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Abstract

In this paper we propose a multistage nonlinear blind
interference cancellation (MS-NL-BIC) receiver for direct-
sequence code-division multiple-access (DS-CDMA) sys-
tems. The receiver uses higher order statistics of the re-
ceived baseband signal. Specifically, we use the second and
fourth moments of the received signal to determine a com-
ponent of the received vector that has significant mean en-
ergy and low variability of the energy which are favorable
characteristics for application in an interference cancella-
tion scheme that uses hard decisions. The structure of the
receiver is multidimensional and can be viewed as a ma-
trix of receivers. Each row in the matrix consists of re-
ceivers that perform (hard decisions) cancellation of suc-
cessive components that have significant mean energy and
low variability of the energy. The columns of the matrix es-
sentially resemble multistagereceiversthat iteratively refine
performance from earlier stages. Smulation results show
that unlikelinear receivers, the MS-NL-BIC isexceptionally
efficient in systems with strong and highly correlated inter-
ferers, asmay bethe casein overloaded DS-CDMA systems.

1 Introduction

In DS-CDMA systems, in general, crosscorrelations be-
tween signature (spreading) sequencesare nonzero. Thisre-
sults in multiple-access interference (MAI) which can dis-
rupt reception of highly attenuated desired user signal. This
isknown as the near-far effect. To combat this problem sev-
eral multiuser receivers have been proposed (for example,
see[3, 5, 6, 1]). Thesereceivers are denoted as centralized
becausethey requireknowledge of parameters(signature se-
guences, amplitudes and timing) for all usersin the system.
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Therefore, they are more suitable for processing at the base
station.

For the downlink, it is desirable to devise decentralized
receivers. Decentralized receivers exploit the knowledge of
the desired user parameters only. The use of short signa-
ture sequences simplify the task of multiuser detection and
interference cancellation, since a receiver can adaptively
learn (estimate) the structure of the MAI [4]. Decentral-
ized receivers may be further classified into data aided and
nondata aided receivers. Unlike data aided receivers, blind
(or nondata aided) multiuser detectors require no training
data sequence, but only knowledge of the desired user sig-
nature sequence and its timing. The receivers treat MAI
and background noise as a random process, whose statis-
ticsmust be estimated. Magjority of blind multiuser detectors
are based on estimation of second order statistics of the re-
celved signal. In[2], ablind adaptive MM SE multiuser de-
tector isintroduced (provento be equival ent to the minimum
output energy (MOE) detector). A subspace approach for
blind multiuser detectionispresentedin[13]; whereboththe
decorrelating and the MM SE detector are obtained blindly.
Further, adaptive and blind solutions are analyzed in [11],
with an overview in [4]. A blind successive interference
cancellation (SIC) scheme, which uses second order statis-
tics, isproposedin [8]. A comprehensive treatment of mul-
tiuser detection can befoundin[12].

In this paper we propose a novel blind interference can-
cellation receiver, which assumes knowledge of only the de-
sired user’s signature sequence. The receiver is based on
determining that component of the received signal that has
significant mean energy and low variability in the energy.
It applies the minimum variance of energy and maximum
mean energy criterion (MVE-MME), which is described in
Section 3. In Section 4, using the above criterion, we de-
rive a nonlinear multistage blind interference cancellation
(NL-MS-BIC) receiver. The structure of the NL-MS-BIC
receiver is multidimensional and can be viewed as a matrix
of IC stages. Each row in the matrix consists of IC stages
that perform the blind (hard decisions) successive interfer-



ence cancellation. The columns of the matrix essentialy
resemble multistage receivers that iteratively refine perfor-
mance from earlier stages. Simulation results are presented
in Section 5, and we concludein Section 6.

2 Background

We now present the asynchronous DS-CDMA system
model. The recelved baseband signal, r(t), in a K-user
asynchronous DS-CDMA additive white Gaussian noise
(AWGN) system is

J K
r(t) = Y Ay (i) si(t —iT — ) + on(t) (1)
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where Ay, is the received amplitude, b, (:) € {—1,+1}is
binary, independent and equiprobable data, s (t) isthe sig-
nature sequence which is assumed to have unit energy, 7 is
the relative time offset, all for the k*" user. T is the symbol
period and n(t) is AWGN with unit power spectral density,
with o being square root of the noise power. 2.J + 1 isthe
number of data symbols per user per frame.

It iswell known that an asynchronous system with inde-
pendent users can be analyzed as synchronousif equivalent
synchronous users are introduced, which are effectively ad-
ditional interferers [12]. In this paper we consider the re-
ceived signal r(t) over only one symbol period that is syn-
chronousto the desired user (k = 1). Thediscrete represen-
tation for the received signal in (1) can be written in vector
formas

L
r:ZAkbksk—i—on ()]
k=1

where the number of the interferers (L — 1 = 2 (K — 1))
is doubled due to the equivalent synchronous user analysis.
r, s; and n are vectorsin R, where M is the number of
chips per bit.

Let us now repeat the outline of the nonlinear central-
ized SIC scheme which is presented in [6, 9]. We present
this scheme because its approach to nonlinear interference
cancellation is generalized and later applied in a blind in-
terference cancellation scheme (Section 4). In the nonlin-
ear centralized SIC scheme it is assumed that the signature
sequences are perfectly known (centralized approach). The
basic operations of the SIC algorithm are (see Figure 1):

1. Detect one user with the conventiona detector, i.e.,
matched filter (MF).

2. Regenerate the baseband signal (vector) for this user.

3. Cancd the regenerated signal (vector) from the re-
ceived baseband signal.

Start detection
=1

v
Detect user j from the
baseband signal

Regenerate baseband
signd for user

Cancel the regenerate
signal from the received
baseband signal

T

lY%

L Detect the desired user }

Y

End detection

Figure 1. Flow chart illustrating the nonlinear
centralized SIC scheme.

Then, thisoperationisrepeated successively for all theusers
in the system. The ideais that successive cancellations re-
sult in reduced MAI for the remaining users. The received
vector r;4 after stage j of the cancellation is given by

rjp1 =1; — A;jb;s; ©)

where r; is the received vector, A; and b; are the corre-
sponding estimates of the amplitude and the bit, respec-
tively, al for stage j. The above implementation of the SIC
algorithm is nonlinear in that it uses hard decisions (b; <
{—1,1}) in successive stages. A primary reason why the
nonlinear centralized SIC cannot achieve performance of
the single user lower bound (SULB) isdueto erroneousesti-
mate of bit decision (i.e,, Bj # b;). When an error happens,
it causes the SIC scheme to double the interference, which
is, of course, undesirable. Furthermore, the doubled inter-
ference propagates through the following I1C stages, which
degrades the overall performance of the receiver. For the
same reason, this receiver also is also not near-far resistant
[12]. Further, imperfections in amplitude and delay esti-
mates can lead to the non ideal regeneration and cancella-
tion.



Accordingly, to obtain best results, the user with the high-
est signal to interference ratio (SIR) should be cancelled
first. This condition is usualy relaxed and the user with
highest received power is cancelled first, followed by the
second strongest, and so forth [6, 1]. Thus, it isdesirableto
identify users (or signature sequences) that have significant
power (energy). Note that the SIC scheme requires ampli-
tude estimates for the users, which implicitly requires low
variability of the amplitude estimates for perfect cancella-
tion.

L et usnow generalizethe nonlinear cancellation given by
(3). In equation (3), let usreplace s; with avector v; (not
necessarily a signature sequence). Furthermore, we replace
A; with the squareroot of the estimate of 3; = E[(rovj)Q],
and b; with sgn(r] v;). Thus, the nonlinear cancellation in
the j*" stage is executed as

rjf1 =rj — \/ﬁAj sgn(r;rvlj) v (4)

In thefollowing, we propose favorable characteristics of the
vector v; to be successfully applied in the above scheme.
We now analyzethe estimate of theenergy 3, of thereceived
signal in the direction of the vector v;. To estimate 3; we
use sample statistics as

=5 Y Tmv? 6
m=n—N-+1

where N is the size of the averaging window (number of
samples), and n and m are time indices (will be omitted in
thefollowing). Itiswell knownthat the error of the estimate
in (5) is directly related to the variance of z; = (r'v;)%
Using the Chebyshev inequality [7] it can be shown that as
the variance of z; gets lower, the accuracy (mean squared
error) of the energy estimate isimproved:

El(w; - Bla)?] L= E|(B;-8)°] L ©

We can say that for the vector v; that correspondsto z; with
lowest variance (among all vectorsin ), the estimate of
the energy is the most reliable, i.e., the mean squared error
of the energy estimate is the lowest. Note that the variance
of x; isthevariance of the energy of the received vector r in
the direction of the vector v ; (i.e., variance of squared pro-
jection of the vector r onto the vector v).

The above analysis leads us to believe that the vector v ;
which corresponds to the low variability of the energy and
significant mean energy of the vector r in the direction of
v;, isdesirable for the nonlinear cancellation given by (4).
Thesecharacteristicsof thevector v ; offer reliable estimates
of the corresponding energy 3; and signof r ' v;. Inthefol-
lowing we present a scheme that blindly determines (esti-
mates) the vector v; and further appliesthisvector torealize
amultistage nonlinear interference cancellation scheme.

3 MVE-MME Optimization Criterion

We now present an optimization criterion which is used
in deriving anonlinear blind adaptive interference cancella-
tion scheme. Accordingtotheanalysisin Section 2, thegoal
of the optimization approach isto determine acomponent of
the received vector r that has low variability in the energy
and significant mean energy. We consider the squared out-
put of the projection of r onto avector v € R . Thevector
v is obtained from the following nonlinear procedurewhich
is

v = argmin {a(u) = (1 - ) ai(w) — poa(u)}  (7)

whereu € RM issubjecttou’u=1and0 < p < 1. The
function o (u) denotes the variance of the squared output
r'uandisgivenas

a(u) = E [((rTu)Q —E [(rTu)Z‘])Q} 6)

The function a3 (1) in (7) denotes the mean squared energy
given as
az(u) = B [(r" u)’] 9)

We now present the following proposition that gives an in-
tuitive description of the minimum variance of energy crite-
rion, which is obtained by minimizing the expressionin (8).

Proposition 1 For the synchronous antipodal DS-CDMA
system (described in (2)), with zero AWGN (¢ = 0) and
linearly independent signature sequences {s; } _,, the solu-
tionsfor w = arg miny (o (u)), constrainedasu 'u = 1,
are classified in two groups:
@w==2d;(z=1,---,L),whered; L spcm{sk}ézljk#
ands,;d; # 0. Actually, d; is the modified matched filter
that corresponds to decorrelating detector for user i [3].
(b) w is any vector from the noise subspace.

Further, the above sol utions correspond to the absol ute min-
imum of a3 (u) whereit reaches zero.

Further, it can be shown that the vector v,,,, =
arg maxy(az(u)), congtrained asu ' u = 1, isequal to the
vector that also maximizes the mean energy E [(r" u)?].
It is shown in [8] that v,,.. is the eigenvector that corre-
spondsto the largest eigenvalue of the input covariance ma-
trix R, = E[rr"]. Instead of themeanenergy £ [(r" u)?|
(second order statistics), £ [(r" u)*| isappliedin (7) such
that both terms (o1 () and a2 ()) are statistics of the same or-
der (i.e., fourth order statistics). Based on the above, the
vector v correspondsto that component of the received sig-
nal r that has low variability in the energy and significant
mean energy. These characteristics are favorable for appli-
cation of the vector v in a nonlinear interference cancella-
tion scheme (see Section 2). The parameter 1. isused to con-
trol which of thesetwo characteristics (low variability of the



energy or significant mean energy) is dominant. For exam-
ple, if © = 0, the optimization in (7) is equivaent to mini-
mum variance of energy (MVE), and for ;n = 1 it isequiv-
alent to maximum mean energy (MME) optimization crite-
rion[8]. Therefore, werefer to (7) asthe minimum variance
of energy and maximum mean energy (MVE-MME) opti-
mization criterion.

We now present an adaptiveal gorithmthat solves(7). We
exploit some properties of thefunctionsgivenin (8) and (9).
L et us assume that the input process r iswide sense station-
ary (WSS) and also that

El(x" (n)u)*(r (n+m)u)’] =
= E[(x" (n) w?] B[(x" (n+ m) u)’] (10)

wheren andm aretimeindices, andn # m. Inother words,
we assume that the energy of r in direction of the vector u
isuncorrelated in different symbal (bit) intervals. Using the
properties of WSS processes and (10) we can show that (8)
can be written as

() = 3B (T w? - (T (4 m)w?)] ()

for adl integer n and m, n # m. Similarly, the expression
(9) can be written as

aa(w) = B [T () w4 0Tt m)w?] (12)

According to (11) and (12), and using sample statistics, the
function f(u) is defined as an approximation of «(u) as

flu,n) = % Dol = @7 () = (T (0 + m)u)?)?
= pl(xT ()" + (¢ (n+m)u)?)] (13)

Thetimeindex n isomitted in the following. F'isthe num-
ber of consecutive symbols used for the approximation. Let
us now consider a stochastic gradient algorithm [10] that
solves(7) as

Y =91 — 4 V(f(F) (14)

where ! istheindex of theiteration step, and 0 < v < 11is
a certain scalar which defines the length of adaptation step.
The condraint [¥!*1| = 1 isforced after every iteration
where ¥ stands for estimate of v in [*" iteration step.

4 Application of the MVE-MME Criterionin
theMultistageNonlinear Blind | C Recelver

We now present the multistage nonlinear blind interfer-
ence canceler, denoted as MS-NL-BIC. The structure of the

receiver is multidimensional and can be viewed as a matrix
of receivers (i.e., matrix of IC stages). The MS-NL-BIC re-
ceiver consists of P rows and () columns, where each en-
try of the matrix correspondsto an interference cancellation
stage denoted asIC;; (¢ = 1,...,P, j = 1,...,Q). The
following steps are executed in the IC;; stage (wherer;; is
the input vector to that stage):

r;j =Tij + X(i-1)5 (15)

where x(;_1); is a portion of the received signal that
iscancelled intheIC,_,; stage. Note that the IC;_;
stageisthe same column, but earlier row of the matrix.
For thefirstrow (i = 1), x0; =0(j = 1,---,Q) and
ry; = r, because no cancellation is performed prior to
this row.

2. Use adaptation rulein (14) (r}; replacesr) to estimate
v,; as¥;; (seeFigure2). Notethat thevector ¥;; isfur-
ther processed in the very same manner as an interferer
signature sequencein the case of the nonlinear central-
ized SIC scheme (see Section 2).

3. Estimate the energy 3;; = E[(r;ijfij)z]. Note that

the estimation should bereliable because v;;, asacom-
ponent of the vector r;;, has low variability in the en-
ergy (dueto theterm (1 — p)a (u) in (7).

4. Detect the sign of r;ijfij. Note that detection should
be reliable, because the component ¥;; has significant
mean energy (duetotheterm —p as(u) in (7)) and low
variability.

5. Perform nonlinear cancellation as

Tij41 =Ty — Xij (16)

where (see Figure 3)
Xij = Sgn(réij’ij) \ Bii Vi (17)

Theaboveprocedureisexecuted successively (withinthe
it" row of the matrix), where for the new stage IC;j41,the
input vector isr;;41 (see equation (16)). The structure of
thei*" row (i.e., horizontal topology) isdepicted in Figure 4.
From the above, each row may be viewed as ablind equiva
lent to thenonlinear centralized S| C scheme, wherethecom-
ponents+;; replacetheactual signaturesequence. After suf-
ficient number Q of the stagesin the i*" row, cancellationis
repeatedinthe (i+1)*" row (seeFigure5). InSection 5, Q is
equal to the number of dominant interferers. Theinput vec-
torr; 11 of the (i + 1)*" rowisr;g41. ThestageIC, 1  is
used to iteratively refine the cancellation which is executed
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Figure 3. Block scheme: construction of the
vector Xij-

in the earlier stage IC;; (j = 1,...,Q). With appropriate
delay, the vector x;;, that is canceled in the stage IC;; is
added back (step 1), and within the stage IC;;; process-
ing is performed again (steps 2 to 5). The number of the
rows P isdirectly related to the performance of thereceiver.
Thus, the trade-off in performanceversus complexity can be
controlled by the number P. After sufficient number P of
the rows, detection of the desired user is performed using
alinear detector (e.g., matched filter). Note that implicit in
the abovealgorithmisthe assumption that theinterferersare
stronger than the desired user. |f the desired user is stronger
than the interferers, then additional processing isrequiredto
ensure that the desired signal is not canceled out before the
detection. Inthefollowingwe assumethat theinterferersare
stronger than the desired user.

5 Simulation Results

We consider a synchronous AWGN DS-CDMA system
using randomly generated signature sequences with pro-
cessing gain M = 8. The users are independent and the
following cases are analyzed:

Xj-11 Xi-1Q
Row;
ICit ICiq
e |+ Tl + MQ « | + TiQ + rQ+1
"+ L "—> W i i »Z
- L] L] LY —
Ell Cll EIQ
Yi1 Yig
v Xil v XiQ

Figure 4. Horizontal topology of the MS-NL-
BIC receiver.

1. System with L = 8 users (fully loaded), and equal-
energy interferers; A2/A2 =25,i=2,---,8.

2. Systemwith L. = 4 users, and equal-energy interferers:
A2/A2 =25 i=2,--- 4.

3. System with I = 12 users (overloaded system); three
strong equal-energy interferers: A2/A? = 25, i =
2,---, 4, and eight interferers with the same energy as
thedesired user: A2/A3 =1,i=5,---,12.

The crosscorrelation profile of the users with respect to the
desired user isdepicted in Figure 6. Notethat in this partic-
ular example the crosscorrelations are very high, except for
users 5, 10 and 12 which happen to be orthogonal to the de-
sired user. Inthe case 1, the system hasusersi = 1,-- -, 8,
andinthecase2onlyi = 1,---,4. Inall our results the
input sample covariance matrix is estimated according to

RG)=< > k) (9

k=i—N+1

where N is the size of the averaging window (number of
samples), and i is the time index (will be omitted in the
following text). Performance of the conventional matched
filter (MF), the centralized MMSE receiver (denoted as
MMSE), the blind MM SE receiver (BMM SE) (detector & =
f{;lsl [13]) and the single user lower bound (SULB) are
used as benchmarks for evaluation of the MS-NL-BIC re-
ceiver. The centralized MM SE assumes perfect knowledge
of all the signature sequences, amplitudes and the variance
of the AWGN. Performance of the MS-NL-BIC is evalu-
atedfor MF (MS-NL-BIC-(MF)) andtheblind MMSE (MS-
NL-BIC-(MMSE)); wheretheselinear detectorsare used for
detection of the desired user after the cancellation (after P
rows and () |C stages within each row). The MS-NL-BIC-
(MMSE) uses the sample covariance matrix of the output
signal of the last IC stage (ICpg). In each IC stage, the
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Figure 5. Vertical topology of the MS-NL-BIC
receiver.

performance is measured after 1000 symbols used for the
estimation in (14) and (18), and F' = 5 in (13). We as-
sume the knowledge of the number of dominant interferers
@, which is the number of columns of the receiver matrix.
Note that the issues related to the parameter 1 (equation 7)
are addressed | ater in this section.

For the case 1, Figure 7 depicts bit-error rate (BER) as
afunction of signal to background noise ratio (SNR) (with
respect to the desired user). The results are obtained after a
total of P = 4 rowsand Q = 7 columns, which is where
the BER reaches minimum. Additional IC stages do not in-
troduce any improvement for this particular example. For
SNR = 8dB, BER versustotal number of I1C stagesis pre-
sented in Figure 8. Note that in this example the MS-NL-
BIC(MMSE) performsbetter than the MS-NL-BIC(MF). In
this case, after thelast IC stage (IC47) MAI is still present,
therefore, BMM SE detector can further improve the perfor-
mance of the MS-NL-BIC receiver in the case 1.

Equivalent results, for thecase 2, with P = 4and Q = 3
and SNR = 8 dB are shown in Figures 9 and 10, respec-
tively. InFigure 10, notethat the M S-NL-BIC(MM SE) con-
vergesfaster with respect to number of 1C stages, but, at the
end the MS-NL-BIC(MF) offerslower BER for this partic-
ular example. In this case, after the last IC stage (IC43),
MAI is aimost completely removed. Introduction of the
BMM SE aslinear detector inthe MS-NL-BI C receiver, may
cause adrop in the performance due to estimation errors of
the covariance matrix (in (18)) which is used to derive the
BMM SE detector (this particular topic isanalyzed in [8]).

0.6

o
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Absolute Value of Crosscorrelation With User 1
)
w

0.2

0.1

User

Figure 6. Absolute value of crosscorrelation
between user 1and useri (i =1, ---,12).

We consider the performance of our receiver in the case
3, which is an overloaded DS-CDMA system. Figure 11
depicts BER versus SNR (with respect to the desired user).
Thesamefigure presentsthe performanceof the matched fil-
ter (denoted as MF-8) for the system without the strong in-
terferers(only the desired user and eight equal-energy inter-
ferers, whichisidentical toideal cancellation of the users 2,
3 and4). Thereceiver with@ = 7and P = 4 isused. From
theresultsin Figure 11, we note that the MS-NL-BIC com-
pletely cancels the strong users i.e, the MS-NL-BIC(MF)
performanceis identical to the MF-8 performance (in Fig-
ure 11 their characteristics overlap).

From theseresults, it is seen that the MS-NL-BIC outper-
formslinear receivers(MFand BMMSE), significantly. The
performance of the linear receiversis expected becauseit is
well known that they do not perform well in the case of the
systems with strong and highly correlated interferers (with
respect to desired user signature sequence) [12], as may be
the case in overloaded systems. But, these results suggest
that the MS-NL-BIC may be applied as a blind solution in
the case of overloaded systems with strong interferers.

Let us now examine the effects of the choice of the pa-
rameter . (equation 7) on the MS-NL-BIC scheme. For the
casel(SNR = 4dB, @ = 7and P = 5) and the case
2(SNR = 4dB, @ = 3and P = 5), Figure 12 depicts
BER of thedesired user, asafunction of i Ineach IC stage,
the MS-NL-BIC(MF) and the MS-NL-BIC(MMSE) apply
same parameter i, whichis presented on the abscissa. From
theseresults, it is seen that the performance of the schemeis
affected by the choice of the parameter 1. We show that for
different cases (i.e., system loading), different values of
result in best performance. The issue of optimal design of
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the parameter 1 is a subject of future study.

6 Conclusion

We have introduced the MVE-MME optimization crite-
rion which is then used to implement the MS-NL-BIC re-
celver. The receiver is based on determining the compo-
nent of the received vector that has significant mean energy
and low variability in the energy. The MS-NL-BIC con-
sists of multiple 1C stages, and can be viewed as a matrix
of IC stages. The columns of the matrix resemble multi-
stage receiversthat iteratively refine performance from ear-
lier stages, while each row corresponds to a blind equiva-
lent to the nonlinear centralized SIC scheme. The ability
of the receiver to exceed the performance of the linear re-
ceiversisconfirmed viathe simulation results. It is seen that
this scheme is particularly effective for systems with very
strong interfererswhich are strongly correlated with the de-
sired user signature sequence. Therefore, thismay be avery
viable solution for implementationin the case of overloaded
systemswith strong interferers.
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