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Abstract

In this paper we propose a multistage nonlinear blind interference cancellation (MS-NL-BIC)

receiver for direct-sequence code-division multiple-access (DS-CDMA) systems. The receiver uses

higher order statistics of the received baseband signal. Specifically, we use the second and fourth

moments of the received signal to determine a component of the received vector that has signifi-

cant mean energy and low variability of the energy, both of which are favorable characteristics for

application in an interference cancellation scheme that uses hard decisions. The structure of the

receiver is multidimensional and can be viewed as a matrix of receivers. Each row in the matrix

consists of receivers that perform (hard decisions) cancellation of successive components that have

significant mean energy and low variability of the energy. The columns of the matrix essentially

resemble multistage receivers that iteratively refine performance from earlier stages. Simulation

results show that unlike linear receivers, the MS-NL-BIC is exceptionally efficient in systems with

strong and highly correlated interferers, as may be the case in overloaded DS-CDMA systems.

Keywords: Blind interference cancellation, successive interference cancellation, iterative refine-

ment.
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1 Introduction

One of the driving forces of the next generation of wireless communications is the demand for

higher data rates and higher capacity of wireless systems. Primary applications of higher data rates

seem to be in the downlink direction (for example, typical internet data traffic such as downloading

of web pages). Furthermore, wideband direct-sequence code-division multiple-access (DS-CDMA)

technology has emerged as one of the most promising candidates for future wireless systems (e.g.,

third generation systems [1, 2]). It is therefore of great interest to investigate the performance of

these systems and its viability for higher data rates envisioned in the future.

In DS-CDMA systems, in general, crosscorrelations between signature (spreading) sequences are

nonzero. This results in the near-far effect where the multiple-access interference (MAI) can disrupt

reception of a highly attenuated desired user signal [3]. Baseband signal processing techniques such

as multiuser detection and interference cancellation have the potential to combat this problem and

provide higher performance at the cost of increasing complexity of the receiver. Rapid progress in

the area of semiconductor technology has resulted in a significant increase in the processing speeds

of core technologies (DSP, FPGA and ASIC device). Advances in VLSI technology, and design of

the algorithms that are optimized with respect to a specific implementation platform, are further

narrowing the gap between the complexity of the algorithms and processing speeds (e.g., solutions

that are presented in [4, 5]). These and other developments suggest that the transceivers in future

wireless systems will employ some form of interference mitigation.

Several multiuser receivers have been proposed (for example, see [6–9]). These receivers are de-

noted as centralized because they require knowledge of parameters (signature sequences, amplitudes

and timing) for all users in the system. Therefore, they are more suitable for processing at the base

station. For the downlink, it is desirable to devise decentralized receivers that exploit the knowl-

edge of the desired user parameters only. The use of short signature sequences simplify the task of

multiuser detection and interference cancellation, since a receiver can adaptively learn (estimate)

the structure of the MAI [10]. Decentralized receivers may be further classified into data aided and

nondata aided receivers. Data aided adaptive multiuser detection is an approach which does not

require prior knowledge of the interference parameters. But, it requires a training data sequence for

every active user. For example, adaptive receivers in [7, 11, 12] are based on the MMSE criterion,
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and the one in [13] is based on minimizing probability of bit-error. More recently, decision feedback

detectors using the MMSE criterion have been proposed [14,15]. Unlike data aided receivers, blind

(or nondata aided) multiuser detectors require no training data sequence, but only knowledge of

the desired user signature sequence and its timing. The receivers treat MAI and background noise

as a random process, whose statistics must be estimated. Majority of blind multiuser detectors

are based on estimation of second order statistics of the received signal. In [16], a blind adaptive

MMSE multiuser detector is introduced (proven to be equivalent to the minimum output energy

(MOE) detector). A subspace approach for blind multiuser detection is presented in [17]; where

both the decorrelating and the MMSE detector are obtained blindly. Further, adaptive and blind

solutions are analyzed in [18], with an overview in [10]. A blind successive interference cancellation

(SIC) scheme, which uses second order statistics, is proposed in [19, 20].

In this paper we propose a novel blind interference cancellation receiver, which assumes knowl-

edge of only the desired user’s signature sequence. The receiver is based on determining that

component of the received signal that has significant mean energy and low variability in the energy.

It applies the minimum variance of energy and maximum mean energy criterion (MVE-MME),

which is described in Section 3. Furthermore, we analyze a relationship between the above crite-

rion and Godard’s dispersion function [21] and constant modulus (CM) criterion [22]. In Section

4, using the MVE-MME criterion, we derive a nonlinear multistage blind interference cancellation

(NL-MS-BIC) receiver. The structure of the NL-MS-BIC receiver is multidimensional and can be

viewed as a matrix of IC stages. Each row in the matrix consists of IC stages that perform the blind

(hard decisions) successive interference cancellation. The columns of the matrix essentially resemble

multistage receivers that iteratively refine performance from earlier stages. This particular multi-

stage structure of the receiver allows concurrent (parallel) execution of the IC stages which makes

it very suitable for implementation using multiprocessor DSP and/or FPGA (or ASIC) platform.

Simulation results are presented in Section 5, and we conclude in Section 6.
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2 Background

The received baseband signal, r(t), in a K-user asynchronous DS-CDMA additive white Gaussian

noise (AWGN) system is

r(t) =
J∑

i=−J

K∑

k=1

Ak bk (i) sk(t− iT − τk) + σn(t) (1)

where Ak is the received amplitude, bk(i) ∈ {−1,+1} is binary, independent and equiprobable data,

sk(t) is the signature sequence which is assumed to have unit energy, τk is the relative time offset,

all for the kth user. T is the symbol period and n(t) is AWGN with unit power spectral density,

with σ being square root of the noise power. 2J + 1 is the number of data symbols per user per

frame.

It is well known that an asynchronous system with independent users can be analyzed as syn-

chronous if equivalent synchronous users are introduced, which are effectively additional interfer-

ers [3]. In this paper we consider the received signal r(t) over only one symbol period that is

synchronous to the desired user (k = 1). The discrete representation for the received signal in (1)

can be written in vector form as

r =
L∑

k=1

Ak bk sk + σ n (2)

where the number of the interferers (L−1 = 2 (K−1)) is doubled due to the equivalent synchronous

user analysis. r, sk and n are vectors in <M , where M is the number of chips per bit.

Consider the nonlinear centralized SIC scheme which is presented in [5, 8]. We now present

a brief outline of the above scheme because its approach to nonlinear interference cancellation is

generalized in this paper and later applied in a blind interference cancellation scheme (Section 4). In

the nonlinear centralized SIC scheme [5, 8] it is assumed that the signature sequences are perfectly

known (centralized approach). The basic operations of the SIC algorithm are (see Figure 1):

1. Detect one user with the conventional detector, i.e., matched filter (MF).

2. Regenerate the baseband signal (vector) for this user.

3. Cancel the regenerated signal (vector) from the received baseband signal.
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Then, this operation is repeated successively for all the users in the system. The idea is that

successive cancellations result in reduced MAI for the remaining users. The received vector rj+1

after stage j of the cancellation is given by

rj+1 = rj − Âj b̂j sj (3)

where rj is the received vector, Âj and b̂j are the corresponding estimates of the amplitude and the

bit, respectively, all for stage j 1. The above implementation of the SIC algorithm is nonlinear in

that it uses hard decisions (b̂j ∈ {−1, 1}) in successive stages. A primary reason why the nonlinear

centralized SIC cannot achieve performance of the single user lower bound (SULB) is due to an

erroneous estimate of bit decision (i.e., b̂j 6= bj). When an error happens, it causes the SIC scheme

to double the interference, which is, of course, undesirable. Furthermore, the doubled interference

propagates through the following IC stages, which degrades the overall performance of the receiver.

For the same reason, this receiver is also not near-far resistant [3]. Further, imperfections in ampli-

tude and delay estimates can lead to the non ideal regeneration and cancellation. Accordingly, to

obtain best results, the user with the highest signal to interference ratio (SIR) should be cancelled

first. This condition is usually relaxed and the user with highest received power is cancelled first,

followed by the second strongest, and so forth [8, 9]. Thus, it is desirable to identify users (or

signature sequences) that have significant power (energy). Note that the SIC scheme requires am-

plitude estimates for the users, which implicitly requires low variability of the amplitude estimates

for perfect cancellation.

Let us now generalize the nonlinear cancellation given by (3). In equation (3), let us replace sj

with a vector vj (not necessarily a signature sequence). Furthermore, we replace Âj with the square

root of the estimate of βj = E[(r>j vj)
2], and b̂j with sgn(r>j vj). Thus, the nonlinear cancellation in

the jth stage is executed as

rj+1 = rj −
√
β̂j sgn(r>j vj) vj (4)

In the following, we propose favorable characteristics of the vector vj to be successfully applied

in the above scheme. We now analyze the estimate of the energy βj of the received signal in the

1Notation: ẑ denotes an estimate of z
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direction of the vector vj. To estimate βj we use sample statistics as

β̂j(n) =
1

N

n∑

m=n−N+1

(r>(m) vj)
2 (5)

where N is the size of the averaging window (number of samples), and n and m are time indices

(will be omitted in the following). It is well known that the error of the estimate in (5) is directly

related to the variance of xj = (r>vj)
2. Using the Chebyshev inequality [23] it can be shown that as

the variance of xj gets lower, the accuracy (mean square error) of the energy estimate is improved:

E[(xj − E[xj])
2] ↓⇒ E

[
(β̂j − βj)2

]
↓ (6)

We can say that for the vector vj that corresponds to xj with lowest variance (among all vectors

in <M), the estimate of the energy is the most reliable, i.e., the mean square error of the energy

estimate is the lowest. Note that the variance of xj is the variance of the energy of the received

vector r in the direction of the vector vj (i.e., variance of squared projection of the vector r onto

the vector vj).

The above analysis leads us to believe that the vector vj which corresponds to the low variability

of the energy and significant mean energy of the vector r in the direction of vj, is desirable for the

nonlinear cancellation given by (4). These characteristics of the vector vj offer reliable estimates

of the corresponding energy βj and sign of r>vj. In the following we present a scheme that blindly

determines (estimates) the vector vj and further applies this vector to realize a multistage nonlinear

interference cancellation scheme.

3 MVE-MME Optimization Criterion

We now present an optimization criterion which is used in deriving a nonlinear blind adaptive

interference cancellation scheme. According to the analysis in Section 2, the goal of the optimization

approach is to determine a component of the received vector r that has low variability in the energy

and significant mean energy. We consider the squared output of the projection of r onto a vector

6



v ∈ <M . The vector v is obtained from the following nonlinear procedure which is

v = arg min
u
{α(u) = (1− µ)α1(u)− µα2(u)} (7)

where u ∈ <M is subject to u>u = 1 and 0 < µ < 1. The function α1(u) denotes the variance of

the squared output r>u and is given as

α1(u) = E
[(

(r>u)2 − E
[
(r>u)2

])2
]

(8)

The function α2(u) in (7) denotes the square mean energy given as

α2(u) =
(
E
[
(r> u)2

])2
(9)

Consider the function α1(u). We now present the following proposition that gives an intuitive

description of the minimum variance of energy criterion, which is obtained by minimizing the

expression in (8).

Proposition 1 For the synchronous antipodal DS-CDMA system (described in (2)), with zero

AWGN (σ = 0) and linearly independent signature sequences {si}Li=1, the solutions for w =

arg minu (α1(u)), constrained as u>u = 1, are classified in two groups:

(a) w = ±di (i = 1, · · · , L), where di ⊥ span{sk}Lk=1,k 6=i and s>i di 6= 0. Actually, di is the modified

matched filter that corresponds to the decorrelating detector for user i [6].

(b) w is any vector from the noise subspace.

Further, the above solutions correspond to the absolute minimum of α1(u) where it is zero.

We present a proof of the above proposition in the Appendix. Let us now compare α1(u) with the

following, well known, Godard’s dispersion function [21]:

Jp =
1

2p
E
[(

(r>u)p − η
)2
]

(10)

where η is a real constant, and p is an integer. For η = E
[
(r>u)2

]
and p = 2, the cost function in (10)

is directly proportional to α1(u). In other words, α1(u) penalizes dispersions of the squared output

(r>u)2 away from the constant E
[
(r>u)2

]
. Furthermore, the well studied constant modulus (CM)
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cost function is defined as a special form of the function in equation (10), where η = E
[
(r>u)4

]
/σ2,

and p = 2. The CM cost function is widely used for blind equalization (see [22] and references

therein). Later in this paper, α1(u), which may be viewed as a slightly modified form of the CM

cost function, is applied for blind interference cancellation in DS-CDMA systems. Let us now

consider the function α2(u). It can be shown that the vector vmax = arg maxu(α2(u)), constrained

as u>u = 1, is equal to the vector that also maximizes the mean energy E
[
(r> u)2

]
. It is shown

in [19, 20] that vmax is the eigenvector that corresponds to the largest eigenvalue of the input

covariance matrix Rr = E[r r>]. Instead of the mean energy E
[
(r> u)2

]
,
(
E
[
(r> u)2

])2
is applied

in (7) such that both terms (α1() and α2()) are of the same order (i.e., fourth order). Based on

the above, the vector v, which is defined in the equation (7), corresponds to that component of the

received signal r that has low variability in the energy and significant mean energy. As discussed in

Section 2, these characteristics are favorable for application of the vector v in a nonlinear interference

cancellation scheme. The parameter µ is used to control which of these two characteristics (low

variability of the energy or significant mean energy) is dominant. For example, if µ = 0, the

optimization in (7) is equivalent to minimum variance of energy (MVE), and for µ = 1 it is equivalent

to maximum mean energy (MME) optimization criterion. Therefore, we refer to (7) as the minimum

variance of energy and maximum mean energy (MVE-MME) optimization criterion. Note that in

Subsection 3.2 we revisit issues related to the parameter µ and propose its design.

3.1 Adaptive Solution

We now present an adaptive algorithm that solves (7). We exploit some properties of the functions

given in (8) and (9). Let us assume that the input process r is wide sense stationary (WSS) and

also that

E[(r>(n) u)2(r>(n+m) u)2] = E[(r>(n) u)2]E[(r>(n+m) u)2] (11)

where n and m are time indices, and n 6= m. In other words, we assume that the energy of r in

direction of the vector u is uncorrelated in different symbol (bit) intervals. Using the properties of
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WSS processes and (11) we can show that (8) can be written as

α1(u) =
1

2
E
[(

(r>(n) u)2 − (r>(n +m) u)2
)2
]

(12)

for all integer n and m, n 6= m. Similarly, the expression (9) can be written as

α2(u) = E
[
(r>(n) u)2

]
E
[
(r>(n+m) u)2

]
(13)

According to (12) and (13), and using sample statistics, the function f(u) is defined as an approx-

imation of α(u) as

f(u, n) =
1

F

F∑

m=1

[
1

2
(1− µ)((r>(n)u)2 − (r>(n+m)u)2)2 − µ (r>(n)u)2(r>(n +m)u)2

]
(14)

where F is the number of consecutive symbols used for the approximation. Gradient of f(u, n) is

defined as

∇(f(u, n)) =
2

F

F∑

m=1

{(1− µ)[(r>(n)u)3 r(n) + (r>(n+m)u)3 r(n+m)] −

− [(r>(n)u)(r>(n+m)u)2 r(n) + (r>(n)u)2(r>(n+m)u) r(n +m)]} (15)

We can use a stochastic gradient algorithm [24] that solves (7) as

v̂l+1 = v̂l − γ∇(f(v̂l, l)) (16)

where l is the index of the iteration step, and 0 < γ < 1 is a certain scalar which defines the length

of the adaptation step. The constraint |v̂l+1| = 1 is forced after every iteration, where v̂l stands for

the estimate of v in lth iteration step.
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3.2 Choice of Parameter µ

As addressed earlier, the parameter µ is used to control which of the two characteristics of v (low

variability of the energy or significant mean energy) is dominant. We choose µ as

µ = µ(u) =

(
E
[
(r> u)2

])2

E [(r> u)4]
(17)

Note that the above definition is similar to the inverse of the normalized kurtosis [23] defined as

ks = E
[
(r> u)4

]
/σ4, but further analysis of this relationship is beyond the scope of this paper.

Furthermore, as an approximation of the above definition, we set

µ(u, n) =

∑F
m=1(r>(n)u)2(r>(n+ m)u)2

∑F
m=1 [(r>(n)u)4 + (r>(n +m)u)4] /2

(18)

in equation (15). Considering characteristics of the parameter µ that is defined by (17), it can be

shown that

1. If r> u is a real-valued Gaussian random process, µ is 1/3.

2. Let µM denote µ corresponding to r> u, which is a uniform discrete real-valued M-ary random

process, i.e., r> u ∈ {ai | ai = A(−1 + 2(i − 1)/(M − 1)), i = 1, · · · ,M }, where A is the

maximum absolute value of r> u. Based on the above definition, it can be shown that

µM =
1

M

(∑M
i=1 a

2
i

)2

∑M
i=1 a

4
i

(19)

Figure 2 depicts the parameter µ as a function of the alphabet size of a uniform, real-valued M-

ary random process. As a reference, we present µ that corresponds to a continuous uniformly

distributed random process (denoted as CU), and a Gaussian random process (denoted as

GP). Note that the function is decreasing with alphabet size M , or in other words,

µM > µM+1 (20)

Furthermore, we may note that µ is maximum at M = 2 (µ2 = 1), i.e., for a real-valued

bipolar random process. In addition, we note µM in equation (19) converges towards µ that
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corresponds to the continuous uniformly distributed random process (CU in Figure 2).

From the above properties of the parameter µ, we may draw the following conclusions. When

the received signal at the output of the correlator, r> u, is a real-valued Gaussian random process

(i.e., u lies in the noise subspace of the received vector r), then µ takes a value close to its minimum

thereby steering the MVE-MME criterion towards minimizing variance of energy (MVE). On the

other hand, when the output r> u is a close to a discrete-valued random process (as in the case when

MAI dominates), µ approaches its maximum value thus steering the MVE-MME criterion towards

maximizing mean energy (MME). In the course of adaptation, the value of µ given in equation (18)

changes according to the projection r> u, i.e., u being in the noise (Gaussian) part of the signal

subspace or the interference (discrete-valued random process) subspace.

4 Application of the MVE-MME Criterion in the Multi-

stage Nonlinear Blind IC Receiver

We now present a multistage nonlinear blind interference canceler, denoted as MS-NL-BIC. The

structure of the receiver is multidimensional and can be viewed as a matrix of receivers (i.e., matrix

of IC stages). The MS-NL-BIC receiver consists of P rows and Q columns, where each entry of the

matrix corresponds to an interference cancellation stage denoted as ICij (i = 1, . . . , P, j = 1, . . . , Q).

The following steps are executed in the ICij stage (where rij is the input vector to that stage):

1. Add back x(i−1)j as

r′ij = rij + x(i−1)j (21)

where x(i−1)j is a portion of the received signal that is cancelled in the ICi−1j stage. Note that

the ICi−1j stage is the same column, but earlier row of the matrix. For the first row (i = 1),

x0j = 0 (j = 1, · · · , Q) and r11 = r, because no cancellation is performed prior to this row.

2. Use adaptation rule in (16) (r′ij replaces r) to estimate vij as v̂ij (see Figure 3). Note that the

vector v̂ij is further processed in the very same manner as an interferer signature sequence in

the case of the nonlinear centralized SIC scheme (see Section 2).
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3. Estimate the energy βij = E[(r′ij
>v̂ij)

2]. Note that the estimation should be reliable because

v̂ij, as a component of the vector r′ij, has low variability in the energy (due to the term

(1− µ)α1(u) in (7)).

4. Detect the sign of r′ij
>v̂ij. Note that detection should be reliable, because the component v̂ij

has significant mean energy (due to the term −µα2(u) in (7)) and low variability.

5. Perform nonlinear cancellation as

rij+1 = r′ij − xij (22)

where (see Figure 4)

xij = sgn(r′ij
>
v̂ij)

√
β̂ij v̂ij (23)

The above procedure is executed successively (within the ith row of the matrix), where for the

new stage ICij+1, the input vector is rij+1 (see equation (22)). The structure of the ith row (i.e.,

horizontal topology) is depicted in Figure 5. From the above, each row may be viewed as a blind

equivalent to the nonlinear centralized SIC scheme, where the components v̂ij replace the actual

signature sequence. After a sufficient number Q of the stages in the ith row, cancellation is repeated

in the (i + 1)th row (see Figure 6). The input vector ri+11 of the (i + 1)th row is riQ+1. The

stage ICi+1j is used to iteratively refine the cancellation which is executed in the earlier stage ICij

(j = 1, . . . , Q). With appropriate delay, the vector xij, that is canceled in the stage ICij is added

back (step 1), and within the stage ICi+1j processing is performed again (steps 2 to 5).

In Section 5, Q is selected to be equal to the number of dominant interferers, but in the more

general case, this number might not be known at the receiver. A number of different schemes can

be employed in order to determine the number of IC stages within each row of this receiver. Here,

we propose the following simple scheme. In the first row i = 1, the stage IC1j may be determined as

the last stage in the row (Q = j), if the estimate of the energy β̂1j drops below a certain threshold

Te. In other words

β̂1j < Te ⇒ Q = j (24)

This simple scheme assumes that β̂ij ≥ β̂ij+1 (i.e., the energy estimate is decreasing with column

index j). In addition, the scheme is based on the assumption that the component v̂ij, that corre-

sponds to the mean energy βij = E[(r′ij
>v̂ij)

2], which is below the threshold Te, is not relevant for
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the cancellation. Furthermore, the number of the rows P is directly related to the performance of

the receiver. Thus, the trade-off in performance versus complexity can be controlled by the number

P . After a sufficient number P of the rows, detection of the desired user is performed using a linear

detector (e.g., matched filter).

Note that implicit in the above algorithm is the assumption that the interferers are stronger

than the desired user. If the desired user is strong, then additional processing is required to ensure

that the desired signal is not canceled out before the detection. Briefly, we propose a corresponding

scheme which is based on a threshold rule. In the last row, i = P , each vector v̂Pj, (j = 1, · · ·Q)

is projected onto the desired user signature sequence s1. The absolute value of the projection

is compared against a predefined threshold Th (0 < Th < 1). If the absolute value exceeds the

threshold Th,

|v̂>Pjs1| > Th (25)

the vector xPj (defined in equation (23), where i = P ) should be added back to rPQ+1. Having

inspected all the vectors v̂Pj, (j = 1, · · ·Q), the addition is performed as follows

r′PQ+1 = rPQ+1 +
∑

j∈E
xPj (26)

where the j ∈ E corresponds to all vectors v̂Pj that have met the criterion in (25). Further, the

linear detection of the desired user is performed using r′PQ+1 as input signal.

Note that a centralized multiuser detection scheme, which is proposed in [2,25], applies a similar

iterative (recursive) refinement approach that is presented above. That particular scheme executes

centralized SIC and iterative refinement in order to improve channel estimates for the users in the

system. Unlike the MS-NL-BIC receiver, the scheme in [2,25] assumes the knowledge of all signature

sequences of the users in the system (i.e., it is not blind). Further, the multistage structure of the

receiver allows concurrent (parallel) execution of the IC stages. This inherent parallelism of the

algorithm is a favorable characteristic for its implementation using multiprocessor DSP and/or

FPGA (or ASIC) platform (see [4, 5] and references therein).
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5 Simulation Results

We consider a synchronous AWGN DS-CDMA system using randomly generated signature sequences

with processing gain M = 8. The users are independent and the following cases are analyzed:

1. System with L = 8 users (fully loaded), and equal-energy interferers: A2
i /A

2
1 = 25, i = 2, · · · , 8.

2. System with L = 4 users, and equal-energy interferers: A2
i /A

2
1 = 25, i = 2, · · · , 4.

3. System with L = 12 users (overloaded system); three strong equal-energy interferers: A2
i /A

2
1 =

25, i = 2, · · · , 4, and eight interferers with the same energy as the desired user: A2
i /A

2
1 = 1, i =

5, · · · , 12.

The crosscorrelation profile of the users with respect to the desired user is depicted in Figure 7.

Note that in this particular example the crosscorrelations are very high, except for users 5, 10

and 12 which happen to be orthogonal to the desired user. In the case 1, the system has users

i = 1, · · · , 8, and in the case 2 only i = 1, · · · , 4. In all our results the input sample covariance

matrix is estimated according to

R̂r(i) =
1

N

i∑

k=i−N+1

r(k) r>(k) (27)

where N is the size of the averaging window (number of samples), and i is the time index (will be

omitted in the following text). Performance of the conventional matched filter (MF), the centralized

MMSE receiver (denoted as MMSE), the blind MMSE receiver (BMMSE) (detector ĉ = R̂−1
r s1 [17])

and the single user lower bound (SULB) are used as benchmarks for evaluation of the MS-NL-

BIC receiver. The centralized MMSE assumes perfect knowledge of all the signature sequences,

amplitudes and the variance of the AWGN. Performance of the MS-NL-BIC is evaluated for MF

(MS-NL-BIC-(MF)) and the blind MMSE (MS-NL-BIC-(MMSE)); where these linear detectors are

used for detection of the desired user after the cancellation (after P rows and Q IC stages within

each row). The MS-NL-BIC-(MMSE) uses the sample covariance matrix of the output signal of the

last IC stage (ICPQ). Note that the desired user energy is set to be much lower than the energy

of the interferers, and, as discussed in Section 4, the prevention of the excessive cancellation of the

desired user is not performed. In each IC stage, the performance is measured after 1000 symbols
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used for the estimation in (16) and (27), and F = 5 in (14), (15) and (18). Regarding the parameter

µ, we apply the approximation given by (18). We assume the knowledge of the number of dominant

interferers Q, which is the number of columns of the receiver matrix.

For the case 1, Figure 8.a depicts bit-error rate (BER) as a function of signal to background

noise ratio (SNR) (with respect to the desired user). The results are obtained after a total of P = 4

rows and Q = 7 columns, which is where the BER reaches minimum. Additional IC stages do not

introduce any improvement for this particular example. For SNR = 8dB, BER versus total number

of IC stages is presented in Figure 8.b. Note that in this example the MS-NL-BIC(MMSE) performs

better than the MS-NL-BIC(MF). In this case, after the last IC stage (IC47) MAI is still present,

therefore, BMMSE detector can further improve the performance of the MS-NL-BIC receiver in the

case 1.

Equivalent results, for the case 2, with P = 4 and Q = 3 and SNR = 8 dB are shown in Figures

9.a and 9.b, respectively. In Figure 9.b, note that the MS-NL-BIC(MMSE) converges faster with

respect to number of IC stages, but, at the end the MS-NL-BIC(MF) offers lower BER for this

particular example. In this case, after the last IC stage (IC43), MAI is almost completely removed.

Introduction of the BMMSE as linear detector in the MS-NL-BIC receiver, may cause a drop in the

performance due to estimation errors of the covariance matrix (in (27)) which is used to derive the

BMMSE detector (this particular topic is analyzed in [20]).

We consider the performance of our receiver in the case 3, which is an overloaded DS-CDMA

system. Figure 10 depicts BER versus SNR (with respect to the desired user). The same figure

presents the performance of the matched filter (denoted as MF-8) for the system without the strong

interferers (only the desired user and eight equal-energy interferers, which is identical to ideal

cancellation of the users 2, 3 and 4). The receiver with Q = 3 and P = 4 is used. From the

results in Figure 10, we note that the MS-NL-BIC completely cancels the strong users i.e, the MS-

NL-BIC(MF) performance is identical to the MF-8 performance (in Figure 10 their characteristics

overlap).

From these results, it is seen that the MS-NL-BIC outperforms linear receivers (MF and BMMSE),

significantly. The performance of the linear receivers is expected because it is well known that they

do not perform well in the case of the systems with strong and highly correlated interferers (with

respect to the desired user signature sequence) [3], as may be the case in overloaded systems.
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But, these results suggest that the MS-NL-BIC may be applied as a blind solution in the case of

overloaded systems with strong interferers.

Let us now study the characteristics of the estimates v̂ij (i = 1, . . . , P, j = 1, . . . , Q). In all

cases that we have observed, as the processing progresses from row to row, estimates v̂ij within

each column of the receiver matrix, approach one of the actual signature sequences (with sign

ambiguity). Each column corresponds to a different signature sequence. For example, in the case 1,

we observe how the estimates v̂ij within columns j = 1, 4, 7 approach the actual signature sequences

l = 2, 5, 4, respectively. The absolute value of the crosscorrelation v̂>ijsl is depicted in Figure 11,

where the abscissa represents the index of the row (i = 1, · · · , 4). The results appear to be similar

for all columns j = 1, · · · , 7. Note that in the last row, the estimates are practically identical to

the signature sequences i.e., the absolute value of the normalized crosscorrelation is 1. We have

consistently observed these results in our simulations, and a detailed mathematical analysis and

explanation of the above phenomenon is of future interest.

6 Conclusion

We have introduced the MVE-MME optimization criterion which is then used to implement the MS-

NL-BIC receiver. The receiver is based on determining the component of the received vector that has

significant mean energy and low variability in the energy. The MS-NL-BIC consists of multiple IC

stages, and can be viewed as a matrix of IC stages. The columns of the matrix resemble multistage

receivers that iteratively refine performance from earlier stages, while each row corresponds to a

blind equivalent of the nonlinear centralized SIC scheme. The ability of the receiver to exceed the

performance of linear receivers is observed via simulation results. It is seen that this scheme is

particularly effective for systems with very strong interferers which are strongly correlated with the

desired user signature sequence. Therefore, this may be a very viable solution for implementation

in the case of overloaded systems with strong interferers.
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Appendix: Proof of Proposition 1

Consider a synchronous antipodal DS-CDMA system, with zero AWGN (σ = 0) and linearly inde-

pendent signature sequences. Let us denote a component of the signature sequence si as di (d>i di =

1), which is orthogonal to other users’ signature sequences, or in other words, di ⊥ span{sk}Lk=1,k 6=i

and s>i di 6= 0, which can be written as

s>j di = ciδij, i, j = 1, · · · , L (28)

where |ci| ≤ 1 and ci 6= 0, and δij is the Kronecker delta function. Projection of the received vector

r (see equation (2)) on di yields (in the absence of additive background noise):

r>di = Ai bi ci (29)

where Ai and bi are the amplitude and bit, respectively, all for user i. From (29), it follows that

(r>di)
2 = E

[
(r>di)

2
]

= const, which results in

E
[(

(r>di)
2 − E

[
(r>di)

2
])2
]

= 0 (30)

Note that

α1(u) = E
[(

(r>u)2 − E
[
(r>u)2

])2
]
≥ 0, ∀u (31)

Therefore, the absolute minimum of α1(u) is zero. Based on (30) and (31), α1(u) reaches the

absolute minimum for di (i = 1, · · · , L). Using the above approach, the same result can be obtained

for −di (i = 1, · · · , L). This proves part (a) of Proposition 1.

Further, if N denotes the noise subspace and σ = 0, then by definition of the noise subspace [26],

it follows that

r>u = 0, ∀u ∈ N, u>u = 1 (32)

Consequently

α1(u) = 0, ∀u ∈ N, u>u = 1 (33)

which proves that for any vector u from the noise subspace, α1(u) reaches the absolute minimum
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of zero. This concludes proof for part (b) of Proposition 1.
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Figure 1: Flow chart illustrating the nonlinear centralized SIC scheme.
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