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Abstract

In this paper we analyze the effects of channel re-

sponse estimation error of a frequency-flat time-

varying channel on system capacity. Using a block-

fading channel model, where the block length corre-

sponds to the channel coherence time, we consider

two pilot based approaches for the estimation. The

first approach uses a single pilot symbol per block

with variable power, while the second approach uses

more than one symbol per block with constant power

per symbol. For both cases, we study the effects of

the estimation error on the effective signal-to-noise

ratio and the resulting system capacity. We also eval-

uate the impact of the estimation error on a symbol-

by-symbol detection scheme with no error correction.

Our results show that the first pilot-based approach is

less sensitive to the fraction of power allocated to the

pilot. Further, both schemes performed quite well un-

der optimum power allocation between the pilot and

information bearing signal, more so in the case of long

channel coherence times.

I INTRODUCTION

In this paper we analyze how the estimation error
of the channel response affects performance of a com-
munication system. We assume a frequency-flat time-
varying wireless channel with additive white Gaussian
noise (AWGN). The above system may correspond to one
subchannel (i.e., carrier) of an OFDM wireless system [1].
We consider two different pilot arrangement schemes and
we observe their performance depending on the channel
coherence time, signal-to-noise ratio and power allocated
to the pilots with respect to the information bearing por-
tion of the signal. The first scheme uses a single pilot
symbol per block with variable power, while the second
scheme uses more than one symbol per block with con-
stant power per symbol. For the given pilot schemes,
in both cases maximum-likelihood (ML) estimate of the
channel response is considered [2]. A more detailed de-
scription of the system and related assumptions are given
in Section II. The capacity (i.e., the Shannon capac-
ity [3, 4]) of the system that consists of the above chan-

nel and the channel response estimation is evaluated in
Section III. In order to quantify the effects of the estima-
tion error on a symbol-by-symbol detection scheme with
no error correction, the symbol-error-rate and through-
put of various quadrature amplitude modulation (QAM)
schemes is presented in Section IV. We conclude in Sec-
tion V.

II SYSTEM MODEL

We now introduce the received signal model. After
sampling, with sampling rate Tsmp = 1/B, where B is
the signal bandwidth, the discrete version of the base-
band equivalent of the received signal is

r(k) = C(k)d(k) + n(k) (1)

where k is the discrete time variable, C(k) is the complex
channel response, d(k) is the transmitted complex signal,
and n(k) is the additive white Gaussian noise (AWGN)
with unit variance. To perform estimation of the chan-
nel response C(k), the receiver is using a pilot (training)
signal that is a part of the transmitted data. The pi-
lot is sent periodically, every N symbol periods, where
the symbol period is Tsym = Tsmp = 1/B, satisfying the
Nyquist rate. Furthermore, we assume that the channel
coherence time is greater or equal than NTsym. This as-
sumption approximates the channel to be constant over
at least N symbols (C ≈ C(n), for n = 1, · · · , N). In lit-
erature, channels with the above property are known as
block-fading channels [1]. Without loss of generality, we
assume that E[|C|2] = 1. The complex N -dimensional
received vector, whose kth component corresponds to the
kth symbol interval within the pilot period, is

r = Cd + n, r ∈ CN , d ∈ CN , n ∈ CN , C ∈ C (2)

where n corresponds to the AWGN. Further, the trans-
mitted vector d is defined as

d =
N∑

i=1

Aidisi (3)

where Ai is the amplitude, di the unit-variance com-
plex data and si is the corresponding signature (i.e.,



a waveform). The signatures are mutually orthogonal
sHi sj = δij , where δij is the Kronecker delta function.
For example, si could be a canonical waveform (i.e., could
be a TDMA-like waveform, where si is the unit-pulse at
the time instance i). Alternately, si could also be an
N -dimensional Walsh sequence spanning all N symbol
intervals (i.e., similar to a CDMA-like waveform [5]). We
consider the transmitted signal to be comprised of two
parts: one is the information bearing signal and the other
which is the pilot signal. We can rewrite the equation (3)
as

d =
N−K∑

j=1

Ajdjsj +
N∑

l=N−K+1

Aldlsl (4)

In the above
∑N−K
j=1 Ajdjsj denotes the information bear-

ing signal and
∑N
l=N−K+1Aldlsl denotes the pilot signal.

The pilot data (dl, l = N −K + 1, · · · , N) are predefined
and known at the receiver. Further, without loss of gen-
erality, we assume that |dl|2 = 1 (l = N −K + 1, · · · , N).
We also assume that the amplitudes are A = Ai (i =
1, · · · , N −K), and AP = Al (l = N −K+ 1, · · · , N), and
they are known at the receiver. We denote the ratio of
the amplitudes as α = AP /A.

In this study we consider two different pilot arrange-
ments:

1. K = 1 and AP 6= A. For the given average symbol
signal-to-noise ratio, denoted as SNR (in dB), the
amplitude A is derived from the equation

N 10SNR/10 = ((N − 1) + α2)A2 (5)

The above implies

A1 =

√
N

((N − 1) + α2)
10SNR/10 (6)

In the remainder of the paper, the above pilot ar-
rangement is referred to as case 1.

2. K ≥ 1 and AP = A (α = 1). For the given average
symbol SNR, the amplitude A is

A2 =
√

10SNR/10 (7)

In the remainder of the paper, the above pilot ar-
rangement is referred to as case 2.

In both cases we assume that the total transmitted en-
ergy (within the pilot period) is the same, but differently
distributed between the information bearing portion of
the signal and the pilot. Consequently, we observe the
performance of the system with respect to the amount of
transmitted energy that is allocated to the pilot (percent-
age wise). This percentage is denoted as µ and is given
as

µ =
Kα2

(N −K) +Kα2
100 [%] (8)

We now describe the channel response estimation
scheme that is assumed in the system. The estimation

is based on averaging the projections of the received sig-
nal on dlsl for l = N −K + 1, · · · , N as

Ĉ =
1

KAP

N∑

l=N−K+1

(dlsl)
Hr

=
1

K

N∑

l=N−K+1

(C + (dlsl)
Hn/AP )

= C +
1

KAP

N∑

l=N−K+1

(dlsl)
Hn (9)

where Ĉ denotes the estimate of the channel response C.
For a frequency-flat AWGN channel, (9) is the maximum-
likelihood estimate of the channel response C, for the
given pilot signal [2]. The estimation error is

ne =
1

KAP

N∑

l=N−K+1

(dlsl)
Hn (10)

Having the channel response estimated, the estimate of
the transmitted data di (i = 1, · · · , N − K) is obtained
from the following statistics

xi =
1

A
sHi r (11)

The above procedure is the matched filtering operation
(projection sHi r), resulting in the sufficient statistic xi [6].
The amplitude A is known at the receiver. Let us now
rewrite the above expression (11) using the equations (9)
and (10) as

xi = di(C+ne)+

(
1

A
sHi n− dine

)
= diĈ+

(
1

A
sHi n− dine

)

(12)
The data detection is performed using the above statis-
tics. As a common practice, the detection procedure as-
sumes that the channel response is perfectly estimated,
and that Ĉ corresponds to the true channel response.
Consequently, the power of the received information bear-
ing signal is ε = E[|diĈ|2]. Furthermore, let us denote the
second term in the above equation as n̄i, i.e.,

n̄i =
1

A
sHi n− dine (13)

Note that n̄i is the effective noise in the detection process.
Assuming statistical independence between sHi n, di and
ne, it can be shown that the effective noise is AWGN,
for the given di. Further, let Γ = E[n̄∗i n̄i], denote the
variance of the effective noise. Γ is a function of A, and
can be explicitly written as

Γ(A) = E

[
| 1
A

sHi n− dine|2
]

(14)



Note that the different pilot arrangements will result in
different A (see the equations (6) and (7)), and conse-
quently in different Γ(A). Furthermore we define the ef-
fective SNR (in dB) as

eSNR(A) = 10 log10

(
ε

Γ(A)

)
(15)

In the following, we denote eSNR1 = eSNR(A1) (where
A1 is defined in (6)) and eSNR2 = eSNR(A2) (where
A2 is defined in (7)).
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Figure 1: Effective SNR vs. power allocated to the pilot,
SNR = 4, 12, 20dB, N = 10, Rayleigh channel.

In Figure 1, we plot the effective SNR as a function
of the allocated power to the pilot (equation (8)), for
different values of SNR (corresponding to the channel
background noise). In the above example a channel co-
herence time of 10 symbols is assumed and the channel
response is that of a frequency-flat Rayleigh fading chan-
nel. The results are shown for the pilot arrangements
corresponding to both case 1 and case 2. In the case of
the ideal knowledge of the channel response, the effective
SNR does correspond to the conventional definition of
the SNR (i.e., where the channel background noise is the
only noise in the system).

III EFFECT ON SYSTEM CAPACITY

In this section we consider the Shannon capacity [3,4,7]
of a system that consists of the block fading channel and
the above estimation procedure. Specifically, we evaluate
the effect of the effective noise on the system capacity.
Recall that the effective noise was assumed to be AWGN.
Thus we can directly calculate the system capacity 1 for
the two pilot arrangements as follows

1. For K = 1 and the amplitude A given in (6), the

1If the effective noise is not distributed as a white Gaussian pro-
cess, then the above system capacity expressions represent worst-
case scenarios.

system capacity is

C1 =
N − 1

N
log2(1 + 10eSNR1/10) (16)

The term (N−1)/N is introduced because one signa-
ture (i.e., signal dimension) is allocated to the pilot,
consequently lowering the system capacity.

2. K ≥ 1 and the amplitude A given in (7), the system
capacity is

C2 =
N −K
N

log2(1 + 10eSNR2/10) (17)

The term (N −K)/N is introduced because K sig-
natures (i.e., signal dimensions) are allocated to the
pilot, consequently lowering the system capacity.

Note that the above expressions represent the achiev-
able rates for reliable transmission for the specific esti-
mation procedure assumed in each case. Knowing the
channel response perfectly or using a better channel esti-
mation scheme (e.g., decision driven schemes) may result
in higher achievable rates.

In Figure 2, we present the system capacity as a func-
tion of the power allocated to the pilot (equation (8)).
The results correspond to the system observed in the case
of Figure 1. For the ideal knowledge of the channel re-
sponse we apply the conventional capacity formula (cor-
responding only to the channel background noise), while
for case 1 and case 2 the expressions in (16) and (17)
are used, respectively (corresponding to the eSNR1 and
eSNR2 in Figure 1). For this particular example, even
though the effective SNR is different for case 1 and case
2, the system capacity is reaching its maximum at the
same µ ≈ 20%. As will be seen in the following set of re-
sults, this is not the case for different channel coherence
time lengths.
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Figure 2: System capacity vs. power allocated to the
pilot, SNR = 4, 12, 20dB, N = 10, Rayleigh channel.



In Figure 3 and 4, for SNR = 20dB, we present the
system capacity vs. power allocated to the pilot for dif-
ferent channel coherence time lengths N = 10, 20, 40, 100.
In case 1 and case 2, by increasing the channel coherence
time length we observe that the maximum system capac-
ity is reached for lower percentage of the power allocated
to the pilot.
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Figure 3: System capacity vs. power allocated to the pi-
lot, case 1, SNR = 20dB, for different channel coherence
time lengths N = 10, 20, 40, 100, Rayleigh channel.
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Figure 4: System capacity vs. power allocated to the pi-
lot, case 2, SNR = 20dB, for different channel coherence
time lengths N = 10, 20, 40, 100, Rayleigh channel.

Regarding the system capacity, from the above results
we observe that case 1 is less sensitive to the pilot power
allocation than case 2 (i.e., in case 2 the system capacity
is dropping faster if the allocated power is different than
the one that results in the maximum value). Further,
for the same channel coherence time lengths, case 1 is
reaching the system capacity maximum at a lower power
allocated to the pilot than for case 2 (see Figure 3 and
4).

For the given SNR, we define the capacity efficiency
ratio η as the ratio between the maximum system capac-
ity in case 1 and case 2 and the system capacity C0 in the
case of the ideal knowledge of the channel response, i.e.,

ηi =
maxµ Ci
C0

i = 1, 2 (18)

In Figure 5, we show that the capacity efficiency ratio η
increases as the channel coherence time is getting longer.

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

C
ap

ac
ity

 e
ffi

ci
en

cy
 r

at
io

Channel coherence time length [symbol periods]

Case 1, SNR = 20dB
Case 2, SNR = 20dB
Case 1, SNR = 12dB
Case 2, SNR = 12dB
Case 1, SNR = 4dB
Case 2, SNR = 4dB

Figure 5: Capacity efficiency ratio vs. channel coher-
ence time length, SNR = 4, 12, 20dB,N = 10, 20, 40, 100,
Rayleigh channel.

IV EFFECT ON QAM WITH NO ERROR

CORRECTION

While the earlier analysis has focused on evaluating the
impact of estimation error on the system (information)
capacity, we now present results on the impact on symbol-
by-symbol detection and no error correction. Specifically,
we consider QPSK (i.e., 4-QAM), 16-QAM and 64-QAM
modulation schemes. In general, the symbol-error-rate
(SER) for M -ary QAM is given as [8]

SER = 1−
(

1−
(

1− 1√
M

)
erfc

(√
3S

2(M − 1)

))2

(19)
where S denotes the symbol signal-to-noise ratio. In
the case of the ideal knowledge of the channel response
S = 10SNR/10 (only the backgroung channel noise is
present), while in the presence of the estimation errors
S = 10eSNR(A)/10 (the effective SNR).

For N = 10, we select the pilot power that results in
the maximum system capacity (from Figure 2 it is µ ≈
20%) and we present the SER in Figure 6 (for case 1, case
2, and ideal knowledge of the channel response). The
performance loss directly corresponds to the difference
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Figure 6: SER vs. SNR, N = 10, Rayleigh channel.

between the SNR and the effective SNR (i.e., eSNR1

and eSNR2).

To evaluate the spectral efficiency of the modulation
scheme, for given SNR and the above estimation, we
define the throughput as

T = log2(M)
N −K
N

(1− SER) (20)

Recall that for case 1, K = 1, for case 2, K = 1, · · · , N
and for the ideal knowledge of the channel response
K = 0. In Figure 7, for QPSK modulation, N = 10 and
SNR = 4dB, the throughput is presented as a function
of the pilot power. Note that the maximum throughput
for QPSK is 2[bits/dim]. As in the case of the system
capacity, we again observe that case 1 is less sensitive to
the pilot power allocation than case 2.
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Figure 7: Throughput vs. power allocated to the pilot,
QPSK modulation, N = 10, SNR = 4dB, Rayleigh chan-
nel.

V CONCLUSION

In this paper we have studied how the estimation error
of the frequency-flat time-varying channel response af-
fects the performance of a communication system. We
have approximated the channel as a block-fading chan-
nel. We have considered two pilot based schemes for the
estimation. The first scheme (case 1) uses a single pilot
symbol per block with variable power, while the second
scheme (case 2) uses more than one symbol per block
with constant power per symbol. We have studied the
performance in terms of the effective SNR, system capac-
ity, symbol-error-rate and throughput for various QAM
schemes. We have presented how the performance de-
pends on percentage of the total power allocated to the
pilot, background noise level and the channel coherence
time length. Our results have shown that the first pilot-
based approach is less sensitive to the fraction of power
allocated to the pilot. Further, both schemes performed
quite well under optimum power allocation between the
pilot and information bearing signal, more so in the case
of long channel coherence times.
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