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Abstract

In this paper we propose a multistage nonlinear blind
interference cancellation (MS-NL-BIC) receiver for direct-
sequence code-division multiple-access (DS-CDMA) sys-
tems. The receiver uses higher order statistics of the re-
ceived baseband signal. Specifically, we use the second and
fourth moments of the received signal to determine a com-
ponent of the received vector that has significant mean en-
ergy and low variability of the energy which are favorable
characteristics for application in an interference cancella-
tion scheme that uses hard decisions. The structure of the
receiver is multidimensional and can be viewed as a ma-
trix of receivers. Each row in the matrix consists of re-
ceivers that perform (hard decisions) cancellation of suc-
cessive components that have significant mean energy and
low variability of the energy. The columns of the matrix es-
sentially resemble multistage receivers that iteratively refine
performance from earlier stages. Simulation results show
that unlike linear receivers, the MS-NL-BIC is exceptionally
efficient in systems with strong and highly correlated inter-
ferers, as may be the case in overloaded DS-CDMA systems.

1 Introduction

In DS-CDMA systems, in general, crosscorrelations be-
tween signature (spreading) sequences are nonzero. This re-
sults in multiple-access interference (MAI) which can dis-
rupt reception of highly attenuated desired user signal. This
is known as the near-far effect. To combat this problem sev-
eral multiuser receivers have been proposed (for example,
see [3, 5, 6, 1]). These receivers are denoted as centralized
because they require knowledge of parameters (signature se-
quences, amplitudes and timing) for all users in the system.
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Therefore, they are more suitable for processing at the base
station.

For the downlink, it is desirable to devise decentralized
receivers. Decentralized receivers exploit the knowledge of
the desired user parameters only. The use of short signa-
ture sequences simplify the task of multiuser detection and
interference cancellation, since a receiver can adaptively
learn (estimate) the structure of the MAI [4]. Decentral-
ized receivers may be further classified into data aided and
nondata aided receivers. Unlike data aided receivers, blind
(or nondata aided) multiuser detectors require no training
data sequence, but only knowledge of the desired user sig-
nature sequence and its timing. The receivers treat MAI
and background noise as a random process, whose statis-
tics must be estimated. Majority of blind multiuser detectors
are based on estimation of second order statistics of the re-
ceived signal. In [2], a blind adaptive MMSE multiuser de-
tector is introduced (proven to be equivalent to the minimum
output energy (MOE) detector). A subspace approach for
blind multiuser detection is presented in [13]; where both the
decorrelating and the MMSE detector are obtained blindly.
Further, adaptive and blind solutions are analyzed in [11],
with an overview in [4]. A blind successive interference
cancellation (SIC) scheme, which uses second order statis-
tics, is proposed in [8]. A comprehensive treatment of mul-
tiuser detection can be found in [12].

In this paper we propose a novel blind interference can-
cellation receiver, which assumes knowledge of only the de-
sired user’s signature sequence. The receiver is based on
determining that component of the received signal that has
significant mean energy and low variability in the energy.
It applies the minimum variance of energy and maximum
mean energy criterion (MVE-MME), which is described in
Section 3. In Section 4, using the above criterion, we de-
rive a nonlinear multistage blind interference cancellation
(NL-MS-BIC) receiver. The structure of the NL-MS-BIC
receiver is multidimensional and can be viewed as a matrix
of IC stages. Each row in the matrix consists of IC stages
that perform the blind (hard decisions) successive interfer-



ence cancellation. The columns of the matrix essentially
resemble multistage receivers that iteratively refine perfor-
mance from earlier stages. Simulation results are presented
in Section 5, and we conclude in Section 6.

2 Background

We now present the asynchronous DS-CDMA system
model. The received baseband signal, r(t), in a K-user
asynchronous DS-CDMA additive white Gaussian noise
(AWGN) system is

r(t) =
J∑

i=−J

K∑

k=1

Ak bk (i) sk(t− iT − τk) + σn(t) (1)

where Ak is the received amplitude, bk(i) ∈ {−1,+1} is
binary, independent and equiprobable data, sk(t) is the sig-
nature sequence which is assumed to have unit energy, τk is
the relative time offset, all for the kth user. T is the symbol
period and n(t) is AWGN with unit power spectral density,
with σ being square root of the noise power. 2J + 1 is the
number of data symbols per user per frame.

It is well known that an asynchronous system with inde-
pendent users can be analyzed as synchronous if equivalent
synchronous users are introduced, which are effectively ad-
ditional interferers [12]. In this paper we consider the re-
ceived signal r(t) over only one symbol period that is syn-
chronous to the desired user (k = 1). The discrete represen-
tation for the received signal in (1) can be written in vector
form as

r =
L∑

k=1

Ak bk sk + σ n (2)

where the number of the interferers (L − 1 = 2 (K − 1))
is doubled due to the equivalent synchronous user analysis.
r, sk and n are vectors in <M , where M is the number of
chips per bit.

Let us now repeat the outline of the nonlinear central-
ized SIC scheme which is presented in [6, 9]. We present
this scheme because its approach to nonlinear interference
cancellation is generalized and later applied in a blind in-
terference cancellation scheme (Section 4). In the nonlin-
ear centralized SIC scheme it is assumed that the signature
sequences are perfectly known (centralized approach). The
basic operations of the SIC algorithm are (see Figure 1):

1. Detect one user with the conventional detector, i.e.,
matched filter (MF).

2. Regenerate the baseband signal (vector) for this user.

3. Cancel the regenerated signal (vector) from the re-
ceived baseband signal.

 

Start detection  
j=1 

Detect user j from the 
baseband signal 

Cancel the regenerate 
signal from the received 
baseband signal 

j=K 

Yes 

Detect the desired user 

No 

End detection 

Regenerate baseband 
signal for user j 

Figure 1. Flow chart illustrating the nonlinear
centralized SIC scheme.

Then, this operation is repeated successively for all the users
in the system. The idea is that successive cancellations re-
sult in reduced MAI for the remaining users. The received
vector rj+1 after stage j of the cancellation is given by

rj+1 = rj − Âj b̂j sj (3)

where rj is the received vector, Âj and b̂j are the corre-
sponding estimates of the amplitude and the bit, respec-
tively, all for stage j. The above implementation of the SIC
algorithm is nonlinear in that it uses hard decisions (b̂j ∈
{−1, 1}) in successive stages. A primary reason why the
nonlinear centralized SIC cannot achieve performance of
the single user lower bound (SULB) is due to erroneous esti-
mate of bit decision (i.e., b̂j 6= bj). When an error happens,
it causes the SIC scheme to double the interference, which
is, of course, undesirable. Furthermore, the doubled inter-
ference propagates through the following IC stages, which
degrades the overall performance of the receiver. For the
same reason, this receiver also is also not near-far resistant
[12]. Further, imperfections in amplitude and delay esti-
mates can lead to the non ideal regeneration and cancella-
tion.



Accordingly, to obtain best results, the user with the high-
est signal to interference ratio (SIR) should be cancelled
first. This condition is usually relaxed and the user with
highest received power is cancelled first, followed by the
second strongest, and so forth [6, 1]. Thus, it is desirable to
identify users (or signature sequences) that have significant
power (energy). Note that the SIC scheme requires ampli-
tude estimates for the users, which implicitly requires low
variability of the amplitude estimates for perfect cancella-
tion.

Let us now generalize the nonlinear cancellation given by
(3). In equation (3), let us replace sj with a vector vj (not
necessarily a signature sequence). Furthermore, we replace
Âj with the square root of the estimate of βj = E[(r>j vj)

2],

and b̂j with sgn(r>j vj). Thus, the nonlinear cancellation in
the jth stage is executed as

rj+1 = rj −
√
β̂j sgn(r>j vj) vj (4)

In the following, we propose favorable characteristics of the
vector vj to be successfully applied in the above scheme.
We now analyze the estimate of the energyβj of the received
signal in the direction of the vector vj . To estimate βj we
use sample statistics as

β̂j(n) =
1

N

n∑

m=n−N+1

(r>(m) vj)
2 (5)

where N is the size of the averaging window (number of
samples), and n and m are time indices (will be omitted in
the following). It is well known that the error of the estimate
in (5) is directly related to the variance of xj = (r>vj)

2.
Using the Chebyshev inequality [7] it can be shown that as
the variance of xj gets lower, the accuracy (mean squared
error) of the energy estimate is improved:

E[(xj −E[xj ])
2] ↓⇒ E

[
(β̂j − βj)2

]
↓ (6)

We can say that for the vector vj that corresponds to xj with
lowest variance (among all vectors in <M ), the estimate of
the energy is the most reliable, i.e., the mean squared error
of the energy estimate is the lowest. Note that the variance
of xj is the variance of the energy of the received vector r in
the direction of the vector vj (i.e., variance of squared pro-
jection of the vector r onto the vector vj).

The above analysis leads us to believe that the vector vj
which corresponds to the low variability of the energy and
significant mean energy of the vector r in the direction of
vj , is desirable for the nonlinear cancellation given by (4).
These characteristics of the vector vj offer reliable estimates
of the corresponding energy βj and sign of r>vj . In the fol-
lowing we present a scheme that blindly determines (esti-
mates) the vector vj and further applies this vector to realize
a multistage nonlinear interference cancellation scheme.

3 MVE-MME Optimization Criterion

We now present an optimization criterion which is used
in deriving a nonlinear blind adaptive interference cancella-
tion scheme. According to the analysis in Section 2, the goal
of the optimization approach is to determine a component of
the received vector r that has low variability in the energy
and significant mean energy. We consider the squared out-
put of the projection of r onto a vector v ∈ <M . The vector
v is obtained from the following nonlinear procedure which
is

v = arg min
u
{α(u) = (1− µ)α1(u)− µα2(u)} (7)

where u ∈ <M is subject to u>u = 1 and 0 < µ < 1. The
function α1(u) denotes the variance of the squared output
r>u and is given as

α1(u) = E
[(

(r>u)2 −E
[
(r>u)2

])2]
(8)

The function α2(u) in (7) denotes the mean squared energy
given as

α2(u) = E
[
(r> u)4

]
(9)

We now present the following proposition that gives an in-
tuitive description of the minimum variance of energy crite-
rion, which is obtained by minimizing the expression in (8).

Proposition 1 For the synchronous antipodal DS-CDMA
system (described in (2)), with zero AWGN (σ = 0) and
linearly independent signature sequences {si}Li=1, the solu-
tions for w = arg minu (α1(u)), constrained as u>u = 1,
are classified in two groups:
(a) w = ±di (i = 1, · · · , L), where di ⊥ span{sk}Lk=1,k 6=i
and s>i di 6= 0. Actually, di is the modified matched filter
that corresponds to decorrelating detector for user i [3].
(b) w is any vector from the noise subspace.
Further, the above solutions correspond to the absolute min-
imum of α1(u) where it reaches zero.

Further, it can be shown that the vector vmax =
arg maxu(α2(u)), constrained as u>u = 1, is equal to the
vector that also maximizes the mean energy E

[
(r> u)2

]
.

It is shown in [8] that vmax is the eigenvector that corre-
sponds to the largest eigenvalue of the input covariance ma-
trix Rr = E[r r>]. Instead of the mean energyE

[
(r> u)2

]

(second order statistics), E
[
(r> u)4

]
is applied in (7) such

that both terms (α1() and α2()) are statistics of the same or-
der (i.e., fourth order statistics). Based on the above, the
vector v corresponds to that component of the received sig-
nal r that has low variability in the energy and significant
mean energy. These characteristics are favorable for appli-
cation of the vector v in a nonlinear interference cancella-
tion scheme (see Section 2). The parameterµ is used to con-
trol which of these two characteristics (low variability of the



energy or significant mean energy) is dominant. For exam-
ple, if µ = 0, the optimization in (7) is equivalent to mini-
mum variance of energy (MVE), and for µ = 1 it is equiv-
alent to maximum mean energy (MME) optimization crite-
rion [8]. Therefore, we refer to (7) as the minimum variance
of energy and maximum mean energy (MVE-MME) opti-
mization criterion.

We now present an adaptive algorithm that solves (7). We
exploit some properties of the functions given in (8) and (9).
Let us assume that the input process r is wide sense station-
ary (WSS) and also that

E[(r>(n) u)2(r>(n+m) u)2] =

= E[(r>(n) u)2]E[(r>(n+m) u)2] (10)

wheren andm are time indices, andn 6= m. In other words,
we assume that the energy of r in direction of the vector u
is uncorrelated in different symbol (bit) intervals. Using the
properties of WSS processes and (10) we can show that (8)
can be written as

α1(u) =
1

2
E
[(

(r>(n) u)2 − (r>(n+m) u)2
)2]

(11)

for all integer n and m, n 6= m. Similarly, the expression
(9) can be written as

α2(u) =
1

2
E
[
(r>(n) u)4 + (r>(n+m) u)4

]
(12)

According to (11) and (12), and using sample statistics, the
function f(u) is defined as an approximation of α(u) as

f(u, n) =
1

2

F∑

m=1

[(1− µ)((r>(n)u)2 − (r>(n+m)u)2)2 −

− µ((r>(n)u)4 + (r>(n+m)u)4)] (13)

The time index n is omitted in the following. F is the num-
ber of consecutive symbols used for the approximation. Let
us now consider a stochastic gradient algorithm [10] that
solves (7) as

v̂l+1 = v̂l − γ∇(f(v̂l)) (14)

where l is the index of the iteration step, and 0 < γ < 1 is
a certain scalar which defines the length of adaptation step.
The constraint |v̂l+1| = 1 is forced after every iteration
where v̂l stands for estimate of v in lth iteration step.

4 Application of the MVE-MME Criterion in
the Multistage Nonlinear Blind IC Receiver

We now present the multistage nonlinear blind interfer-
ence canceler, denoted as MS-NL-BIC. The structure of the

receiver is multidimensional and can be viewed as a matrix
of receivers (i.e., matrix of IC stages). The MS-NL-BIC re-
ceiver consists of P rows and Q columns, where each en-
try of the matrix corresponds to an interference cancellation
stage denoted as ICij (i = 1, . . . , P, j = 1, . . . , Q). The
following steps are executed in the ICij stage (where rij is
the input vector to that stage):

1. Add back x(i−1)j as

r′ij = rij + x(i−1)j (15)

where x(i−1)j is a portion of the received signal that
is cancelled in the ICi−1j stage. Note that the ICi−1j

stage is the same column, but earlier row of the matrix.
For the first row (i = 1), x0j = 0 (j = 1, · · · , Q) and
r11 = r, because no cancellation is performed prior to
this row.

2. Use adaptation rule in (14) (r′ij replaces r) to estimate
vij as v̂ij (see Figure 2). Note that the vector v̂ij is fur-
ther processed in the very same manner as an interferer
signature sequence in the case of the nonlinear central-
ized SIC scheme (see Section 2).

3. Estimate the energy βij = E[(r′ij
>

v̂ij)
2]. Note that

the estimation should be reliable because v̂ij , as a com-
ponent of the vector r′ij , has low variability in the en-
ergy (due to the term (1− µ)α1(u) in (7)).

4. Detect the sign of r′ij
>

v̂ij . Note that detection should
be reliable, because the component v̂ij has significant
mean energy (due to the term−µα2(u) in (7)) and low
variability.

5. Perform nonlinear cancellation as

rij+1 = r′ij − xij (16)

where (see Figure 3)

xij = sgn(r′ij
>

v̂ij)

√
β̂ij v̂ij (17)

The above procedure is executed successively (within the
ith row of the matrix), where for the new stage ICij+1, the
input vector is rij+1 (see equation (16)). The structure of
the ith row (i.e., horizontal topology) is depicted in Figure 4.
From the above, each row may be viewed as a blind equiva-
lent to the nonlinear centralized SIC scheme, where the com-
ponents v̂ij replace the actual signature sequence. After suf-
ficient numberQ of the stages in the ith row, cancellation is
repeated in the (i+1)th row (see Figure 5). In Section 5,Q is
equal to the number of dominant interferers. The input vec-
tor ri+11 of the (i+ 1)th row is riQ+1. The stage ICi+1j is
used to iteratively refine the cancellation which is executed
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in the earlier stage ICij (j = 1, . . . , Q). With appropriate
delay, the vector xij , that is canceled in the stage ICij is
added back (step 1), and within the stage ICi+1j process-
ing is performed again (steps 2 to 5). The number of the
rows P is directly related to the performance of the receiver.
Thus, the trade-off in performance versus complexity can be
controlled by the number P . After sufficient number P of
the rows, detection of the desired user is performed using
a linear detector (e.g., matched filter). Note that implicit in
the above algorithm is the assumption that the interferers are
stronger than the desired user. If the desired user is stronger
than the interferers, then additional processing is required to
ensure that the desired signal is not canceled out before the
detection. In the following we assume that the interferers are
stronger than the desired user.

5 Simulation Results

We consider a synchronous AWGN DS-CDMA system
using randomly generated signature sequences with pro-
cessing gain M = 8. The users are independent and the
following cases are analyzed:
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Figure 4. Horizontal topology of the MS-NL-
BIC receiver.

1. System with L = 8 users (fully loaded), and equal-
energy interferers: A2

i /A
2
1 = 25, i = 2, · · · , 8.

2. System withL = 4 users, and equal-energy interferers:
A2
i /A

2
1 = 25, i = 2, · · · , 4.

3. System with L = 12 users (overloaded system); three
strong equal-energy interferers: A2

i /A
2
1 = 25, i =

2, · · · , 4, and eight interferers with the same energy as
the desired user: A2

i /A
2
1 = 1, i = 5, · · · , 12.

The crosscorrelation profile of the users with respect to the
desired user is depicted in Figure 6. Note that in this partic-
ular example the crosscorrelations are very high, except for
users 5, 10 and 12 which happen to be orthogonal to the de-
sired user. In the case 1, the system has users i = 1, · · · , 8,
and in the case 2 only i = 1, · · · , 4. In all our results the
input sample covariance matrix is estimated according to

R̂r(i) =
1

N

i∑

k=i−N+1

r(k) r>(k) (18)

where N is the size of the averaging window (number of
samples), and i is the time index (will be omitted in the
following text). Performance of the conventional matched
filter (MF), the centralized MMSE receiver (denoted as
MMSE), the blind MMSE receiver (BMMSE) (detector ĉ =
R̂−1
r s1 [13]) and the single user lower bound (SULB) are

used as benchmarks for evaluation of the MS-NL-BIC re-
ceiver. The centralized MMSE assumes perfect knowledge
of all the signature sequences, amplitudes and the variance
of the AWGN. Performance of the MS-NL-BIC is evalu-
ated for MF (MS-NL-BIC-(MF)) and the blind MMSE (MS-
NL-BIC-(MMSE)); where these linear detectors are used for
detection of the desired user after the cancellation (after P
rows and Q IC stages within each row). The MS-NL-BIC-
(MMSE) uses the sample covariance matrix of the output
signal of the last IC stage (ICPQ). In each IC stage, the
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Figure 5. Vertical topology of the MS-NL-BIC
receiver.

performance is measured after 1000 symbols used for the
estimation in (14) and (18), and F = 5 in (13). We as-
sume the knowledge of the number of dominant interferers
Q, which is the number of columns of the receiver matrix.
Note that the issues related to the parameter µ (equation 7)
are addressed later in this section.

For the case 1, Figure 7 depicts bit-error rate (BER) as
a function of signal to background noise ratio (SNR) (with
respect to the desired user). The results are obtained after a
total of P = 4 rows and Q = 7 columns, which is where
the BER reaches minimum. Additional IC stages do not in-
troduce any improvement for this particular example. For
SNR = 8dB, BER versus total number of IC stages is pre-
sented in Figure 8. Note that in this example the MS-NL-
BIC(MMSE) performs better than the MS-NL-BIC(MF). In
this case, after the last IC stage (IC47) MAI is still present,
therefore, BMMSE detector can further improve the perfor-
mance of the MS-NL-BIC receiver in the case 1.

Equivalent results, for the case 2, with P = 4 andQ = 3
and SNR = 8 dB are shown in Figures 9 and 10, respec-
tively. In Figure 10, note that the MS-NL-BIC(MMSE) con-
verges faster with respect to number of IC stages, but, at the
end the MS-NL-BIC(MF) offers lower BER for this partic-
ular example. In this case, after the last IC stage (IC43),
MAI is almost completely removed. Introduction of the
BMMSE as linear detector in the MS-NL-BIC receiver, may
cause a drop in the performance due to estimation errors of
the covariance matrix (in (18)) which is used to derive the
BMMSE detector (this particular topic is analyzed in [8]).
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between user 1 and user i (i = 1, · · · , 12).

We consider the performance of our receiver in the case
3, which is an overloaded DS-CDMA system. Figure 11
depicts BER versus SNR (with respect to the desired user).
The same figure presents the performance of the matched fil-
ter (denoted as MF-8) for the system without the strong in-
terferers (only the desired user and eight equal-energy inter-
ferers, which is identical to ideal cancellation of the users 2,
3 and 4). The receiver withQ = 7 and P = 4 is used. From
the results in Figure 11, we note that the MS-NL-BIC com-
pletely cancels the strong users i.e, the MS-NL-BIC(MF)
performance is identical to the MF-8 performance (in Fig-
ure 11 their characteristics overlap).

From these results, it is seen that the MS-NL-BIC outper-
forms linear receivers (MF and BMMSE), significantly. The
performance of the linear receivers is expected because it is
well known that they do not perform well in the case of the
systems with strong and highly correlated interferers (with
respect to desired user signature sequence) [12], as may be
the case in overloaded systems. But, these results suggest
that the MS-NL-BIC may be applied as a blind solution in
the case of overloaded systems with strong interferers.

Let us now examine the effects of the choice of the pa-
rameter µ (equation 7) on the MS-NL-BIC scheme. For the
case 1 (SNR = 4 dB, Q = 7 and P = 5) and the case
2 (SNR = 4 dB, Q = 3 and P = 5), Figure 12 depicts
BER of the desired user, as a function of µ. In each IC stage,
the MS-NL-BIC(MF) and the MS-NL-BIC(MMSE) apply
same parameter µ, which is presented on the abscissa. From
these results, it is seen that the performance of the scheme is
affected by the choice of the parameter µ. We show that for
different cases (i.e., system loading), different values of µ
result in best performance. The issue of optimal design of
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the parameter µ is a subject of future study.

6 Conclusion

We have introduced the MVE-MME optimization crite-
rion which is then used to implement the MS-NL-BIC re-
ceiver. The receiver is based on determining the compo-
nent of the received vector that has significant mean energy
and low variability in the energy. The MS-NL-BIC con-
sists of multiple IC stages, and can be viewed as a matrix
of IC stages. The columns of the matrix resemble multi-
stage receivers that iteratively refine performance from ear-
lier stages, while each row corresponds to a blind equiva-
lent to the nonlinear centralized SIC scheme. The ability
of the receiver to exceed the performance of the linear re-
ceivers is confirmed via the simulation results. It is seen that
this scheme is particularly effective for systems with very
strong interferers which are strongly correlated with the de-
sired user signature sequence. Therefore, this may be a very
viable solution for implementation in the case of overloaded
systems with strong interferers.
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Figure 9. BER vs. SNR,L = 4,M = 8,A2
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Figure 12. BER vs. parameter µ, Case 1 and
2, SNR = 4 dB.


