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Abstract

In this paper we present multiple antenna transmitter
optimization schemes that are based on linear
transformations and transmit power optimization,
while keeping the average transmit power conserved.
We consider the downlink of a wireless system with
multiple transmit antennas at the base station and a
number of mobile terminals (i.e., users) each with a single
receive antenna. We consider the maximum achievable
sum data rates in the case of (1) zero-forcing spatial
pre-filter and (2) modified zero-forcing spatial pre-filter.
Using a multiple input single output (MISO) channel
model with temporal and spatial correlations, we study
the effect of delayed channel state information (CSI) on
these schemes. It is seen that as the CSI delay increases,
spatially uncorrelated channels perform worse than
spatially correlated channels, which is in contrast to the
case of zero delay CSI.

Keywords: Transmitter beamforming, correlated channels,
channel state information.

I. INTRODUCTION

Recent studies are focusing on multiple antenna systems
with multiple users (see [1]–[4] and references therein). In
this paper we study multiple antenna transmitter optimization
(i.e, spatial pre-filtering) schemes that are based on linear
transformations and transmit power optimization (keeping the
average transmit power conserved). We consider the downlink
of a wireless system with multiple transmit antennas at the
base station and a number of mobile terminals (i.e., users)
each with a single receive antenna. From an information
theoretical model the downlink corresponds to the case of
a broadcast channel. We consider the maximum achievable
sum data rates in the case of (1) zero-forcing spatial pre-
filter and (2) modified zero-forcing spatial pre-filter [5]. To
our best knowledge, most of the previously reported studies
assume perfect knowledge of the channel state (i.e., response)
at the transmitter. In this paper we study the performance of
the transmitter optimization schemes with respect to delayed
channel state information (CSI). A multiple input single output
(MISO) channel model is introduced modeling temporal and

spatial correlations. We show how the performance of the
schemes depends on spatial correlations and the CSI delay. It
is seen that as the CSI delay increases, spatially uncorrelated
channels perform worse than spatially correlated channels,
which is in contrast to the case of zero delay CSI.

The paper is organized as follows. In Section II we describe
the system model and transmitter optimization schemes. In
Section III we introduce a channel model capturing spatial and
temporal correlations. Each section contains corresponding
numerical examples regarding performance of the schemes
under different system scenarios. We conclude in Section IV.

II. SYSTEM MODEL AND TRANSMITTER OPTIMIZATION

SCHEMES

The system consists of M transmit antennas and N single-
antenna mobile terminals (see Figure 1). In other words each
mobile terminal presents a MISO channel as seen from the
base station. xn is the information bearing signal intended
for mobile terminal n and yn is the received signal at the
corresponding terminal (for n = 1, · · · , N ). The received
vector y = [y1, · · · , yN ]T is

y = HSx + n,

y ∈ CN ,x ∈ CN ,n ∈ CN ,S ∈ CM×N ,H ∈ CN×M (1)

where x = [x1, · · · , xN ]T is the transmitted vector (E[xxH] =
Pav IN×N ), n is AWGN (E[nnH] = N0 IN×N ), H is the
MIMO channel response matrix, and S is a transformation
(spatial pre-filtering) performed at the transmitter. Note that
the vectors x and y have the same dimensionality. Further,
hnm is the nth row and mth column element of the matrix
H corresponding to a channel between mobile terminal n and
transmit antenna m.

Application of the spatial pre-filtering results in the com-
posite MIMO channel G given as

G = HS, G ∈ CN×N (2)

where gnm is the nth row and mth column element of the
composite MIMO channel response matrix G. The signal
received at the nth mobile terminal is

yn = gnnxn︸ ︷︷ ︸
Desired signal for user n

+
N∑

i=1,i6=n

gnixi

︸ ︷︷ ︸
Interference

+ nn. (3)



Fig. 1. System model consisting of M transmit antennas and N mobile
terminals.

In the above representation, the interference is the signal that
is intended for other mobile terminals than terminal n. As said
earlier, the matrix S is a spatial pre-filter at the transmitter. It
is determined based on optimization criteria that we address
later in the text and has to satisfy the following constraint

trace
(
SSH

)
≤ N (4)

which keeps the average transmit power conserved. We repre-
sent the matrix S as

S = AP, A ∈ CM×N ,P ∈ CN×N (5)

where A is a linear transformation and P is a diagonal
matrix. P is determined such that the transmit power remains
conserved. Considering different forms of the matrix A we
study the following solutions.

1) Zero-forcing (ZF) spatial pre-filtering scheme where A

is represented by

A = HH(HHH)−1. (6)

As can be seen, the above linear transformation is
zeroing the interference between the signals dedicated
to different mobile terminals, i.e., HA = IN×N . xn

are assumed to be circularly symmetric complex random
variables having Gaussian distribution NC(0, Pav). Con-
sequently, the maximum achievable data rate (capacity)
for mobile terminal n is

RZF
n = log2

(
1 +

Pav |pnn|2
N0

)
(7)

where pnn is the nth diagonal element of the matrix
P defined in (5). In (6) it is assumed that HHH is
invertible, i.e, the rows of H are linearly independent.

2) Modified zero-forcing (MZF) spatial pre-filtering
scheme that assumes

A = HH

(
HHH +

N0

Pav
I

)−1

. (8)

In the case of the above transformation, in addition to the
knowledge of the channel H the transmitter has to know
the noise variance N0. xn are assumed to be circularly

symmetric complex random variables having Gaussian
distribution NC(0, Pav). The maximum achievable data
rate (capacity) for mobile terminal n now becomes

RMZF
n = log2

(
1 +

Pav |gnn|2
Pav

∑N
i=1,i6=n |gni|2 +N0

)
. (9)

While the transformation in (8) appears to be similar
in form to a MMSE linear receiver, the important
difference is that the transformation is performed at
the transmitter. Using the virtual uplink approach for
transmitter beamforming (introduced in [3], [4]) we
present the following proposition.

Proposition 1: If the nth diagonal element of P is
selected as

pnn =
1√

aH
n an

(n = 1, · · · , N) (10)

where an is the nth column vector of the matrix A, the
constraint in (4) is satisfied with equality. Consequently,
the achievable downlink rate RMZF

n for mobile n is
identical to its corresponding virtual uplink rate when
an optimal uplink linear MMSE receiver is applied. 2

See Appendix for a definition of the corresponding
virtual uplink and a proof of the above proposition.

Once the matrix A is selected, the elements of the diagonal
matrix P are determined such that the transmit power remains
conserved and the sum rate is maximized. The constraint on
the transmit power is

trace
(
APPHAH

)
≤ N. (11)

The elements of the matrix P are selected such that

diag(P) = [p11, · · · , pNN ]T = arg max
trace(APPHAH)≤N

N∑

i=1

Rn.

(12)

Numerical Results

In the case of perfect CSI being available at the transmitter,
the maximum achievable sum data rates for the above
schemes are presented in [5]. In [5] the performance is
studied for different system scenarios and compared to a
number of alternative solutions and performance bounds.

We now present the effects of imperfect channel state
knowledge. In practical communication systems, the channel
state H has to be estimated at the receivers, and then fed to the
transmitter. Specifically, mobile terminal n feeds back the esti-
mate of the nth row of the matrix H, for n = 1, · · · , N . In the
case of a time varying channel, this practical procedure results
in noisy and delayed (temporally mismatched) estimates being
available to the transmitter to perform the optimization. As
said earlier, the MIMO channel is time varying. Let Hi−1 and
Hi correspond to consecutive block faded channel responses.



The temporal characteristic of the channel is described using
the correlation

k = E
[
h(i−1)nm h∗inm

]
/Γ (13)

where Γ = E[hinmh
∗
inm], and hinm is a stationary random

process (for m = 1, · · · ,M and n = 1, · · · , N , denoting
transmit and receive antenna indices, respectively). Low values
of the correlation k correspond to higher mismatch between
Hi−1 and Hi. Note that the above channel is modeled as
a first order discrete Markov process. In the case of Jake’s
model, k = J0(2πfdτ), where fd is the maximum Doppler
frequency and τ is the time difference between h(i−1)nm and
hinm. In addition, the above simplified model assumes that
there is no spatial correlation. We assume that the mobile
terminals feed back Hi−1 which is used at the base station
to perform the transmitter optimization for the ith block. In
other words the downlink transmitter is ignoring the fact that
Hi 6= Hi−1. In Figure 2, we present the average rate per
user versus the temporal channel correlation k in (13), for
SNR = 10 log (Pav/N0) = 10dB. From these results we note
very high sensitivity of the schemes to the channel mismatch.
In this particular case the performance of the ZF and MZF
schemes becomes worse than when there is no pre-filtering.
See also [6] for a related study of channel mismatch and
achievable data rates for single user MIMO systems. Note that
the above example and the model in (13) is a simplification
that we only use to illustrate the schemes’ sensitivity to
imperfect knowledge of the channel state. In the following
we introduce a detailed channel model incorporating spatial
and temporal characteristics.
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Fig. 2. Average rate per user vs. temporal channel correlation k, SNR =
10dB, M = 3 (solid lines), M = 6 (dashed lines), N = 3, Rayleigh channel.

III. CHANNEL MODEL

In the following we first address the spatial aspects of
the channel H. For each mobile terminal there is a 1 × M
dimensional channel between its receive antenna and M

transmit antennas at the base station. The MISO channel
hn = [hn1 · · ·hnM ] for mobile terminal n (n = 1, · · · , N)
corresponds to the nth row of the channel matrix H, and we
assume that it is independent from other channels (i.e., rows
of the channel matrix).

Constraining the analysis to two dimensional (2D) space, the
channel hn = [hn(r1) · · ·hn(rM )], where rm is the position
of the transmit antenna m in the 2D plane. The channel
response hn(rm) between transmit antenna m and the receive
antenna of mobile terminal n, is given as a superposition of
plane waves

hn(rm) =

∫ π

−π

A(α)e−jk rmdα (14)

where k = [ 2π
λ cos(α+αn) 2π

λ cos(α+αn)] is the wave vector
of a 2D plane wave in the direction corresponding to the angle
α+ αn. Note that αn corresponds to the angle of the mobile
terminal boresight and it is an instantiation of a real random
variable distributed uniformly over the interval [0 2π]. λ is
the wavelength of the plane wave with A(α) being a complex
value corresponding to its amplitude and its phase. In other
words, the channel response hn(rm) in (14) is an infinite sum
(integral) of all plane waves at the location rm. Further, it is
assumed here that A(α) has the following statistical property

E[A(α)A(β)∗] = P (α)δ(α − β) (15)

where P (α) is the angular power density of the electromag-
netic radiation at the base station. P (α) is also referred to
as the power azimuth spectrum [7]. The rms angular (i.e.,
azimuth) spread [8] is defined as

AS =

√∫ π

−π

α2P (α)dα. (16)

For cellular systems, where the relevant scatterers are more
likely to be close to the mobile terminal, P (α) is typically
modeled as a Gaussian distribution shaped function [8]

P (α) =
κ√
2πσ

e−
α2

2σ2 (17)

where the constant κ is determined from the condition∫ π

−π
P (α)dα = 1. Note that σ ≈ AS (given in (16)) when

σ � π. Other distributions such as Laplacian have also been
used to model the angular power density (see [7]).

The spatial correlation between two channel responses
hn(ri) and hn(rj) corresponding to transmit antennas i and
j and mobile terminal n is then given by

φij = E[hn(ri)hn(rj)
∗] =

∫ π

−π

P (α) e−jk(ri−rj)dα. (18)

For the given P (α) the correlation φij can be computed
numerically from the above expression. The correlation φij

is the ith row and the jth column element of the spatial
correlation matrix

Φn = E[hH
nhn]. (19)



To obtain a spatially correlated row vector (i.e., a MISO
channel hn)

hn = [n1 · · ·nM ]Φ1/2
n (20)

where ni, i = 1, · · · ,M , are complex iid random variables
with distribution NC(0, 1). In general, channels with lower
angular spread have higher degree of spatial correlations. For
example, in the extreme case of σ = 0o, the channel has
the highest degree of spatial correlations resulting in a single
eigenvector of the spatial correlation matrix Φn (i.e., infinitely
large condition number of the matrix Φn). On the other hand
when the channel is spatially uncorrelated Φn = IM×M and
its condition number is 1.

The temporal evolution of the spatially correlated MISO
channel hn may be represented as [9]

hn(t) = [1 · · · 1]DnNnΦ1/2
n , Dn ∈ CNf×Nf ,Nn ∈ CNf×M

(21)
where Nn is a Nf × M dimensional matrix with elements
corresponding to complex iid random variables with distribu-
tion NC(0, 1/Nf). Dn is a Nf ×Nf diagonal Doppler shift
matrix with diagonal elements

dii = ejωit (22)

representing the Doppler shifts that affect Nf plane waves and

ωi =
2π

λ
vn cos (γi), for i = 1, · · · , Nf (23)

where vn is the velocity of mobile terminal n and the angle of
arrival of the ith plane wave at the terminal is γi (generated
as U [0 2π]).

It can be shown that the model in (21) strictly conforms to
Jake’s model for Nf → ∞. This model assumes that at the
mobile terminal the plane waves are coming from all directions
with equal probability. With minor modifications, the above
model can be modified to capture non-uniform arrival of the
plane waves at the terminal. Further, note that each diagonal
element of Dn corresponds to one Doppler shift. The matrix
Nn Φ

1/2
n is introducing spatial correlations at the base station

for each Doppler shift. For each mobile terminal, Dn and Nn

are independently generated.
For Nf → ∞, a more compact representation of the MISO

channel model in (21) is

hn(t) =
(
kn(t) n0 +

√
1 − kn(t)2 nt

)
Φ1/2

n (24)

where n0 = [n01 · · ·n0M ] and nt = [nt1 · · ·ntM ] with the
components n0i and nti (i = 1, · · · ,M ) being complex iid
random variables with distribution NC(0, 1). Assuming Jake’s
model, kn(t) = J0(2πvnt/λ). It can be shown that the models
in (21) and (24) are statistically equivalent as Nf → ∞.
In both cases the components of the vector hn(t) have a
zero mean complex Gaussian distribution and have the same
covariance E[hn(t)Hhn(t)] = Φn and E[hn(0)Hhn(t)] =
kn(t)Φn.

Using the above MISO channel model the following channel
properties relate temporal and spatial characteristics of the
channel.

1) The mean squared distance (MSD) between the MISO
channel response hn(t) and hn(0) is a function of time
t and does not depend on the spatial correlation of the
channel. In other words

MSDn(t) = E[|hn(t) − hn(0)|2]. (25)

Since trace (Φn) = M , it follows that the MSD is

MSDn(t) = 2M(1− kn(t)). (26)

2) The average power of the MISO channel response hn(t)
in the direction of hn(0) (i.e., the projection of hn(t)
on hn(0))

ζ(t) =
1

M
E



∣∣∣∣∣

hn(0)hn(t)H√
hn(0)hn(0)H

∣∣∣∣∣

2

 (27)

and it increases with the spatial correlation of the
channel. Specifically,

ζ(t) = kn(t)2 + (1 − kn(t)2)

∑M
i=1 ψ

2
ni

M2
(28)

where ψni (i = 1, · · · ,M ) are eigenvalues of the matrix
Φn. Figure 3 presents ζ(t) for different spatial correla-
tions of the channel and also a spatially uncorrelated
channel (based on model in (21), fc = 2GHz, v =
30kmph). The results indicate that ζ(t) is increasing with
the spatial correlation (as said earlier, low values of σ
correspond to high spatial correlations).
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Fig. 3. ζ(t) for M = 3 and channel based on model in (21), fc = 2GHz,
v = 30kmph.

Numerical Results

In Figure 4 and 5 we present average rates per user
versus the delay τ of the CSI. The system consists of M = 3
transmit antennas and N = 3 terminals. The channel is
modeled based on (21) (assuming that the carrier frequency



is 2GHz and the velocity of each mobile terminal is 30kmph
and setting the number of plane waves Nf = 100). We
assume that the transmit antennas form a proper phased
array being spaced λ/2 apart. Because the ideal channel state
H(t + τ) is not available at the transmitter, we assume that
H(t) is used instead to perform the transmitter optimization
at the moment t + τ . We observe performance for different
spatial correlations of the channel and spatially uncorrelated
channel. Figure 4 and 5 present average rates for the ZF
and MZF scheme, respectively, for SNR = 10dB. In all
cases, we observe that as the CSI delay increases, spatially
uncorrelated channels perform worse than spatially correlated
channels, which is a result in contrast to the case of zero
delay CSI. In the extreme case of σ = 0o, the average rate
is hardly affected by the delay of the CSI, while for the
spatially uncorrelated channels degradation due to the delay
is significant.
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Fig. 4. The ZF scheme, average rate per user vs. CSI delay, SNR = 10dB,
M = 3, N = 3, channel based on model in (21), fc = 2GHz, v = 30kmph.

In the following we outline the explanation of the above
results using a subspace decomposition of the matrix H. Let
C̃n(t) for user n denote the subspace spanned by the row
vectors of the channel matrix H other than the nth row. Let us
further define the matrix Bn(t) (Bn(t) ∈ CN−1×M ) such that
its row vectors correspond to the orthonormal basis that spans
C̃n(t). We observe the expected valued of the normalized
Frobenius norm (|| ||2) of the product of the basis vectors at
the instance t and t+ τ

ρn(τ) =
E
[∣∣∣∣Bn(t+ τ)Bn(t)H

∣∣∣∣2
]

N − 1
. (29)

Figure 6 presents ρn(τ) for different spatial correlations of the
channel and also a spatially uncorrelated channel. Note that it
can be shown that in the static case ρn(τ) = 1, while for the
case of fully independent H(t) and H(t+ τ), ρn(τ) = (N −
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Fig. 5. The MZF scheme, average rate per user vs. CSI delay, SNR = 10dB,
M = 3, N = 3, channel based on model in (21), fc = 2GHz, v = 30kmph.

1)/M . These two values represent the upper and lower bound
of ρn(τ), respectively. Based on Figure 6, with respect to the
temporal variations of the subspace C̃n(t), the case of σ = 0 is
equivalent to the static case (having the upper bound of ρn(τ)
for all τ ). Furthermore, the spatially uncorrelated channel is
approaching the case of independent H(t) and H(t + τ) for
large τ (approaching the lower bound of ρn(τ)).
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What this shows is that under the case of strong spatial cor-
relations, the subspace C̃n(t) is relatively stable (i.e., changing
slowly in time). As a result, any transmitter optimization
(pre-filtering) scheme is relatively robust to temporal delays
in the CSI feedback. For the case of spatially uncorrelated
channels, this robustness is lost leading to poorer performance



of transmitter optimization.

IV. CONCLUSION

We have presented a study on multiple antenna transmitter
optimization schemes that are based on linear transformations
and transmit power optimization. We have presented the
performance of the zero-forcing and modified zero-forcing
spatial pre-filtering with respect to the delayed CSI. A multiple
antenna channel model was introduced modeling temporal and
spatial correlations. It was seen that as the CSI delay increases,
spatially uncorrelated channels perform worse than spatially
correlated channels, which is in contrast to the case of zero
delay CSI.

APPENDIX

Let us describe the corresponding virtual uplink for the
system in Figure 1. Let x̄n be the uplink information bearing
signal transmitted from mobile terminal n (n = 1, · · · , N )
and ȳm be the received signal at the mth base station antenna
(m = 1, · · · ,M ). x̄n are assumed to be circularly symmet-
ric complex random variables having Gaussian distribution
NC(0, Pav). Further, the received vector ȳ = [ȳ1, · · · , ȳM ]T

is

ȳ = H̄x̄ + n̄ = HHx̄ + n̄,

ȳ ∈ CM , x̄ ∈ CN , n̄ ∈ CM , H̄ ∈ CM×N (30)

where x̄ = [x̄1, · · · , x̄N ]T is the transmitted vector (E[x̄x̄H] =
Pav IN×N ), n̄ is AWGN (E[n̄n̄H] = N0 IM×M ) and H̄ = HH

is the uplink MIMO channel response matrix.
It is well known that the MMSE receiver is the optimal

linear receiver for the uplink (multiple access channel) [11],
[12]. It maximizes the received SINR (and rate) for each user.
The decision statistic is obtained after the receiver MMSE
filtering as

x̄dec = WHȳ (31)

where the MMSE receiver is

W =

((
HHH +

N0

Pav
I

)−1

H

)H

= HH

(
HHH +

N0

Pav
I

)−1

.

(32)

Proof of Proposition 1

Note that W = A in (8), for the MZF transmitter
spatial pre-filtering. Let us normalize the column vectors of
the matrix W in (32) as

Wnor = WP (33)

where P is defined in (10). In other words the nth diagonal
element of P is selected as

pnn =
1√

wH
n wn

(n = 1, · · · , N) (34)

where wn is the nth column vector of the matrix W (where
wn = an, which is the column vector of A for n = 1, · · · , N ).
It is well known that any normalization of the columns of the

MMSE receiver in (32) does not change the SINRs. In other
words, the SINR for the nth uplink user (n = 1, · · · , N) is

SINR UL
n =

Pav |wH
n h̄n|2

Pav

∑N
i=1,i6=n |wH

n h̄i|2 +N0wH
n wn

=
Pav|wH

n h̄n|2/(wH
n wn)

Pav

∑N
i=1,i6=n |wH

n h̄i|2/(wH
n wn) +N0

(35)

where h̄n is the nth column vector of the matrix H̄. Note that
h̄H

n = hn which is the nth row vector of the downlink MIMO
channel H. The corresponding downlink SINR when the MZF
spatial per-filtering is used (with P defined in (10)) is

SINRMZF
n =

Pav|hnan|2/(aH
nan)

Pav

∑N
i=1,i6=n |hiai|2/(aH

n an) +N0

. (36)

As said earlier, wn = an and h̄H
n = hn. Thus, SINRMZF

n =
SINR UL

n for n = 1, · · · , N leading to identical rates which
concludes the proof.
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