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ABSTRACT

In this work we propose a multistage nonlinear blind interference cancellation (MS-NL-BIC)

receiver for direct-sequence code-division multiple-access (DS-CDMA) systems. The receiver

uses higher order statistics of the received baseband signal. Specifically, we use the second and

fourth moments of the received signal to determine a component of the received vector that

has significant mean energy and low variability of the energy, both of which are favorable char-

acteristics for application in an interference cancellation scheme that uses hard decisions. The

structure of the receiver is multidimensional and can be viewed as a matrix of receivers. Each

row in the matrix consists of receivers that perform (hard decisions) cancellation of successive

components that have significant mean energy and low variability of the energy. The columns

of the matrix essentially resemble multistage receivers that iteratively refine performance from

earlier stages. Simulation results show that unlike linear receivers, the MS-NL-BIC is excep-

tionally efficient in systems with strong and highly correlated interferers, as may be the case in

overloaded DS-CDMA systems.

WINLAB Proprietary i



Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. MVE-MME Optimization Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1. Adaptive Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Choice of Parameter µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Application of the MVE-MME Criterion in the Multistage Nonlinear Blind

IC Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

WINLAB Proprietary ii



1. Introduction

One of the driving forces of the next generation of wireless communications is the demand

for higher data rates and higher capacity of wireless systems. Primary applications of higher

data rates seem to be in the downlink direction (for example, typical internet data traffic such

as downloading of web pages). Furthermore, wideband direct-sequence code-division multiple-

access (DS-CDMA) technology has emerged as one of the most promising candidates for future

wireless systems (e.g., third generation systems [1, 2]). It is therefore of great interest to

investigate the performance of these systems and its viability for higher data rates envisioned

in the future.

In DS-CDMA systems, in general, crosscorrelations between signature (spreading) sequences

are nonzero. This results in the near-far effect where the multiple-access interference (MAI)

can disrupt reception of a highly attenuated desired user signal [3]. Baseband signal process-

ing techniques such as multiuser detection and interference cancellation have the potential to

combat this problem and provide higher performance at the cost of increasing complexity of

the receiver. Rapid progress in the area of semiconductor technology has resulted in a signif-

icant increase in the processing speeds of core technologies (DSP, FPGA and ASIC device).

Advances in VLSI technology, and design of the algorithms that are optimized with respect to

a specific implementation platform, are further narrowing the gap between the complexity of

the algorithms and processing speeds (e.g., solutions that are presented in [4, 5]). These and

other developments suggest that the transceivers in future wireless systems will employ some

form of interference mitigation.

Several multiuser receivers have been proposed (for example, see [6, 7, 8, 9]). These receivers

are denoted as centralized because they require knowledge of parameters (signature sequences,

amplitudes and timing) for all users in the system. Therefore, they are more suitable for pro-

cessing at the base station. For the downlink, it is desirable to devise decentralized receivers

that exploit the knowledge of the desired user parameters only. The use of short signature

sequences simplify the task of multiuser detection and interference cancellation, since a receiver

can adaptively learn (estimate) the structure of the MAI [10]. Decentralized receivers may be

further classified into data aided and nondata aided receivers. Data aided adaptive multiuser
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detection is an approach which does not require a prior knowledge of the interference param-

eters. But, it requires a training data sequence for every active user. For example, adaptive

receivers in [7, 11, 12] are based on the MMSE criterion, and the one in [13] is based on min-

imizing probability of bit-error. More recently, decision feedback detectors using the MMSE

criterion have been proposed [14, 15]. Unlike data aided receivers, blind (or nondata aided)

multiuser detectors require no training data sequence, but only knowledge of the desired user

signature sequence and its timing. The receivers treat MAI and background noise as a ran-

dom process, whose statistics must be estimated. Majority of blind multiuser detectors are

based on estimation of second order statistics of the received signal. In [16], a blind adaptive

MMSE multiuser detector is introduced (proven to be equivalent to the minimum output energy

(MOE) detector). A subspace approach for blind multiuser detection is presented in [17]; where

both the decorrelating and the MMSE detector are obtained blindly. Further, adaptive and

blind solutions are analyzed in [18], with an overview in [10]. A blind successive interference

cancellation (SIC) scheme, which uses second order statistics, is proposed in [19, 20].

In this work we propose a novel blind interference cancellation receiver, which assumes

knowledge of only the desired user’s signature sequence. The receiver is based on determining

that component of the received signal that has significant mean energy and low variability in

the energy. It applies the minimum variance of energy and maximum mean energy criterion

(MVE-MME), which is described in Chapter 3. Furthermore, we analyze a relationship be-

tween the above criterion and Godard’s dispersion function [21] and constant modulus (CM)

criterion [22]. In Chapter 4, using the MVE-MME criterion, we derive a nonlinear multistage

blind interference cancellation (NL-MS-BIC) receiver. The structure of the NL-MS-BIC re-

ceiver is multidimensional and can be viewed as a matrix of IC stages. Each row in the matrix

consists of IC stages that perform the blind (hard decisions) successive interference cancella-

tion. The columns of the matrix essentially resemble multistage receivers that iteratively refine

performance from earlier stages. This particular multistage structure of the receiver allows con-

current (parallel) execution of the IC stages which makes it very suitable for implementation

using multiprocessor DSP and/or FPGA (or ASIC) platform. Simulation results are presented

in Chapter 5, and we conclude in Chapter 6.
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2. Background

The received baseband signal, r(t), in a K-user asynchronous DS-CDMA additive white Gaus-

sian noise (AWGN) system is

r(t) =
J∑

i=−J

K∑

k=1

Ak bk (i) sk(t− iT − τk) + σn(t) (2.1)

where Ak is the received amplitude, bk(i) ∈ {−1,+1} is binary, independent and equiprobable

data, sk(t) is the signature sequence which is assumed to have unit energy, τk is the relative

time offset, all for the kth user. T is the symbol period and n(t) is AWGN with unit power

spectral density, with σ being square root of the noise power. 2J + 1 is the number of data

symbols per user per frame. It is well known that an asynchronous system with independent

users can be analyzed as synchronous if equivalent synchronous users are introduced, which are

effectively additional interferers [3]. In this work we consider the received signal r(t) over only

one symbol period that is synchronous to the desired user (k = 1). The discrete representation

for the received signal in (2.1) can be written in vector form as

r =
L∑

k=1

Ak bk sk + σ n (2.2)

where the number of the interferers (L − 1 = 2 (K − 1)) is doubled due to the equivalent

synchronous user analysis. r, sk and n are vectors in <M , where M is the number of chips per

bit.

Consider the nonlinear centralized SIC scheme which is presented in [8, 5]. We now present

a brief outline of the above scheme because its approach to nonlinear interference cancellation is

generalized in this work and later applied in a blind interference cancellation scheme (Chapter

4). In the nonlinear centralized SIC scheme [8, 5] it is assumed that the signature sequences

are perfectly known (centralized approach). The basic operations of the SIC algorithm are (see

Figure 2.1):

1. Detect one user with the conventional detector, i.e., matched filter (MF).

2. Regenerate the baseband signal (vector) for this user.

3. Cancel the regenerated signal (vector) from the received baseband signal.
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Start detection  
j=1 

Detect user j from the 
baseband signal 

Cancel the regenerate 
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No 
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Regenerate baseband 
signal for user j 

Figure 2.1: Flow chart illustrating the nonlinear centralized SIC scheme.
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Then, this operation is repeated successively for all the users in the system. The idea is that

successive cancellations result in reduced MAI for the remaining users. The received vector rj+1

after stage j of the cancellation is given by

rj+1 = rj − Âj b̂j sj (2.3)

where rj is the received vector, Âj and b̂j are the corresponding estimates of the amplitude

and the bit, respectively, all for stage j 1. The above implementation of the SIC algorithm is

nonlinear in that it uses hard decisions (b̂j ∈ {−1, 1}) in successive stages. A primary reason

why the nonlinear centralized SIC cannot achieve performance of the single user lower bound

(SULB) is due to erroneous estimate of bit decision (i.e., b̂j 6= bj). When an error happens, it

causes the SIC scheme to double the interference, which is, of course, undesirable. Furthermore,

the doubled interference propagates through the following IC stages, which degrades the overall

performance of the receiver. For the same reason, this receiver also is not near-far resistant [3].

Further, imperfections in amplitude and delay estimates can lead to the non ideal regeneration

and cancellation. Accordingly, to obtain best results, the user with the highest signal to in-

terference ratio (SIR) should be cancelled first. This condition is usually relaxed and the user

with highest received power is cancelled first, followed by the second strongest, and so forth

[8, 9]. Thus, it is desirable to identify users (or signature sequences) that have significant power

(energy). Note that the SIC scheme requires amplitude estimates for the users, which implicitly

requires low variability of the amplitude estimates for perfect cancellation.

Let us now generalize the nonlinear cancellation given by (2.3). In equation (2.3), let us

replace sj with a vector vj (not necessarily a signature sequence). Furthermore, we replace Âj

with the square root of the estimate of βj = E[(r>j vj)
2], and b̂j with sgn(r>j vj). Thus, the

nonlinear cancellation in the jth stage is executed as

rj+1 = rj −
√
β̂j sgn(r>j vj) vj (2.4)

In the following, we propose favorable characteristics of the vector vj to be successfully applied

in the above scheme. We now analyze the estimate of the energy βj of the received signal in

the direction of the vector vj . To estimate βj we use sample statistics as

β̂j(n) =
1

N

n∑

m=n−N+1

(r>(m) vj)
2 (2.5)

where N is the size of the averaging window (number of samples), and n and m are time indices

(will be omitted in the following). It is well known that the error of the estimate in (2.5) is

1Notation: ẑ denotes an estimate of z

WINLAB Proprietary 5



directly related to the variance of xj = (r>vj)
2. Using the Chebyshev inequality [23] it can

be shown that as the variance of xj gets lower, the accuracy (mean square error) of the energy

estimate is improved:

E[(xj −E[xj ])
2] ↓⇒ E

[
(β̂j − βj)2

]
↓ (2.6)

We can say that for the vector vj that corresponds to xj with lowest variance (among all vectors

in <M ), the estimate of the energy is the most reliable, i.e., the mean square error of the energy

estimate is the lowest. Note that the variance of xj is the variance of the energy of the received

vector r in the direction of the vector vj (i.e., variance of squared projection of the vector r

onto the vector vj).

The above analysis leads us to believe that the vector vj which corresponds to the low

variability of the energy and significant mean energy of the vector r in the direction of vj , is

desirable for the nonlinear cancellation given by (2.4). These characteristics of the vector vj

offer reliable estimates of the corresponding energy βj and sign of r>vj . In the following we

present a scheme that blindly determines (estimates) the vector vj and further applies this

vector to realize a multistage nonlinear interference cancellation scheme.
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3. MVE-MME Optimization Criterion

We now present an optimization criterion which is used in deriving a nonlinear blind adaptive

interference cancellation scheme. According to the analysis in Chapter 2, the goal of the opti-

mization approach is to determine a component of the received vector r that has low variability

in the energy and significant mean energy. We consider the squared output of the projection

of r onto a vector v ∈ <M . The vector v is obtained from the following nonlinear procedure

which is

v = arg min
u
{α(u) = (1− µ)α1(u)− µα2(u)} (3.1)

where u ∈ <M is subject to u>u = 1 and 0 < µ < 1. The function α1(u) denotes the variance

of the squared output r>u and is given as

α1(u) = E
[(

(r>u)2 − E
[
(r>u)2

])2]
(3.2)

The function α2(u) in (3.1) denotes the square mean energy given as

α2(u) =
(
E
[
(r> u)2

])2
(3.3)

Consider the function α1(u). We now present the following proposition that gives an intuitive

description of the minimum variance of energy criterion, which is obtained by minimizing the

expression in (3.2).

Proposition 1 For the synchronous antipodal DS-CDMA system (described in (2.2)), with

zero AWGN (σ = 0) and linearly independent signature sequences {si}Li=1, the solutions for

w = arg minu (α1(u)), constrained as u>u = 1, are classified in two groups:

(a) w = ±di (i = 1, · · · , L), where di ⊥ span{sk}Lk=1,k 6=i and s>i di 6= 0. Actually, di is the

modified matched filter that corresponds to decorrelating detector for user i [6].

(b) w is any vector from the noise subspace.

Further, the above solutions correspond to the absolute minimum of α1(u) where it is zero.

We present a proof of the above proposition in Appendix A. Let us now compare α1(u) with

the following, well known, Godard’s dispersion function [21]:

Jp =
1

2p
E
[(

(r>u)p − η
)2]

(3.4)
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Where η is a real constant, and p is an integer. For η = E
[
(r>u)2

]
and p = 2, the cost

function in (3.4) is directly proportional to α1(u). In other words, α1(u) penalizes dispersions

of the squared output (r>u)2 away from the constant E
[
(r>u)2

]
. Furthermore, the well studied

constant modulus (CM) cost function is defined as a special form of the function in equation

(3.4), where η = E
[
(r>u)4

]
/σ2, and p = 2. The CM cost function is widely used for blind

equalization (see [22] and references therein). Later in this work, α1(u), which may be viewed

as a slightly modified form of the CM cost function, is applied for blind interference cancellation

in DS-CDMA systems. Let us now consider the function α2(u). It can be shown that the vector

vmax = arg maxu(α2(u)), constrained as u>u = 1, is equal to the vector that also maximizes the

mean energy E
[
(r> u)2

]
. It is shown in [19, 20] that vmax is the eigenvector that corresponds

to the largest eigenvalue of the input covariance matrix Rr = E[r r>]. Instead of the mean

energy E
[
(r> u)2

]
,
(
E
[
(r> u)2

])2
is applied in (3.1) such that both terms (α1() and α2()) are

of the same order (i.e., fourth order). Based on the above, the vector v, which is defined in the

equation (3.1), corresponds to that component of the received signal r that has low variability

in the energy and significant mean energy. As discussed in Chapter 2, these characteristics

are favorable for application of the vector v in a nonlinear interference cancellation scheme.

The parameter µ is used to control which of these two characteristics (low variability of the

energy or significant mean energy) is dominant. For example, if µ = 0, the optimization in

(3.1) is equivalent to minimum variance of energy (MVE), and for µ = 1 it is equivalent to

maximum mean energy (MME) optimization criterion. Therefore, we refer to (3.1) as the

minimum variance of energy and maximum mean energy (MVE-MME) optimization criterion.

Note that in Section 3.2 we revisit issues related to the parameter µ and propose its design.

3.1 Adaptive Solution

We now present an adaptive algorithm that solves (3.1). We exploit some properties of the

functions given in (3.2) and (3.3). Let us assume that the input process r is wide sense stationary

(WSS) and also that

E[(r>(n) u)2(r>(n+m) u)2] = E[(r>(n) u)2]E[(r>(n+m) u)2] (3.5)

where n and m are time indices, and n 6= m. In other words, we assume that the energy of r in

direction of the vector u is uncorrelated in different symbol (bit) intervals. Using the properties

of WSS processes and (3.5) we can show that (3.2) can be written as

α1(u) =
1

2
E
[(

(r>(n) u)2 − (r>(n+m) u)2
)2]

(3.6)
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for all integer n and m, n 6= m. Similarly, the expression (3.3) can be written as

α2(u) = E
[
(r>(n) u)2

]
E
[
(r>(n+m) u)2

]
(3.7)

According to (3.6) and (3.7), and using sample statistics, the function f(u) is defined as an

approximation of α(u) as

f(u, n) =
1

F

F∑

m=1

[
1

2
(1− µ)((r>(n)u)2 − (r>(n+m)u)2)2 − µ (r>(n)u)2(r>(n+m)u)2

]

(3.8)

where F is a number of consecutive symbols used for the approximation. Gradient of f(u, n) is

defined as

∇(f(u, n)) =
2

F

F∑

m=1

{(1− µ)[(r>(n)u)3 r(n) + (r>(n+m)u)3 r(n+m)] −

− [(r>(n)u)(r>(n+m)u)2 r(n) + (r>(n)u)2(r>(n+m)u) r(n+m)]} (3.9)

We can use a stochastic gradient algorithm [24] that solves (3.1) as

v̂l+1 = v̂l − γ∇(f(v̂l, l)) (3.10)

where l is the index of the iteration step, and 0 < γ < 1 is a certain scalar which defines the

length of adaptation step. The constraint |v̂l+1| = 1 is forced after every iteration, where v̂l

stands for estimate of v in lth iteration step.

3.2 Choice of Parameter µ

As addressed earlier, the parameter µ is used to control which of the two characteristics of v

(low variability of the energy or significant mean energy) is dominant. We choose µ as

µ = µ(u) =

(
E
[
(r> u)2

])2

E [(r> u)4]
(3.11)

Note that the above definition is similar to the inverse of the normalized kurtosis (ks =

E
[
(r> u)4

]
/σ4 [23]), but further analysis of this relationship is beyond the scope of this work.

Furthermore, as an approximation of the above definition, we set

µ(u, n) =

∑F
m=1(r>(n)u)2(r>(n+m)u)2

∑F
m=1 [(r>(n)u)4 + (r>(n+m)u)4] /2

(3.12)

in equation (3.9). Considering characteristics of the parameter µ that is defined by (3.11), it

can be shown that
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1. If r> u is a real-valued Gaussian random process, µ is 1/3.

2. Let µM denote µ corresponding to r> u, which is a uniform discrete real-valued M-ary

random process, i.e., r> u ∈ {ai | ai = A(−1 + 2(i− 1)/(M − 1)), i = 1, · · · ,M }, where A

is the maximum absolute value of r> u. Based on the above definition, it can be shown

that

µM =
1

M

(∑M
i=1 a

2
i

)2

∑M
i=1 a

4
i

(3.13)

Figure 3.1 depicts the parameter µ as a function of the alphabet size of a uniform, real-

valued M-ary random process. As a reference, we present µ that corresponds to a con-

tinuous uniformly distributed random process (denoted as CU), and a Gaussian random

process (denoted as GP). Note that the function is decreasing with alphabet size M , or

in other words,

µM > µM+1 (3.14)

Furthermore, we may note that µ is maximum at M = 2 (µ2 = 1), i.e., for a real-valued

bipolar random process. In addition, we note µM in equation (3.13) converges towards µ

that corresponds to the continuous uniformly distributed random process (CU in Figure

3.1).

From the above properties of the parameter µ, we may draw the following conclusions.

When the received signal of the output of the correlator, r> u, is a real-valued Gaussian random

process (i.e., u lies in the noise subspace of the received vector r), then µ takes a value close to

its minimum thereby steering the MVE-MME criterion towards minimizing variance of energy

(MVE). On the other hand, when the output r> u is a close to a discrete-valued random process

(as in the case when MAI dominates), µ approaches its maximum value thus steering the MVE-

MME criterion towards maximizing mean energy (MME). In the course of adaptation, the value

of µ given in equation (3.12) changes according to the projection r> u, i.e. u being in the noise

(Gaussian) part of the signal subspace or the interference (discrete-valued random process)

subspace.
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Figure 3.1: Parameter µ as a function of the alphabet size of uniform, real-valued M-ary random
process.
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4. Application of the MVE-MME Criterion in the Multi-

stage Nonlinear Blind IC Receiver

We now present a multistage nonlinear blind interference canceler, denoted as MS-NL-BIC.

The structure of the receiver is multidimensional and can be viewed as a matrix of receivers

(i.e., matrix of IC stages). The MS-NL-BIC receiver consists of P rows and Q columns, where

each entry of the matrix corresponds to an interference cancellation stage denoted as ICij

(i = 1, . . . , P, j = 1, . . . , Q). The following steps are executed in the ICij stage (where rij is

the input vector to that stage):

1. Add back x(i−1)j as

r′ij = rij + x(i−1)j (4.1)

where x(i−1)j is a portion of the received signal that is cancelled in the ICi−1j stage. Note

that the ICi−1j stage is the same column, but earlier row of the matrix. For the first row

(i = 1), x0j = 0 (j = 1, · · · , Q) and r11 = r, because no cancellation is performed prior to

this row.

2. Use adaptation rule in (3.10) (r′ij replaces r) to estimate vij as v̂ij (see Figure 4.1). Note

that the vector v̂ij is further processed in the very same manner as an interferer signature

sequence in the case of the nonlinear centralized SIC scheme (see Chapter 2).

3. Estimate the energy βij = E[(r′ij
>

v̂ij)
2]. Note that the estimation should be reliable

because v̂ij , as a component of the vector r′ij , has low variability in the energy (due to

the term (1− µ)α1(u) in (3.1)).

4. Detect the sign of r′ij
>v̂ij . Note that detection should be reliable, because the component

v̂ij has significant mean energy (due to the term −µα2(u) in (3.1)) and low variability.

5. Perform nonlinear cancellation as

rij+1 = r′ij − xij (4.2)

where (see Figure 4.2)

xij = sgn(r′ij
>

v̂ij)

√
β̂ij v̂ij (4.3)
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The above procedure is executed successively (within the ith row of the matrix), where for

the new stage ICij+1, the input vector is rij+1 (see equation (4.2)). The structure of the ith

row (i.e., horizontal topology) is depicted in Figure 4.3. From the above, each row may be

viewed as a blind equivalent to the nonlinear centralized SIC scheme, where the components

v̂ij replace the actual signature sequence. After sufficient number Q of the stages in the ith

row, cancellation is repeated in the (i+ 1)th row (see Figure 4.4). The input vector ri+11 of the

(i + 1)th row is riQ+1. The stage ICi+1j is used to iteratively refine the cancellation which is

executed in the earlier stage ICij (j = 1, . . . , Q). With appropriate delay, the vector xij , that

is canceled in the stage ICij is added back (step 1), and within the stage ICi+1j processing is

performed again (steps 2 to 5).

 

FT 

 

 

 

 

Estimation 
of the 

Gradient 
X

γ 

+ X

|yl+1|-1 

T 
)l

ijˆ( vf∇

T – bit duration delay 

Estimation (Eij) 

2T 

T 

yl+1
 

l
ijv̂

1l
ijˆ +v ijv̂

ij'r

Figure 4.1: Block scheme: estimation of the vector vij .

In Chapter 5, Q is selected to be equal to the number of dominant interferers, but in the

more general case, this number might not be known at the receiver. A number of different

schemes can be employed in order to determine the number of IC stages within each row of this

receiver. Here, we propose the following simple scheme. In the first row i = 1, the stage IC1j

may be determined as the last stage in the row (Q = j), if the estimate of the energy β̂1j drops

below a certain threshold Te. In other words

β̂1j < Te ⇒ Q = j (4.4)
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Figure 4.2: Block scheme: construction of the vector xij .

This simple scheme assumes that β̂ij ≥ β̂ij+1 (i.e., the energy estimate is decreasing with

column index j). In addition, the scheme is based on the assumption that the component v̂ij ,

that corresponds to the mean energy βij = E[(r′ij
>

v̂ij)
2], which is below the threshold Te, is

not relevant for the cancellation. Furthermore, the number of the rows P is directly related to

the performance of the receiver. Thus, the trade-off in performance versus complexity can be

controlled by the number P . After sufficient number P of the rows, detection of the desired

user is performed using a linear detector (e.g., matched filter).

Note that implicit in the above algorithm is the assumption that the interferers are stronger

than the desired user. If the desired user is strong, then additional processing is required to

ensure that the desired signal is not canceled out before the detection. Briefly, we propose

a corresponding scheme which is based on a threshold rule. In last row, i = P , each vector

v̂Pj , (j = 1, · · ·Q) is projected onto the desired user signature sequence s1. The absolute value

of the projection is compared against a predefined threshold Th (0 < Th < 1). If the absolute

value exceeds the threshold Th,

|v̂>Pjs1| > Th (4.5)
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Figure 4.3: Horizontal topology of the MS-NL-BIC receiver.

the vector xPj (defined in equation (4.3), where i = P ) should be added back to rPQ+1. Having

inspected all the vectors v̂Pj , (j = 1, · · ·Q), the addition is performed as follows

r′PQ+1 = rPQ+1 +
∑

j∈E
xPj (4.6)

where the j ∈ E corresponds to all vectors v̂Pj that have met the criterion in (4.5). Further,

the linear detection of the desired user is performed using r′PQ+1 as input signal.

Note that a centralized multiuser detection scheme, which is proposed in [25, 2], applies

a similar iterative (recursive) refinement approach that is presented above. That particular

scheme executes centralized SIC and iterative refinement in order to improve channel estimates

for the users in the system. Unlike the MS-NL-BIC receiver, the scheme in [25, 2] assumes the

knowledge of all signature sequences of the users in the system (i.e., it is not blind). Further,

the multistage structure of the receiver allows concurrent (parallel) execution of the IC stages.

This inherent parallelism of the algorithm is a favorable characteristic for its implementation

using multiprocessor DSP and/or FPGA (or ASIC) platform (see [4, 5] and references therein).
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5. Simulation Results

We consider a synchronous AWGN DS-CDMA system using randomly generated signature

sequences with processing gain M = 8. The users are independent and the following cases are

analyzed:

1. System with L = 8 users (fully loaded), and equal-energy interferers: A2
i /A

2
1 = 25, i =

2, · · · , 8.

2. System with L = 4 users, and equal-energy interferers: A2
i /A

2
1 = 25, i = 2, · · · , 4.

3. System with L = 12 users (overloaded system); three strong equal-energy interferers:

A2
i /A

2
1 = 25, i = 2, · · · , 4, and eight interferers with the same energy as the desired user:

A2
i /A

2
1 = 1, i = 5, · · · , 12.

The crosscorrelation profile of the users with respect to the desired user is depicted in Figure

5.1. Note that in this particular example the crosscorrelations are very high, except for users

5, 10 and 12 which happen to be orthogonal to the desired user. In the case 1, the system

has users i = 1, · · · , 8, and in the case 2 only i = 1, · · · , 4. In all our results the input sample

covariance matrix is estimated according to

R̂r(i) =
1

N

i∑

k=i−N+1

r(k) r>(k) (5.1)

where N is the size of the averaging window (number of samples), and i is the time index (will

be omitted in the following text). Performance of the conventional matched filter (MF), the

centralized MMSE receiver (denoted as MMSE), the blind MMSE receiver (BMMSE) (detector

ĉ = R̂−1
r s1 [17]) and the single user lower bound (SULB) are used as benchmarks for evaluation

of the MS-NL-BIC receiver. The centralized MMSE assumes perfect knowledge of all the sig-

nature sequences, amplitudes and the variance of the AWGN. Performance of the MS-NL-BIC

is evaluated for MF (MS-NL-BIC-(MF)) and the blind MMSE (MS-NL-BIC-(MMSE)); where

these linear detectors are used for detection of the desired user after the cancellation (after P

rows and Q IC stages within each row). The MS-NL-BIC-(MMSE) uses the sample covariance

matrix of the output signal of the last IC stage (ICPQ). Note that the desired user energy is

set to be much lower than the energy of the interferers, and, as discussed in Chapter 4, the
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prevention of the excessive cancellation of the desired user is not performed. In each IC stage,

the performance is measured after 1000 symbols used for the estimation in (3.10) and (5.1),

and F = 5 in (3.8), (3.9) and (3.12). Regarding the parameter µ, we apply the approximation

given by (3.12). We assume the knowledge of the number of dominant interferers Q, which is

the number of columns of the receiver matrix.
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Figure 5.1: Absolute value of crosscorrelation between user 1 and user i (i = 1, · · · , 12).

For the case 1, Figure 5.2.a depicts bit-error rate (BER) as a function of signal to background

noise ratio (SNR) (with respect to the desired user). The results are obtained after a total of

P = 4 rows and Q = 7 columns, which is where the BER reaches minimum. Additional IC

stages do not introduce any improvement for this particular example. For SNR = 8 dB, BER

versus total number of IC stages is presented in Figure 5.2.b. Note that in this example the MS-

NL-BIC(MMSE) performs better than the MS-NL-BIC(MF). In this case, after the last IC stage

(IC47) MAI is still present, therefore, BMMSE detector can further improve the performance

of the MS-NL-BIC receiver in the case 1.
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Figure 5.2: (b) BER vs. number of IC stages, L = 8, M = 8, A2
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1 = 25, i = 2, · · · , 8,

SNR = 8 dB.
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Equivalent results, for the case 2, with P = 4 and Q = 3 and SNR = 8 dB are shown

in Figures 5.3.a and 5.3.b, respectively. In Figure 5.3.b, note that the MS-NL-BIC(MMSE)

converges faster with respect to number of IC stages, but, at the end the MS-NL-BIC(MF)

offers lower BER for this particular example. In this case, after the last IC stage (IC43), MAI is

almost completely removed. Introduction of the BMMSE as linear detector in the MS-NL-BIC

receiver, may cause a drop in the performance due to estimation errors of the covariance matrix

(in (5.1)) which is used to derive the BMMSE detector (this particular topic is analyzed in [20]).

We consider the performance of our receiver in the case 3, which is an overloaded DS-CDMA

system. Figure 5.4 depicts BER versus SNR (with respect to the desired user). The same figure

presents the performance of the matched filter (denoted as MF-8) for the system without the

strong interferers (only the desired user and eight equal-energy interferers, which is identical to

ideal cancellation of the users 2, 3 and 4). The receiver with Q = 3 and P = 4 is used. From

the results in Figure 5.4, we note that the MS-NL-BIC completely cancels the strong users i.e,

the MS-NL-BIC(MF) performance is identical to the MF-8 performance (in Figure 5.4 their

characteristics overlap).

From these results, it is seen that the MS-NL-BIC outperforms linear receivers (MF and

BMMSE), significantly. The performance of the linear receivers is expected because it is well

known that they do not perform well in the case of the systems with strong and highly correlated

interferers (with respect to the desired user signature sequence) [3], as may be the case in

overloaded systems. But, these results suggest that the MS-NL-BIC may be applied as a blind

solution in the case of overloaded systems with strong interferers.

Let us now study the characteristics of the estimates v̂ij (i = 1, . . . , P, j = 1, . . . , Q). In

all cases that we have observed, as the processing progresses from row to row, estimates v̂ij

within each column of the receiver matrix, approach one of the actual signature sequences (with

sign ambiguity). Each column corresponds to a different signature sequence. For example, in

the case 1, we observe how the estimates v̂ij within columns j = 1, 4, 7 approach the actual

signature sequences l = 2, 5, 4, respectively. The absolute value of the crosscorrelation v̂>ijsl is

depicted in Figure 5.5, where the abscissa represents index of the row (i = 1, · · · , 4). The results

appear to be similar for all columns j = 1, · · · , 7. Note that in the last row, the estimates are

practically identical to the signature sequences i.e., the absolute value of the crosscorrelation is

1. We have consistently observed these results in our simulations, and a detailed mathematical

analysis and explanation of the above phenomenon is of future interest.
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Figure 5.3: (b) BER vs. number of IC stages, L = 4, M = 8, A2
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6. Conclusion

We have introduced the MVE-MME optimization criterion which is then used to implement the

MS-NL-BIC receiver. The receiver is based on determining the component of the received vector

that has significant mean energy and low variability in the energy. The MS-NL-BIC consists

of multiple IC stages, and can be viewed as a matrix of IC stages. The columns of the matrix

resemble multistage receivers that iteratively refine performance from earlier stages, while each

row corresponds to a blind equivalent to the nonlinear centralized SIC scheme. The ability of the

receiver to exceed the performance of the linear receivers is confirmed via the simulation results.

It is seen that this scheme is particularly effective for systems with very strong interferers which

are strongly correlated with the desired user signature sequence. Therefore, this may be a very

viable solution for implementation in the case of overloaded systems with strong interferers.
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A.

Proof of Proposition 1

Consider a synchronous antipodal DS-CDMA system, with zero AWGN (σ = 0) and linearly

independent signature sequences. Let us denote a component of the signature sequence si as

di (d>i di = 1), which is orthogonal to other users’ signature sequences, or in other words,

di ⊥ span{sk}Lk=1,k 6=i and s>i di 6= 0, which can be written as

s>j di = ciδij , i, j = 1, · · · , L (A.1)

where |ci| ≤ 1 and ci 6= 0, and δij is the Kronecker delta function. Projection of the received

vector r (see equation (2.2)) on di yields (in the absence of additive background noise):

r>di = Ai bi ci (A.2)

where Ai and bi are the amplitude and bit, respectively, all for user i. From (A.2), it follows

that (r>di)
2 = E

[
(r>di)

2
]

= const, which results in

E
[(

(r>di)
2 −E

[
(r>di)

2
])2]

= 0 (A.3)

Note that

α1(u) = E
[(

(r>u)2 −E
[
(r>u)2

])2] ≥ 0, ∀u (A.4)

Therefore, the absolute minimum of α1(u) is zero. Based on (A.3) and (A.4), α1(u) reaches

the absolute minimum for di (i = 1, · · · , L). Using the above approach, the same result can be

obtained for −di (i = 1, · · · , L). This proves part (a) of Proposition 1.

Further, if N denotes the noise subspace and σ = 0, then by definition of the noise subspace

[26] follows that

r>u = 0, ∀u ∈ N, u>u = 1 (A.5)

Consequently

α1(u) = 0, ∀u ∈ N, u>u = 1 (A.6)

which proves that for any vector u from the noise subspace, α1(u) reaches the absolute minimum

of zero. This concludes proof for part (b) of Proposition 1.
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[3] S. Verdú, Multiuser Detection. Cambridge University Press, 1998.

[4] I. Seskar and N. Mandayam, “Software-Defined Radio Architectures for Interference Can-
cellation in DS-CDMA Systems,” IEEE Personal Communications, vol. 6, no. 4, pp. 26–34,
1999.

[5] I. Seskar, K. Pedersen, T. Kolding, and J. Holtzman, “Implementation Aspects for Succes-
sive Interference Cancellation in DS/CDMA Systems,” Wireless Networks, no. 4, pp. 447–
452, 1998.
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