Rayleigh channel, SNR = 4dB

and the coherence time length K = 40. Note that for κ = 0 (i.e., when the successive

channel responses are uncorrelated), the achievable rate is lower than in the case of

κ = 1 (i.e., when the successive channel responses are fully correlated). The drop in
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Figure 2.6: CDF of capacity, MIMO system, SNR = 4dB, ideal knowledge of the channel

response, Rayleigh channel, solid line corresponds to open loop capacity, and dashed line to

closed loop capacity (perfect temporal match Hi−1 = Hi is assumed).

the achievable rates is not substantial, even though the water pouring algorithm is

fully mismatched for κ = 0. We explain this behavior in the following. In the case

of a Rayleigh channel, the matrix V̂i−1Si usually has M degrees of freedom, and a

small condition number of the corresponding covariance matrix. Consequently, even in

the mismatched case, multiplying Hi with V̂i−1Si preserves the degrees of freedom of

the matrix Hi resulting in a high capacity of the composite channel G in (2.29). We

expect the detrimental effects of the mismatch to be amplified in the case of Rician

channels, especially those with large K-factor. This is because Rician channels result in

the matrix V̂i−1Si having a few dominant degrees of freedom thereby making accurate

feedback beneficial.

In Figure 2.8 we compare the open loop scheme to the closed loop scheme under

temporal mismatch. It is observed that when the channel coherence is low (i.e., low

correlation κ), it is better to not use a closed loop scheme. In the observed case (4× 4,

SNR = 4dB and coherence time K = 40), for the correlation coefficient κ < 0.7 the

achievable rates for the closed loop scheme are lower than in the open loop case.
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Figure 2.7: Achievable closed loop rates vs. correlation between successive channel responses,

MIMO system, SNR = 4dB, coherence time K = 40, Rayleigh channel, solid line corresponds to

a system with the channel response estimation, and dashed line to the case of the ideal channel

response available at the transmitter and the receiver (but with the temporal mismatched

Hi−1 6= Hi).

2.6 Conclusion

In this chapter we have studied how the estimation error of the frequency-flat time-

varying channel response affects the performance of a MIMO communication system.

Using a block-fading channel model, we have connected results of information theory

with practical pilot estimation for such systems. The presented analysis may be viewed

as a study of mismatched receiver and transmitter algorithms in MIMO systems. We

have considered two pilot based schemes for the estimation. The first scheme uses a

single pilot symbol per block with different power than the data symbol power. The

second scheme uses more than one pilot symbol per block, whose power is the same

as the data symbol power. We have presented how the achievable data rates depend

on the percentage of the total power allocated to the pilot, background noise level and
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the channel coherence time length. Our results have shown that the first pilot-based

approach is less sensitive to the fraction of power allocated to the pilot. Furthermore,

we have observed that as the number of transmit antennas increase, the sensitivity

to the channel response estimation error is more pronounced (while keeping the same

number of receive antennas). The effects of the estimation error are evaluated in the

case of the estimates being available at the receiver only (open loop), and in the case

when the estimates are fed back to the transmitter (closed loop) allowing water pouring

transmitter optimization. In the case of water pouring transmitter optimization and

corresponding rates, we have not observed significant gains versus the open loop rates

for the channel models considered here. Further, we observe that in certain cases, it is

better to use the open loop scheme as opposed to the closed loop scheme. The analysis

presented here can be used to optimally allocate pilot power for various system and

channel operating conditions, and to also determine the effectiveness of closed loop

feedback.
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Figure 2.8: Achievable closed loop and open loop rates vs. correlation between successive

channel responses, MIMO system 4×4, SNR = 4dB, coherence time K = 40, Rayleigh channel,

solid line corresponds to a system with the channel response estimation, and dashed line to the

case of the ideal channel response available at the transmitter and the receiver (but with the

temporal mismatched Hi−1 6= Hi).
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Chapter 3

Downlink Multiple Antenna Transmitter Optimization on

Spatially and Temporally Correlated Channels with

Delayed Channel State Information

Recently there have been a lot of efforts in using multiple antennas to achieve perfor-

mance gains in systems with multiple users (see [25–27, 32, 33] and references therein).

In this chapter we study multiple antenna transmitter optimization (i.e, spatial pre-

filtering) schemes that are based on linear transformations and transmit power opti-

mization (keeping the average transmit power conserved). We consider the downlink of

a wireless system with multiple transmit antennas at the base station and a number of

mobile terminals (i.e., users) each with a single receive antenna. From an information

theoretic model, the downlink corresponds to the case of a broadcast channel [57]. We

consider the maximum achievable sum data rates in the case of (1) zero-forcing spatial

pre-filter, (2) modified zero-forcing spatial pre-filter and (3) triangularization spatial

pre-filtering coupled with dirty paper coding transmission scheme [40]. To the best of

our knowledge, most of the previously reported studies assume perfect knowledge of the

channel state (i.e., response) at the transmitter. Transmitter beamforming solutions

that use partial knowledge of the channel (i.e., its mean and variance) have also been

studied [58]. In this chapter we study the performance of the transmitter optimization

schemes with respect to delayed CSI. A multiple input single output (MISO) channel

model is introduced modeling temporal and spatial correlations. We show how the

performance of the schemes depends on spatial correlations and the CSI delay. To ex-

ploit spatial and temporal correlations a linear MMSE predictor of the channel state is

introduced. We show that the application of the MMSE predictor can further improve

performance of the schemes for delayed CSI.



24

3.1 System Model and Transmitter Optimization Schemes

In the following we introduce the system model. We use a MIMO model [1] that

corresponds to a system presented in Figure 3.1. It consists of M transmit antennas

and N mobile terminals. In other words each mobile terminal presents a MISO channel

as seen from the base station.

Figure 3.1: System model consisting of M transmit antennas and N mobile terminals.

In Figure 3.1, xn is the information bearing signal intended for mobile terminal n

and yn is the received signal at the corresponding terminal (for n = 1, · · · , N). The

received vector y = [y1, · · · , yN ]T is

y = HSx + n,

y ∈ CN ,x ∈ CN ,n ∈ CN ,S ∈ CM×N ,H ∈ CN×M (3.1)

where x = [x1, · · · , xN ]T is the transmitted vector (E[xxH] = Pav IN×N ), n is AWGN

(E[nnH] = N0 IN×N ), H is the MIMO channel response matrix, and S is a transforma-

tion (spatial pre-filtering) performed at the transmitter. Note that the vectors x and

y have the same dimensionality. Further, hnm is the nth row and mth column element

of the matrix H corresponding to a channel between mobile terminal n and transmit

antenna m.

Application of the spatial pre-filtering results in the composite MIMO channel G
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given as

G = HS, G ∈ CN×N (3.2)

where gnm is the nth row and mth column element of the composite MIMO channel

response matrix G. The signal received at the nth mobile terminal is

yn = gnnxn︸ ︷︷ ︸
Desired signal for user n

+
N∑

i=1,i6=n

gnixi

︸ ︷︷ ︸
Interference

+ nn. (3.3)

In the above representation, the interference is the signal that is intended for other

mobile terminals than terminal n. As said earlier, the matrix S is a spatial pre-filter at

the transmitter. It is determined based on optimization criteria that we address later

in the text and has to satisfy the following constraint

trace
(
SSH

)
≤ N (3.4)

which keeps the average transmit power conserved. We represent the matrix S as

S = AP, A ∈ CM×N ,P ∈ CN×N (3.5)

where A is a linear transformation and P is a diagonal matrix. P is determined such

that the transmit power remains conserved. Considering different forms of the matrix

A we study the following solutions.

1. Zero-forcing (ZF) spatial pre-filtering scheme where A is represented by

A = HH(HHH)−1. (3.6)

As can be seen, the above linear transformation is zeroing the interference be-

tween the signals dedicated to different mobile terminals, i.e., HA = IN×N . The

xn’s are assumed to be circularly symmetric complex random variables having

Gaussian distribution NC(0, Pav). Consequently, the maximum achievable data

rate (capacity) for mobile terminal n is

RZF
n = log2

(
1 +

Pav|pnn|2
N0

)
(3.7)

where pnn is the nth diagonal element of the matrix P defined in (3.5). In (3.6)

it is assumed that HHH is invertible, i.e, the rows of H are linearly independent.
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2. Modified zero-forcing (MZF) spatial pre-filtering scheme that assumes

A = HH
(
HHH +

N0

Pav
I

)−1

. (3.8)

In the case of the above transformation, in addition to the knowledge of the

channel H the transmitter has to know the noise variance N0. The xn’s are

assumed to be circularly symmetric complex random variables having Gaussian

distribution NC(0, Pav). The maximum achievable data rate (capacity) for mobile

terminal n now becomes

RMZF
n = log2

(
1 +

Pav |gnn|2
Pav

∑N
i=1,i6=n |gni|2 +N0

)
. (3.9)

While the transformation in (3.8) appears to be similar in form to a MMSE

linear receiver, the important difference is that the transformation is performed at

the transmitter. Using the virtual uplink approach for transmitter beamforming

(introduced in [32, 33]) we present the following proposition.

Proposition 2 If the nth diagonal element of P is selected as

pnn =
1√

aH
nan

(n = 1, · · · , N) (3.10)

where an is the nth column vector of the matrix A, the constraint in (3.4) is satis-

fied with equality. Consequently, the achievable downlink rate RMZF
n for mobile n

is identical to its corresponding virtual uplink rate when an optimal uplink linear

MMSE receiver is applied.

See Appendix A for a definition of the corresponding virtual uplink and a proof

of the above proposition.

3. Triangularization spatial pre-filtering with dirty paper coding (DPC) where the

matrix A assumes the form

A = HHR−1 (3.11)

where H = (QR)H and Q is unitary and R is upper triangular (see [55] for details

on QR factorization). In general, R−1 is a pseudo inverse of R. The composite
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MIMO channel G in (3.2) becomes G = L = HS, a lower triangular matrix. It

permits application of dirty paper coding designed for single input single output

(SISO) systems. We refer the reader to [25–27, 59–62] for further details on the

DPC schemes.

By applying the transformation in (3.11), the signal intended for terminal 1 is

received without interference. The signal at terminal 2 suffers from the inter-

ference arising from the signal dedicated to terminal 1. In general, the signal

at terminal n suffers from the interference arising from the signals dedicated to

terminals 1 to n− 1. In other words,

y1 = g11x1 + n1,

y2 = g22x2 + g21x1 + n2,

...

yn = gnnxn +
n−1∑

i=1

gnixi + nn,

...

yN = gNNxN +
N−1∑

i=1

gNixi + nN . (3.12)

Since the interference is known at the transmitter, DPC can be applied to mitigate

the interference (the details are given in Appendix B). Based on the results in [59],

the achievable rate for mobile terminal n is

RDPC
n = log2

(
1 +

Pav |gnn|2
N0

)
= log2

(
1 +

Pav |rnnpnn|2
N0

)
(3.13)

where rnn is the nth diagonal element of the matrix R defined in (3.11). Note

that DPC is applied just in the case of the linear transformation in (3.11), with

corresponding rate given by (3.13).

Note that trace(AAH) = N , thereby satisfying the constraint in (3.4). Con-

sequently, we can select P = IN×N and present the following proposition.

Proposition 3 For high SNR (Pav � N0) and P = IN×N , the achievable sum

rate of the triangularization with DPC scheme is equal to the rate of the equivalent
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(open loop) MIMO system. In other words, for Pav � N0

N∑

n=1

RDPC
n = log2

(
det

(
IN×N +

Pav

N0
HHH

))
. (3.14)

Proof: Starting from the right side term in (3.14) and with HHH = RHR, for

Pav � N0

log2

(
det

(
IN×N +

Pav

N0
RHR

))
≈

≈ log2

(
det

(
Pav

N0
RHR

))
=

= log2

(
Pav

N0
|r11|2 · · ·

Pav

N0
|rNN |2

)
=

=
N∑

i=1

log2

(
Pav

N0
|rii|2

)
≈

≈
N∑

i=1

log2

(
1 +

Pav

N0
|rii|2

)
=

=
N∑

n=1

RDPC
n (3.15)

which concludes the proof. 2

The ZF and MZF schemes should be viewed as transmitter beamforming techniques

using conventional channel coding to approach the achievable rates [32,33]. The trian-

gularization with DPC scheme is necessarily coupled with a non-conventional coding,

i.e., the DPC scheme.

Once the matrix A is selected, the elements of the diagonal matrix P are determined

such that the transmit power remains conserved and the sum rate is maximized. The

constraint on the transmit power is

trace
(
APPHAH

)
≤ N. (3.16)

The elements of the matrix P are selected such that

diag(P) = [p11, · · · , pNN ]T = arg max
trace(APPHAH)≤N

N∑

i=1

Rn. (3.17)
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Numerical Results

To evaluate the performance of the above schemes we consider the following baseline

solutions.

1. No pre-filtering is a solution where each mobile terminal is served by one transmit

antenna dedicated to that mobile. This is equivalent to S = I. A transmit antenna

is assigned to a particular terminal corresponding to the best channel (maximum

channel magnitude) among all available transmit antennas and that terminal.

2. Equal resource TDMA and coherent beamforming (denoted as TDMA-CBF) is a

solution where signals for different terminals are sent in different (isolated) time

slots. In this case, there is no interference, and each terminal is using 1/N of the

overall resources. When serving a particular mobile, ideal coherent beamforming

is applied using all M transmit antennas.

3. Closed loop MIMO (using the water pouring optimization on eigen modes) is a

solution that is used as an upper bound on the achievable sum rates. In the

following it is denoted as CL-MIMO. This solution would require that multiple

terminals act as a joint multiple antenna receiver. This solution is not practical

because the terminals are normally individual entities in the network and they do

not cooperate when receiving signals on the downlink.

In Figure 3.2 we present average rates per user versus SNR = 10 log (Pav/N0) for a

system consisting of M = 3 transmit antennas and N = 3 terminals. The channel

is Rayleigh, i.e., the elements of the matrix H are complex independent identically

distributed Gaussian random variables with distribution NC(0, 1). From the figure we

observe the following. The triangularization with DPC scheme is approaching the closed

loop MIMO rates for higher SNR. The MZF solution is performing very well for lower

SNRs (approaching CL-MIMO and DPC rates), while for higher SNRs the rates for

the ZF scheme are converging to the MZF rates. The TDMA-CBF rates are increasing

with SNR, but still significantly lower than the rates of the proposed optimization

schemes. The solution where no pre-filtering is applied clearly exhibits properties of
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an interference limited system (i.e., after a certain SNR, the rates are not increasing).

Corresponding cumulative distribution functions (cdf) of the sum rates normalized by

the number of users are given in Figure 3.3, for SNR = 10dB (see more on the ”capacity

versus outage” approach in [43]).
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Figure 3.2: Average rate per user vs. SNR, M = 3, N = 3, Rayleigh channel.

In Figure 3.4 we present the behaviour of the average rate per user vs. number of

transmit antennas. The average rates are observed for SNR = 10dB, N = 3, and a

variable number of transmit antennas (M = 3, 6, 12, 24). The rates increase with the

number of transmit antennas and the difference between the rates for different schemes

becomes smaller.

As a motivation for the analysis presented in the following sections, we now present

the effects of imperfect channel state knowledge. In practical communication systems,

the channel state H has to be estimated at the receivers, and then fed to the transmitter.

Specifically, mobile terminal n feeds back the estimate of the nth row of the matrix H,

for n = 1, · · · , N . In the case of a time varying channel, this practical procedure

results in noisy and delayed (temporally mismatched) estimates being available to the
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transmit antenna M = 3, 6, 12, 24, Rayleigh channel.
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transmitter to perform the optimization. As said earlier, the MIMO channel is time

varying. Let Hi−1 and Hi correspond to consecutive block faded channel responses.

The temporal characteristic of the channel is described using the correlation

k = E
[
h(i−1)nm h∗inm

]
/Γ (3.18)

where Γ = E[hinmh
∗
inm], and hinm is a stationary random process (for m = 1, · · · ,M

and n = 1, · · · , N , denoting transmit and receive antenna indices, respectively). Low

values of the correlation k correspond to higher mismatch between Hi−1 and Hi. Note

that the above channel is modeled as a first order discrete Markov process. In the case

of the Jakes model, k = J0(2πfdτ), where fd is the maximum Doppler frequency and

τ is the time difference between h(i−1)nm and hinm. In addition, the above simplified

model assumes that there is no spatial correlation.

We assume that the mobile terminals feed back Hi−1 which is used at the base

station to perform the transmitter optimization for the ith block. In other words the

downlink transmitter is ignoring the fact that Hi 6= Hi−1. In Figure 3.5, we present

the average rate per user versus the temporal channel correlation k in (3.18). From

these results we note very high sensitivity of the schemes to the channel mismatch. In

this particular case the performance of the ZF and MZF schemes becomes worse than

when there is no pre-filtering. Note that the above example and the model in (3.18)

is a simplification that we use only to illustrate the schemes’ sensitivity to imperfect

knowledge of the channel state. In the following section we introduce a detailed channel

model incorporating spatial and temporal characteristics.

3.2 Channel Model

In the following we first address the spatial aspects of the channel H. For each mobile

terminal there is a 1 ×M dimensional channel between its receive antenna and the M

transmit antennas at the base station. The MISO channel hn = [hn1 · · · hnM ] for mobile

terminal n (n = 1, · · · , N) corresponds to the nth row of the channel matrix H, and we

assume that it is independent from other channels (i.e., rows of the channel matrix).
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Figure 3.5: Average rate per user vs. temporal channel correlation k, SNR = 10dB, M = 3

(solid lines), M = 6 (dashed lines), N = 3, Rayleigh channel.

Constraining the analysis to two dimensional (2D) space, the nth MISO channel is

hn = [hn(r1) · · · hn(rM )], where rm is the position of the transmit antenna m in the

2D plane. The channel response hn(rm) between transmit antenna m and the receive

antenna of mobile terminal n, is given as a superposition of plane waves

hn(rm) =

∫ π

−π
A(α)e−jk rmdα (3.19)

where k = [ 2π
λ cos(α + αn) 2π

λ sin(α + αn)] is the wave vector of a 2D plane wave in

the direction corresponding to the angle α+αn. Note that αn corresponds to the angle

of the mobile terminal boresight and it is an instantiation of a real random variable

distributed uniformly over the interval [0 2π]. λ is the wavelength of the plane wave.

Furthermore, A(α) is a complex plane wave arriving at the base station antenna from

the angle α relative to αn. In other words, the channel response hn(rm) in (3.19) is an

infinite sum (integral) of all plane waves at the location rm. Further, it is assumed here

that A(α) has the following statistical property

E[A(α)A(β)∗] = P (α)δ(α − β) (3.20)
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where P (α) is the angular power density of the electromagnetic radiation at the base

station. P (α) is also referred to as the power azimuth spectrum [63]. The rms angular

(i.e., azimuth) spread [64] is defined as

AS =

√∫ π

−π
α2P (α)dα. (3.21)

For cellular systems, where the relevant scatterers are more likely to be close to the

mobile terminal, P (α) is typically modeled as a Gaussian distribution shaped function

[64]

P (α) =
κ√
2πσ

e−
α2

2σ2 (3.22)

where the constant κ is determined from the condition
∫ π
−π P (α)dα = 1. Note that

σ ≈ AS (given in (3.21)) when σ � π. Other distributions such as Laplacian have also

been used to model the angular power density (see [63, 65]).

The spatial correlation between two channel responses hn(ri) and hn(rj) correspond-

ing to transmit antennas i and j and mobile terminal n is then given by

φij = E[hn(ri)hn(rj)
∗] =

∫ π

−π
P (α) e−jk(ri−rj)dα. (3.23)

For the given P (α) the correlation φij can be computed numerically from the above

expression. The correlation φij is the ith row and the jth column element of the spatial

correlation matrix

Φn = E[hH
nhn]. (3.24)

To obtain a spatially correlated row vector (i.e., a MISO channel hn)

hn = [n1 · · ·nM ]Φ1/2
n (3.25)

where ni, i = 1, · · · ,M , are complex iid random variables with distribution NC(0, 1). In

general, channels with lower angular spread have higher degree of spatial correlations.

For example, in the extreme case of σ = 0o, the channel has the highest degree of

spatial correlation, resulting in a single eigenvector of the spatial correlation matrix Φn

(i.e., infinitely large condition number of the matrix Φn). On the other hand when the

channel is spatially uncorrelated Φn = IM×M and its condition number is 1.
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The temporal evolution of the spatially correlated MISO channel hn may be repre-

sented as [66, 67]

hn(t) = [1 · · · 1] Dn Nn Φ1/2
n , Dn ∈ CNf×Nf , Nn ∈ CNf×M (3.26)

where Nn is a Nf ×M dimensional matrix with elements corresponding to complex iid

random variables with distribution NC(0, 1/Nf ). Dn is a Nf × Nf diagonal Doppler

shift matrix with diagonal elements

dii = ejωit (3.27)

representing the Doppler shifts that affect Nf plane waves and

ωi =
2π

λ
vn cos (γi), for i = 1, · · · , Nf (3.28)

where vn is the velocity of mobile terminal n and the angle of arrival of the ith plane

wave at the terminal is γi (generated as U [0 2π]).

It can be shown that the model in (3.26) strictly conforms to the Jakes model for

Nf → ∞. This model assumes that at the mobile terminal the plane waves are coming

from all directions with equal probability. With minor modifications, the above model

can be modified to capture non-uniform arrival of the plane waves at the terminal.

Further, note that each diagonal element of Dn corresponds to one Doppler shift. The

matrix Nn Φ
1/2
n is introducing spatial correlations at the base station for each Doppler

shift. For each mobile terminal, Dn and Nn are independently generated.

Let us consider the following MISO channel model

hn(t) =

(
kn(t) n0 +

√
1 − kn(t)2 nt

)
Φ1/2

n (3.29)

where n0 = [n01 · · ·n0M ] and nt = [nt1 · · ·ntM ] with the components n0i and nti (i =

1, · · · ,M) being complex iid random variables with distribution NC(0, 1). Assuming

the Jakes model, kn(t) = J0(2πvnt/λ). Considering the time instant 0 and t, it can

be shown that the models in (3.26) and (3.29) are statistically equivalent as Nf → ∞.

In both cases the components of the vector hn(t) have a zero mean complex Gaussian

distribution and have the same covariance E[hn(t)Hhn(t)] = Φn and E[hn(0)Hhn(t)] =

kn(t)Φn.
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Using the above MISO channel model, the following channel properties relate tem-

poral and spatial characteristics of the channel.

1. The mean squared distance (MSD) between the MISO channel response hn(t)

and hn(0) is a function of time t and does not depend on the spatial correlation

of the channel. In other words

MSDn(t) = E[|hn(t) − hn(0)|2]. (3.30)

Since trace (Φn) = M , it follows that the MSD is

MSDn(t) = 2M(1 − kn(t)). (3.31)

2. The average power of the MISO channel response hn(t) in the direction of hn(0)

(i.e., the projection of hn(t) on hn(0))

ζ(t) =
1

M
E




∣∣∣∣∣∣
hn(0)hn(t)H√
hn(0)hn(0)H

∣∣∣∣∣∣

2

 (3.32)

and it increases with the spatial correlation of the channel. Specifically,

ζ(t) = kn(t)2 + (1 − kn(t)2)

∑M
i=1 ψ

2
ni

M2
(3.33)

where ψni (i = 1, · · · ,M) are eigenvalues of the matrix Φn. Figure 3.6 presents

ζ(t) for different spatial correlations of the channel and also a spatially uncor-

related channel (based on the model in (3.26), fc = 2GHz, v = 30kmph). The

results indicate that ζ(t) is increasing with the spatial correlation (as said earlier,

low values of σ correspond to high spatial correlations).

Numerical Results

In Figure 3.7 and 3.8 we present average rates per user versus the delay τ of the CSI.

The system consists of M = 3 transmit antennas and N = 3 terminals. The channel is

modeled based on (3.26) (assuming that the carrier frequency is 2GHz and the velocity

of each mobile terminal is 30kmph and setting the number of plane waves Nf = 100).

We assume that the transmit antennas form a proper phased array being spaced λ/2
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Figure 3.6: ζ(t) for M = 3 and channel based on model in (3.26), fc = 2GHz, v = 30kmph.

apart. Because the ideal channel state H(t + τ) is not available at the transmitter,

we assume that H(t) is used instead to perform the transmitter optimization at the

moment t+ τ . We observe performance for different spatial correlations of the channel

and for the spatially uncorrelated channel. Figures 3.7 and 3.8 present average rates for

the ZF and MZF scheme respectively, for SNR = 10dB. In all cases, we observe that as

the CSI delay increases, spatially uncorrelated channels perform worse than spatially

correlated channels, which is a result in contrast to the case of zero delay CSI. In the

extreme case of σ = 0o, the average rate is hardly affected by the delay of the CSI,

while for the spatially uncorrelated channels degradation due to the delay is significant.

In the following we outline the explanation of the above results using a subspace

decomposition of the matrix H. Let C̃n(t) for user n denote the subspace spanned

by the row vectors of the channel matrix H other than the nth row. Let us further

define the matrix Bn(t) (Bn(t) ∈ CN−1×M ) such that its row vectors correspond to the

orthonormal basis that spans C̃n(t). We observe the expected valued of the normalized
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Figure 3.7: The ZF scheme, average rate per user vs. CSI delay, SNR = 10dB, M = 3,

N = 3, channel based on model in (3.26), fc = 2GHz, v = 30kmph.
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Figure 3.8: The MZF scheme, average rate per user vs. CSI delay, SNR = 10dB, M = 3,

N = 3, channel based on model in (3.26), fc = 2GHz, v = 30kmph.
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Frobenius norm (|| ||2) of the product of the basis vectors at the instance t and t+ τ

ρn(τ) =
E

[∣∣∣
∣∣∣Bn(t+ τ)Bn(t)H

∣∣∣
∣∣∣
2
]

N − 1
. (3.34)

Figure 3.9 presents ρn(τ) for different spatial correlations of the channel and also a

spatially uncorrelated channel. Note that it can be shown that in the static case ρn(τ) =

1, while for the case of fully independent H(t) and H(t+τ), ρn(τ) = (N−1)/M . These

two values represent the upper and lower bound of ρn(τ), respectively. Based on Figure

3.9, with respect to the temporal variations of the subspace C̃n(t), the case of σ = 0 is

equivalent to the static case (having the upper bound of ρn(τ) for all τ). Furthermore,

the spatially uncorrelated channel is approaching the case of independent H(t) and

H(t+ τ) for large τ (approaching the lower bound of ρn(τ)).
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Figure 3.9: ρn(τ) for M = 3, N = 3 and channel based on model in (3.26), fc = 2GHz,

v = 30kmph.

What this shows is that under the case of strong spatial correlations, the subspace

C̃n(t) is relatively stable (i.e., changing slowly in time). As a result, any transmitter

optimization (pre-filtering) scheme is relatively robust to temporal delays in the CSI

feedback. For the case of spatially uncorrelated channels, this robustness is lost leading
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to poorer performance of transmitter optimization.

3.3 Channel State Prediction

Let us assume that the transmitter has a set of previous channel responses (for mobile

terminal n) hn(t) where t = kTch and k = 0,−1, · · ·−(L−1). The time interval Tch may

correspond to a period when a new CSI is sent from the mobile terminal to the base

station. Knowing that the wireless channel has temporal and spatial correlations, based

on previous channel responses the transmitter may perform a prediction of the channel

response hn(τ) at the time moment τ . In this study we assume that the prediction

is linear and that it minimizes the mean squared error (MMSE) between true and

predicted channel state. The MMSE predictor Wn is

Wn = argT min E|THhun − hn(τ)H|2 (3.35)

where hun is an uber vector defined as

hun = [hn(0) hn(−Tch) · · ·hn(−(L− 1)Tch)]T. (3.36)

In other words, the uber vector is constructed by stacking up the previous channel

responses available to the transmitter. Let us define the following matrices

Un = E
[
hunh

H
un

]
(3.37)

and

Vn = E [hunhn(τ)] . (3.38)

It can be shown that the linear MMSE predictor Wn is [68]

Wn = U−1
n Vn. (3.39)

The above predictor exploits both temporal and spatial correlations of the MISO chan-

nel. Note that different linear predictors are needed for different mobile terminals.

A practical implementation of the above prediction can use sample estimates of Un

and Vn as

Ûn =
1

Nw

−1∑

i=−Nw

hun(iTch)hun(iTch)H (3.40)
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V̂n =
1

Nw

−1∑

i=−Nw

hun(iTch)hn(τ + iTch). (3.41)

The underlying assumption in using the above estimates is that the channel is stationary

over the integration window NwTch. Further, if the update of the CSI is performed at

discrete time moments kTch (k = 0,−1, · · ·), the update period Tch should be such that

Tch <
1

2fdoppler
. (3.42)

Numerical Results

In Figure 3.10 we present the normalized mean square error between assumed and true

channel state versus the CSI delay τ (assuming that the carrier frequency is 2GHz and

the velocity of each mobile terminal is 30kmph and Nf = 100). The normalized error

is computed using the Frobenius norm for both the case of no prediction and MMSE

prediction. The solid lines correspond to E||H(t+τ)−H(t)||2/E||H(t+τ)||2 (case with-

out the MMSE prediction) while dashed lines correspond to E||H(t+ τ) −Hmmse(t+

τ)||2/E||H(t+ τ)||2 (case with the MMSE prediction) where Hmmse(t+ τ) denotes the

predicted channel state. We set Tch = τ , corresponding to the worst case delay. The

results are presented for channels with different spatial correlations. Note that in the

case when no prediction is applied, the normalized error is the same for any degree of

spatial correlations and Figure 2.8 shows three curves (corresponding to σ = 0o, σ = 8o

and spatially uncorrelated) all laying on each other. This result conforms to the prop-

erty in (3.31). Further we note that the MMSE prediction greatly improves the quality

of the assumed channel state. As expected, we also note that channels with higher

degrees of spatial correlation result in lower normalized mean square error when the

prediction is applied. Beyond a certain value of the CSI delay τ , the MMSE prediction

performs equally well for channels with high and low spatial correlations.

Using the same system assumptions as in Figure 3.7 and 3.8, in Figure 3.11 and

3.12 we present average rates per user versus the delay τ of the CSI. Results depicted

by the solid lines correspond to the application of the delayed CSI H(t) instead of

the true channel state H(t + τ). The dashed lines depict results when the MMSE
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Figure 3.10: Normalized mean squared error between assumed and true channel state vs.

CSI delay, with MMSE prediction (dashed lines) and without MMSE prediction (solid lines),

M = 3, N = 3, channel based on model in (3.26), fc = 2GHz, v = 30kmph.

predicted channel state Hmmse(t+ τ) is used instead of the true channel state H(t+ τ).

Without any particular effort to optimally select the implementation parameters, in

this particular example, we use L = 10 previous channel responses to construct the

uber vectors in (3.36). Further, the length of the integration window in (3.40) and

(3.41) is selected to be Nw = 100. The results in Figure 3.11 and 3.12 clearly point

to improvements in the performance of the schemes when the MMSE channel state

prediction is used. The MMSE prediction scheme is seen to improve the performance

of spatially uncorrelated channels in terms of the maximum CSI delay before which it

deteriorates in comparison to the spatially correlated case. Note that the improvements

are comparable both in the case of low and high spatial correlations. The results suggest

that the temporal correlations in the channel alone are significant enough to support

the application of the MMSE prediction.
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Figure 3.11: The ZF scheme, average rate per user vs. CSI delay, with MMSE prediction

(dashed lines) and without MMSE prediction (solid lines), SNR = 10dB, M = 3, N = 3,

channel based on model in (3.26), fc = 2GHz, v = 30kmph.
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Figure 3.12: The MZF scheme, average rate per user vs. CSI delay, with MMSE prediction

(dashed lines) and without MMSE prediction (solid lines), SNR = 10dB, M = 3, N = 3,

channel based on model in (3.26), fc = 2GHz, v = 30kmph.
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3.4 Conclusion

In this Chapter we have presented a study on multiple antenna transmitter optimization

schemes that are based on linear transformations and transmit power optimization. We

have shown that the triangularization with DPC approaches the closed loop MIMO rates

(upper bound) for higher SNR. Further, the MZF solution performs very well for lower

SNRs (approaching CL-MIMO and DPC rates), while for higher SNRs the rates for the

ZF scheme converge to the MZF rates. In addition, we have presented how the average

rates depend on number of transmit antennas, while keeping the number of terminals

constant. With the number of transmit antennas increasing the rates increase, and

the difference between the rates for different schemes gets smaller. Further, we have

studied the performance of the transmitter optimization schemes with respect to the

delayed CSI. It was seen that as the CSI delay increases, spatially uncorrelated channels

perform worse than spatially correlated channels, which is in contrast to the case of zero

delay CSI. A linear MMSE predictor of the channel state was also introduced which

improved the performance in all cases. Further, we have shown that the predictor

increases the tolerable maximum CSI delay for which the performance on spatially

uncorrelated channels is higher than that of the correlated case. The results have

suggested that the temporal correlations in the channel alone are significant enough to

support the application of the MMSE prediction.
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Chapter 4

Unquantized and Uncoded Channel State Information

Feedback on Wireless Channels

In this chapter we consider a system where a mobile terminal obtains the downlink CSI

and feeds it back to the base station using an uplink feedback channel. If the down-

link channel is an independent Rayleigh fading channel, then the CSI may be viewed

as an output of a complex independent identically distributed (iid) Gaussian source.

Further if the uplink feedback channel is AWGN, it can be shown that unquantized

and uncoded (UQ-UC) CSI transmission (that incurs zero delay) is optimal in that it

achieves the same minimum mean squared error (MMSE) distortion as a scheme that

optimally (in the Shannon sense) quantizes and encodes the CSI while incurring infi-

nite delay [42]. Results on the optimality of unquantized and uncoded transmission

have also been discussed in other contexts in [69–71]. Since the UQ-UC transmission is

suboptimal on correlated wireless channels, we propose a simple linear CSI feedback re-

ceiver that can be used in conjunction with the UQ-UC transmission while still retaining

the attractive zero-delay feature. Furthermore, we describe an auto regressive-moving

average (ARMA) correlated channel model and present the corresponding performance

bounds for the UQ-UC CSI feedback scheme. We explore the performance limits of

such schemes in the context of multiple antenna multiuser wireless systems [42].

4.1 Background

Consider the communication system in Figure 4.1. The system is used for transmis-

sion of unquantized and uncoded outputs (i.e., symbols) of the source. The source is

complex, continuous in amplitude and discrete in time (with the symbol period Tsym).

We assume that the symbols x are zero-mean with unit variance. The average transmit
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power is P , while the channel introduces additive zero-mean noise n with variance N0.

At the receiver, the received signal y is multiplied by the conjugate of w. Consequently,

the signal x̂ at the destination is

x̂ = w∗y = w∗
(√

Px+ n
)

(4.1)

and x̂ is an estimate of the transmitted symbol x. We select the coefficient w to minimize

the mean squared error (MSE) between x̂ and x. Thus,

w = arg min E|x̂− x|2 = argv min E|v∗
(√

Px+ n
)
− x|2. (4.2)

Consequently,

w =

√
P

P +N0
(4.3)

and the corresponding mean squared error is

min E|x̂− x|2 =
1

1 + P
N0

. (4.4)

The MSE corresponds to a measure of distortion between the source symbols and

estimates at the destination.

Figure 4.1: Unquantized and uncoded transmission that achieves the MMSE distortion of the

transmitted signal.

Let us now relate the above results to the transmission scheme that applies optimal

quantization and channel coding. Based on the Shannon rate distortion theory [57],

for a given distortion D∗, the average number of bits per symbol at the output of the

optimal quantizer is

R = log2

(
1 +

1 −D∗

D∗

)
. (4.5)
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Note that the optimal quantizer that achieves the above rate incurs infinite quantization

delay. For the AWGN channel, the maximum transmission rate is

C = log2

(
1 +

P

N0

)
. (4.6)

As in the case of the optimal quantizer, the optimal channel coding would incur infinite

coding delay. Furthermore, optimal matching (in the Shannon sense) of the quantizer

and the channel requires that

R = C ⇒ D∗ = 2−C =
1

1 + P
N0

. (4.7)

The above distortion is equal to the MSE for the UQ-UC transmission scheme given in

(4.4) (see also [70]). The above result points to the optimality of the UQ-UC scheme

(while it incurs zero delay) when the source is iid Gaussian and the channel is AWGN.

4.2 UQ-UC CSI Feedback

Using the above result, we now motivate why UQ-UC transmission schemes can be

used for CSI feedback in wireless systems. Consider the communication system shown

in Figure 4.2. It consists of a base station transmitting data over a downlink channel.

A mobile terminal receives the data, and transmits the CSI of the downlink channel

state hdl over an uplink channel. Let us assume that the mobile terminal estimates the

downlink CSI hdl perfectly. If the downlink channel is iid Rayleigh, then the CSI is an

iid complex Gaussian random variable. In this case, if the uplink channel is AWGN

and it is independent of the downlink channel, then it follows directly from the earlier

discussion that the above UQ-UC scheme is optimal for transmission of the downlink

CSI over the uplink channel. In other words, for the communication system shown

in Figure 4.2, UQ-UC transmission (with zero delay) of the downlink CSI will achieve

the same distortion as a scheme that optimally (in the Shannon sense) quantizes and

encodes the CSI while incurring infinite delay.

To further distinguish the fact that the UQ-UC CSI feedback transmission does not

imply an ”analog” communication1 system, we now illustrate an example of how such a

1While we use the term unquantized (UQ) in the UQ-UC nomenclature, it must be pointed out that
any practical transmission scheme will require at least some level of coarse quantization.
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Figure 4.2: Communication system with CSI feedback.

scheme could be applied in the context of a CDMA system. The functional blocks of the

mobile terminal in a CDMA system are depicted in Figure 4.3. Using a pilot assisted

estimation scheme, the mobile terminal obtains an estimate of the downlink channel

hdl, denoted as h̄dl. The downlink channel estimate h̄dl is the CSI to be transmitted on

the uplink channel hul. The estimate h̄dl modulates (i.e., multiplies) a Walsh code that

is specifically allocated as a CSI feedback carrier as shown in Figure 4.3. The second

Walsh code is allocated for the conventional uplink data transmission. For generality,

the uplink pilot is also transmitted allowing the base station to obtain an estimate h̄ul

of the uplink channel hul.

4.3 UQ-UC CSI Feedback on Correlated Channels

The MSE distortion achieved by the UQ-UC CSI feedback transmission scheme is opti-

mal when the downlink is iid Rayleigh and the uplink is AWGN, and further, the uplink

and the downlink are also mutually independent. In reality, there may the following

situations that arise in wireless systems: (1) temporal correlations in the downlink chan-

nel, (2) temporal correlations in the uplink channel, and (3) correlations between the
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Figure 4.3: CDMA mobile terminal that applies the UQ-UC CSI feedback.
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uplink and the downlink channels (as is in TDD systems). In each of these cases, it is of

interest to quantify the MSE distortion achieved by the UQ-UC CSI feedback. Since,

an exact analysis is not readily tractable, we propose to quantify such performance

through upper and lower bounds in each of the above scenarios.

4.3.1 Performance Bounds

Let us assume the uplink and downlink channel states are independent (which is typical

in FDD wireless systems). Both the uplink and downlink channels are varying in time

and are assumed to be ergodic. If the scheme shown in Figure 4.1 is now applied on

the CSI feedback channel (explicitly accounting for the uplink channel state hul), then

it follows that the MSE is

MSEub
uq−uc = Ehul


 1

1 +
|hul|2P csi

ul

N0


 . (4.8)

Clearly this serves as an upper bound on the MSE achieved by any additional process-

ing that accounts for both the downlink and the uplink CSI feedback channel being

correlated channels.

To illustrate an approach to derive a lower bound, consider an Lth order auto

regressive-moving average (ARMA) process model for the downlink channel as

hdl(i) =
L∑

j=1

cjhdl(i− j) + c0 ndl(i), (4.9)

where ndl(i) is a complex Gaussian random variable with distribution NC(0, 1). The

coefficients cj (j = 0, · · · , L) determine the correlation properties of the channel. ndl(i)

is the innovation sequence that describes the evolution to successive channel states.

The above model gives a general framework for describing the correlations in the down-

link channel states through the coefficients cj (j = 0, · · · , L). Furthermore, using an

approach outlined in [42] and Appendix C, it is possible to explictly approximate the

well known the Jakes correlated fading model by relating parameters such as carrier

frequency and mobile speed to the ARMA model coefficients and the channel update

interval.
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Let us assume that the above model and the previous channel states hdl(i− j) (j =

1, · · · , L) are known at the CSI feedback transmitter and receiver. In this idealized case,

having only the innovation ndl(i) transmitted over the uplink CSI feedback channel,

the receiver can estimate the channel state hdl(i). Similar to the arguments related to

equations (4.5) - (4.7), the optimal quantization and channel coding of the innovation

ndl(i) results in its MSE

E|n̂dl(i) − ndl(i)|2 = 2−C̄ul , (4.10)

where n̂dl(i) is an estimate of ndl(i) at the receiver and C̄ul is the ergodic capacity of

the uplink channel given as

C̄ul = Ehul

[
log2

(
1 +

|hul|2P csi
ul

N0

)]
. (4.11)

Based on (4.9) and (4.10), it can be shown that the MSE of hdl(i) is lower bounded as

E|ĥdl(i) − hdl(i)|2 ≥ c202
−C̄ul . (4.12)

Since this bound is obtained using idealized knowledge of the previous channel states

and also a channel coding scheme that achieves the ergodic capacity of the uplink

channel, we expect it to be loose. However, the procedure outlined above leads us to

believe that it is possible to obtain not only tighter bounds but also bounds for channels

beyond the scenario outlined above, i.e., ergodic and mutually independent uplink and

downlink channels where the downlink obeys the model in (4.9).

4.3.2 Feedback Receivers for Enhancing UQ-UC CSI Feedback Schemes

While the previous section considered the performance limits of the MSE distortion

achieved by the UQ-UC CSI feedback transmission, in this section we will outline

signal processing techniques that could be used to improve the performance of UQ-

UC schemes. The specific approach that we propose is to design receivers on the

CSI feedback channel that can exploit the channel correlations and thus improve the

performance in cases where the UQ-UC CSI feedback transmission is suboptimal. We

illustrate such an approach through the design of a linear CSI feedback receiver in the

following.
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Consider a signal/system model, where at the time instant i, the uplink received

signal corresponding to the CSI feedback is

y(i) = hul(i)h̄dl(i) + n(i) (4.13)

where hul(i) is the uplink channel state, h̄dl(i) is the estimate of the downlink CSI that

is being fed back and n(i) is the AWGN on the uplink. For simplicity in illustration, let

us assume in the following that the estimate h̄dl(i) is perfect, i.e., h̄dl(i) = hdl(i). Using

the received signal in (4.13) and an estimate of h̄ul(i), the CSI feedback receiver at the

base station will estimate the transmitted CSI hdl(i). Now the question that remains

is how to design such a feedback receiver?

Consider a linear CSI feedback receiver that can exploit the correlation structure

in the following way. The uplink received signal in (4.13) is used to form a temporal

K-dimensional received vector as

y(i) = [y(i) y(i− 1) · · · y(i−K + 1)]T. (4.14)

The uplink receiver then estimates the downlink CSI hdl(i) as

ĥdl(i) = wHy(i) (4.15)

where w is a linear filter that is derived from the following MMSE optimization

w = argv min E|vHy(i) − hdl(i)|2. (4.16)

For the given estimates of the uplink channel h̄ul(i) = [h̄ul(i)h̄ul(i−1) · · · h̄ul(i−K+1)]T

we define the following matrix

U = Ey|h̄ul

[
y yH

]
(4.17)

and the vector

s = Ehdl, y|h̄ul
[h∗dl y] . (4.18)

In the above, we have omitted the temporal index i since we assume a stationary system

(i.e., the uplink channel, downlink channel and the AWGN are assumed to be stationary
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random processes). It can be shown that the linear MMSE CSI feedback receiver w is

given as

w = U−1s. (4.19)

As is evident from the equations (4.17)-(4.19), the linear transformation w takes into

account implicitly the following correlations: (1) temporal correlations in the down-

link channel, (2) temporal correlations in the uplink channel and (3) the correlations

between the uplink and the downlink (as is in TDD systems). In fact, when K = 1

and the uplink and the downlink are mutually independent, then the above receiver

will achieve the MSE distortion upper bound in equation (4.8). In all other cases, the

performance will be superior, thereby enhancing the performance of the UQ-UC CSI

feedback transmission.

4.3.3 Numerical Results: Distortion Performance

We consider the case when the uplink and the downlink channels are mutually indepen-

dent. Further, the downlink channel is modeled as an ARMA process whose coefficients

are chosen to correspond to the Jakes model for a carrier frequency of 2GHz and a mo-

bile terminal velocity of 10kmph. For the uplink, we assume that the channel is Rayleigh

with an average SNRcsi
ul = 10 log (P csi

ul /N0) = 10dB. In Figure 4.4 we show the MSE

of the UQ-UC scheme with the linear CSI feedback receiver as a function of the CSI

update period τ , where τ is the absolute time difference between successive channel

states hdl(i) and hdl(i−1). The corresponding lower and upper bounds are also shown.

Figure 4.5 shows the MSE of the same scheme as a function of the CSI update period

τ for different mobile terminal velocities. These results show that the linear receiver

(for K = L + 1) in combination with the UQ-UC transmission is able to exploit the

temporal correlations in the channel and improve the performance relative to the lower

bound. Note that when either the mobile terminal velocities are low or the CSI update

period is small, the improvement is greater.
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4.4 Case Study: UQ-UC CSI Feedback for Transmitter Optimization

in Multiple Antenna Multiuser Systems

The discussion thus far has focused on performance limits and enhancements from

the point of view of the MSE distortion achieved due to the UQ-UC CSI feedback

transmission. A more direct performance issue that needs to be considered is the

overall capacity of a system that actually uses the CSI feedback information. We

will consider the UQ-UC CSI feedback in a multiple antenna multiuser system. As

an example (previously presented in Chapter 3), consider the system shown in Figure

4.6, where there are M transmit antennas at the base station and N single-antenna

mobile terminals. In the above model, xn is the information bearing signal intended

for mobile terminal n and yn is the received signal at the corresponding terminal (for

n = 1, · · · , N). The received vector y = [y1, · · · , yN ]T is

y = HSx + n,

y ∈ CN ,x ∈ CN ,n ∈ CN ,S ∈ CM×N ,H ∈ CN×M (4.20)

where x = [x1, · · · , xN ]T is the transmitted vector (E[xxH] = Pdl IN×N ), n is AWGN

(E[nnH] = N0 IN×N ), H is the MIMO channel response matrix, and S is a transforma-

tion (spatial pre-filtering) performed at the transmitter. Note that the vectors x and

y have the same dimensionality. Further, hnm is the nth row and mth column element

of the matrix H corresponding to a channel between mobile terminal n and transmit

antenna m.

Application of the spatial pre-filtering results in the composite MIMO channel G

given as

G = HS, G ∈ CN×N (4.21)

where gnm is the nth row and mth column element of the composite MIMO channel

response matrix G. The signal received at the nth mobile terminal is

yn = gnnxn︸ ︷︷ ︸
Desired signal for user n

+
N∑

i=1,i6=n

gnixi

︸ ︷︷ ︸
Interference

+ nn. (4.22)
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Figure 4.6: System model consisting of M transmit antennas and N mobile terminals.

In the above representation, the interference is the signal that is intended for other

mobile terminals than terminal n. As said earlier, the matrix S is a spatial pre-filter at

the transmitter. It is determined based on optimization criteria that we address later

in the text and has to satisfy the following constraint

trace
(
SSH

)
≤ N (4.23)

which keeps the average transmit power conserved. We represent the matrix S as

S = AP, A ∈ CM×N ,P ∈ CN×N (4.24)

where A is a linear transformation and P is a diagonal matrix. P is determined such

that the transmit power remains conserved. We study the zero-forcing (ZF) spatial

pre-filtering scheme where A is represented by

A = HH(HHH)−1. (4.25)

As can be seen, the above linear transformation is zeroing the interference between

the signals dedicated to different mobile terminals, i.e., HA = IN×N . The xn’s are

assumed to be circularly symmetric complex random variables each having Gaussian

distribution NC(0, Pdl). Consequently, the maximum achievable data rate (capacity)

for mobile terminal n is

RZF
n = log2

(
1 +

Pdl|pnn|2
N0

)
(4.26)
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where pnn is the nth diagonal element of the matrix P defined in (4.24). The elements

of the matrix P are selected such that

diag(P) = [p11, · · · , pNN ]T = arg max
trace(APPHAH)≤N

N∑

i=1

Rn. (4.27)

For more details on the spatial pre-filtering, see Chapter 3 and [40, 72].

To perform the above spatial pre-filtering, the base station obtains CSI correspond-

ing to each downlink channel state hnm. The CSI is obtained from each mobile ter-

minal using the UQ-UC CSI feedback. In other words, at time instant i, terminal n

(n = 1, · · · , N) is transmitting the corresponding CSI hnm(i) (m = 1, · · · ,M) via the

uplink CSI feedback channel. Relating to the analysis in the previous sections, each

hnm(i) corresponds to a different hdl(i). Instead of the ideal channel state hnm(i), the

spatial pre-filter applies the estimate ĥnm(i) obtained from the uplink CSI feedback

receiver.

4.4.1 Numerical Results: Information Rates in Multiuser Systems

In Figure 4.7 we present downlink sum data rates for the downlink data, where SNRdl =

10 log (Pdl/No) = 10dB, and M = 3 and N = 3. The rates are presented as functions

of the mobile terminal velocity using the approximate the Jakes model for carrier fre-

quency 2GHz and the CSI update period τ = 2msec and spatially uncorrelated chan-

nels. Furthermore, the uplink CSI feedback channel is assumed to be iid Rayleigh with

the average SNRcsi
ul = 10dB. In addition, we present the rates for instantaneous ideal

channel knowledge and a delayed ideal channel knowledge (2msec delay) which may

correspond to a practical feedback scheme that quantizes and encodes the CSI. We

note that under the UQ-UC CSI feedback with the linear receiver, the performance is

better for channels with higher correlations (i.e., lower mobile terminal velocities). For

the given update period τ = 2msec and moderate and higher velocities, the UQ-UC

CSI feedback scheme is outperforming the case of the delayed ideal channel knowledge.

In the above illustration, we have only considered the effect of temporal correlations



58

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

R
at

e 
[b

its
/s

ym
bo

l]

Velocity[kmph]

Instantaneous ideal channel knowledge
UQ−UC upper bound
UQ−UC linear receiver
UQ−UC lower bound
Delayed ideal channel knowledge (2msec)
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ul
= 10dB.

in the downlink. Recent work on multiple antenna systems has revealed the impor-

tance of spatial correlations [63, 65–67] that can also significantly affect transmitter

optimization schemes [72].

4.5 Conclusion

In this chapter we have considered a system where a mobile terminal obtains the down-

link CSI and feeds it back to the base station using an uplink feedback channel. If

the downlink channel is an independent Rayleigh fading channel, then the CSI may be

viewed as an output of a complex independent identically distributed Gaussian source.

Further, if the uplink feedback channel is AWGN, we have shown that unquantized

and uncoded CSI transmission (that incurs zero delay) is optimal in that it achieves

the same minimum mean squared error distortion as a scheme that optimally quantizes

and encodes the CSI while incurring infinite delay. Furthermore, we presented the zero-

delay UQ-UC CSI feedback scheme on correlated wireless channels. Since the UQ-UC
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transmission is suboptimal in this case, we have proposed a simple linear CSI feedback

receiver that exploits the correlations while still retaining the attractive zero-delay fea-

ture. Furthermore, we described the ARMA correlated channel model and presented

the corresponding performance bounds for the UQ-UC CSI feedback scheme. We have

shown that the linear receiver exploits the temporal correlations in the channel, re-

sulting in lower MSE values when either the mobile terminal velocities are low or the

CSI update period is small. We explored the performance limits of the scheme in the

context of downlink multiple antenna, multiuser transmitter optimization.
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Chapter 5

Conclusion

In this thesis we have studied the fundamental limits of multiple antenna multiuser

systems in the following contexts: (1) pilot-assisted channel state estimation, (2) trans-

mitter optimization with delayed CSI and (3) CSI feedback schemes.

We first have studied how the estimation error of the frequency-flat time-varying

channel response affects the performance of a MIMO communication system. Using

a block-fading channel model, we have connected results of information theory with

practical pilot estimation for such systems. The presented analysis may be viewed as

a study of mismatched receiver and transmitter algorithms in MIMO systems. We

have considered two pilot based schemes for the estimation. The first scheme uses a

single pilot symbol per block with different power than the data symbol power. The

second scheme uses more than one pilot symbol per block, whose power is the same

as the data symbol power. We have presented how the achievable data rates depend

on the percentage of the total power allocated to the pilot, background noise level and

the channel coherence time length. Our results have shown that the first pilot-based

approach is less sensitive to the fraction of power allocated to the pilot. Furthermore,

we have observed that as the number of transmit antennas increase, the sensitivity

to the channel response estimation error is more pronounced (while keeping the same

number of receive antennas). The effects of the estimation error are evaluated in the

case of the estimates being available at the receiver only (open loop), and in the case

when the estimates are fed back to the transmitter (closed loop) allowing water pouring

transmitter optimization. In the case of water pouring transmitter optimization and

the corresponding rates, we have not observed significant gains versus the open loop

rates for the channel models considered here. Further, we observe that in certain cases,
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it is better to use the open loop scheme as opposed to the closed loop scheme. The

analysis presented here can be used to optimally allocate pilot power for various system

and channel operating conditions, and to also determine the effectiveness of closed loop

feedback.

Next, we have presented a study on multiple antenna transmitter optimization

schemes that are based on linear transformations and transmit power optimization.

We have shown that the triangularization with DPC approaches the closed loop MIMO

rates (upper bound) for higher SNR. Further, the MZF solution performs very well

for lower SNRs (approaching CL-MIMO and DPC rates), while for higher SNRs the

rates for the ZF scheme converge to the MZF rates. In addition, we have shown how

the average rates depend on number of transmit antennas, while keeping the number

of terminals constant. With the number of transmit antennas increasing the rates in-

crease, and the difference between the rates for different schemes gets smaller. Further,

we have studied the performance of the transmitter optimization schemes with respect

to the delayed CSI. It was seen that as the CSI delay increases, spatially uncorrelated

channels perform worse than spatially correlated channels, which is in contrast to the

case of zero delay CSI. A linear MMSE predictor of the channel state was also intro-

duced which improved the performance in all cases. Further, we have shown that the

predictor increases the tolerable maximum CSI delay for which the performance on

spatially uncorrelated channels exceeds that of the correlated case. The results have

suggested that the temporal correlations in the channel alone are significant enough to

support the application of the MMSE prediction.

Finally, we have considered a system where a mobile terminal obtains the downlink

CSI and feeds it back to the base station using an uplink feedback channel. If the

downlink channel is an independent Rayleigh fading channel, then the CSI may be

viewed as an output of a complex independent identically distributed Gaussian source.

Further, if the uplink feedback channel is AWGN, we have shown that unquantized

and uncoded CSI transmission (that incurs zero delay) is optimal in that it achieves

the same minimum mean squared error distortion as a scheme that optimally quantizes

and encodes the CSI while incurring infinite delay. Furthermore, we presented the
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zero-delay UQ-UC CSI feedback scheme on correlated wireless channels. Since the

UQ-UC transmission is suboptimal in this case, we have proposed a simple linear CSI

feedback receiver that exploits the correlations while still retaining the attractive zero-

delay feature. Furthermore, we described the ARMA correlated channel model and

presented the corresponding performance bounds for the UQ-UC CSI feedback scheme.

We have shown that the linear receiver exploits the temporal correlations in the channel,

resulting in lower MSE values when either the mobile terminal velocities are low or the

CSI update period is small. We explored the performance limits of the scheme in the

context of downlink multiple antenna multiuser transmitter optimization.

5.1 Future Directions

In this section we briefly outline potential future topics that are extensions of the work

presented in this thesis.

Considering the pilot-assisted channel state estimation (in Chapter 2), the following

topics seem promising.

1. Motivated by the achievable data rates in the case of zero pilot power (e.g., see

results in Figure 2.3), analysis and design of differential transmission schemes

appears to be of interest. Furthermore, considering the importance of the low SNR

regime and/or very high mobility, understanding performance limits of ON/OFF

keying and its comparison to pilot-assisted or differential schemes may be a topic

of future study.

2. The independent block fading channel model could be extended to more realistic

temporally and spatially correlated channel models that are, for example, pre-

sented in Chapter 3. Understanding its implication on open loop (in particular

the aspect of continuous channel variations) and closed loop (in particular the

aspect of temporal and spatial correlations) systems could be of interest.

Regarding the transmitter optimization with delayed CSI (in Chapter 3), the fol-

lowing topics may be of interest.
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1. TDD uplink/downlink multiplexing directly allows the transmitter to obtain the

CSI. Consequently, an analysis of TDD wireless systems is needed. In particular,

joint channel response estimation for multiple uplink asynchronous transmission

may be a topic of future studies.

2. Environments that offer narrow angular spread should be considered because they

may allow a base station to obtain downlink CSI without explicit feedback from a

mobile terminal (estimating a partial downlink CSI based on the uplink CSI). This

scenario is of particular importance in FDD cellular systems [73] and it deserves

further study.

3. Further analysis and improvements of the channel state prediction schemes are

needed. For example, their validation using real propagation measurements may

be of interest.

We believe that the presented study on the UQ-UC CSI feedback scheme (in Chapter

4) offers a number of research topics. In the following we list just a few.

1. Motivated by the performance bounds presented in Chapter 4, future work could

result in CSI feedback schemes that further approach them.

2. There is a need for understanding the trade-off between resources (e.g., power,

time and spectrum) allocated to the pilots and the CSI feedback versus the re-

sources of the data carrying signals on the downlink and uplink. For example,

having more resources allocated to the pilots and the CSI feedback reduces the

distortion of the CSI at the base station. However, since the resources are finite,

this correspondingly lowers the resources available for the data carrying signals

(lowering the uplink and downlink rate). Due to these opposing trends, how to

optimize the resource allocation may be a subject of further studies.

3. Another future issue of interest is to compare the presented UQ-UC CSI feedback

scheme to different schemes that use quantization (i.e., source coding) and channel

coding optimized for a given delay constraint.
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Chapter A

Virtual Uplink and Proof of Proposition 2

Let us describe the corresponding virtual uplink for the system in Figure 3.1. Let

x̄n be the uplink information bearing signal transmitted from mobile terminal n (n =

1, · · · , N) and ȳm be the received signal at themth base station antenna (m = 1, · · · ,M).

x̄n are assumed to be circularly symmetric complex random variables having Gaussian

distribution NC(0, Pav). Further, the received vector ȳ = [ȳ1, · · · , ȳM ]T is

ȳ = H̄x̄ + n̄ = HHx̄ + n̄,

ȳ ∈ CM , x̄ ∈ CN , n̄ ∈ CM , H̄ ∈ CM×N (A.1)

where x̄ = [x̄1, · · · , x̄N ]T is the transmitted vector (E[x̄x̄H] = Pav IN×N ), n̄ is AWGN

(E[n̄n̄H] = N0 IM×M) and H̄ = HH is the uplink MIMO channel response matrix.

It is well known that the MMSE receiver is the optimal linear receiver for the uplink

(multiple access channel) [74, 75]. It maximizes the received SINR (and rate) for each

user. The decision statistic is obtained after the receiver MMSE filtering as

x̄dec = WHȳ (A.2)

where the MMSE receiver is

W =

((
HHH +

N0

Pav
I

)−1

H

)H

= HH
(
HHH +

N0

Pav
I

)−1

. (A.3)

Proof of Proposition 2

Note that W = A in (3.8), for the MZF transmitter spatial pre-filtering. Let us

normalize the column vectors of the matrix W in (A.3) as

Wnor = WP (A.4)
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where P is defined in (3.10). In other words the nth diagonal element of P is selected

as

pnn =
1√

wH
n wn

(n = 1, · · · , N) (A.5)

where wn is the nth column vector of the matrix W (where wn = an, which is the

column vector of A for n = 1, · · · , N). It is well known that any normalization of the

columns of the MMSE receiver in (A.3) does not change the SINRs. In other words,

the SINR for the nth uplink user (n = 1, · · · , N) is

SINR UL
n =

Pav |wH
n h̄n|2

Pav
∑N

i=1,i6=n |wH
n h̄i|2 +N0wH

n wn

=
Pav|wH

n h̄n|2/(wH
n wn)

Pav
∑N

i=1,i6=n |wH
n h̄i|2/(wH

n wn) +N0

(A.6)

where h̄n is the nth column vector of the matrix H̄. Note that h̄H
n = hn which is the

nth row vector of the downlink MIMO channel H. The corresponding downlink SINR

when the MZF spatial per-filtering is used (with P defined in (3.10)) is

SINRMZF
n =

Pav |hnan|2/(aH
nan)

Pav
∑N

i=1,i6=n |hiai|2/(aH
n an) +N0

. (A.7)

As said earlier, wn = an and h̄H
n = hn. Thus, SINRMZF

n = SINR UL
n for n = 1, · · · , N

leading to identical rates which concludes the proof.
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Chapter B

Dirty Paper Coding

One practical, but suboptimal single-dimensional DPC solution is described in [60,61].

Starting from that solution we introduce the DPC scheme.

The transmitted signal in (3.1) intended for terminal n is

xn = fmod (x̂n − In) (B.1)

where x̂n is the information bearing signal for terminal n and fmod(.) is a modulo

operation (i.e., a uniform scalar quantizer). For a real variable x, fmod(x) is defined as

fmod(x) = ((x+ Z) mod (2Z)) − Z (B.2)

and in the case of a complex variable a + jb, fmod(a + jb) = fmod(a) + jfmod(b).

The constant Z is selected such that E[xnx
∗
n] = Pav . Further, from (3.12), In is the

normalized interference at terminal n

In =
n−1∑

i=1

gnixi/gnn (B.3)

assuming that gnn 6= 0. Note that In is only known at the transmitter. At terminal n

the following operation is performed

fmod (yn/gnn) = x̂n + n∗n (B.4)

where n∗n is a wrapped-around AWGN (due to the nonlinear operation fmod(.)). For

high SNR and with x̂n being uniformly distributed over the single-dimensional region,

the achievable rate is approximately 1.53dB away from the rate in (3.13) [60, 61].

To further approach the rate in (3.13), based on [60], the following modifications

of the suboptimal scheme in (B.1) are needed. The transmitted signal intended for

terminal n is now

xn = fk (x̂n − ξn In + dn) (B.5)
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where fk(.) is a modulo operation over a k-dimensional region. ξn is a parameter to be

optimized (0 < ξn ≤ 1) and dn is a dither (uniformly distributed pseudo noise over the

k-dimensional region). At terminal n the following operation is performed,

fk (yn/gnn) = x̂n + (1 − ξn)un + ξnn
∗
n (B.6)

where n∗n is a wrapped-around AWGN (due to the nonlinear operation fk(.)) and un

is uniformly distributed over the k-dimensional region. For k → ∞ and x̂n being

uniformly distributed over the k-dimensional region, the rate in (3.13) can be achieved

[60]. Further details on selecting ξn and dn are beyond the scope of this thesis. We

refer the reader to [60] and references therein.



68

Chapter C

ARMA Model and Approximation of the Jakes Model

In this appendix we show how for the given correlation between the downlink channel

states, the coefficients c0 to cL of the ARMA model in (4.9) are determined. The

correlation between the downlink channel states is given as

φ(k) = E[hdl(i)hdl(i− k)∗] for |k| ≤ L (C.1)

where φ(−k) = φ(k)∗, and for |k| > L, φ(k) = 0. Further, based on the ARMA model

in (4.9) we form a set of 2L linear equations

φ(0) =
L∑

j=1

cjφ(−j) + c20 (C.2)

and

φ(k) =
L∑

j=1

cjφ(k − j) k = 1, · · · 2L− 1. (C.3)

Let us define the following matrix

Φ =




1 φ(1)∗ φ(2)∗ · · · φ(L)∗

0 φ(0) φ(1)∗ · · · φ(L− 1)∗

...
...

...
...

0 φ(L− 1) φ(L− 2) · · · φ(0)

0 0 φ(L− 1) · · · φ(1)

...
...

...
...

0 0 0 · · · φ(L− 1)




(C.4)

and vectors

c = [c20 c1 · · · cL]T (C.5)

and

f = [φ(0) φ(1) · · · φ(L) 0 · · · 0︸ ︷︷ ︸
L−1

]T. (C.6)
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The above system of linear equations can be rewritten as

f = Φc. (C.7)

By construction, the columns of the matrix Φ are linearly independent. Thus, the least

squares solution of the above linear equation is

c̃ = (ΦH Φ)−1 ΦH f . (C.8)

With c0 ≥ 0, the above solution determines the coefficients c0 to cL of the ARMA model

in (4.9).

To approximate the Jakes model using the finite length ARMA model in (4.9) we

select elements of the vector f as

φ(k) = J0(2πfdkτ), k = 0, · · · , L (C.9)

where fd is the maximum Doppler frequency and τ is the time difference between

successive channel states hdl(i) and hdl(i−1). Satisfying the Nyquist sampling rate the

update period τ should be such that

τ <
1

2fd
. (C.10)

Specifically, in the case of the numerical results in Chapter 4 the length L is selected as

L ≥ 4

τfd
. (C.11)
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