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Abstract. In this paper we analyze the effects of pilot assisted channel esti-
mation error of a frequency-flat time-varying channel on achievable data rates.
We consider multiple-input multiple-output (MIMO) wireless systems and em-
phasize differences with respect to single-input single-output (SISO) systems.
The analysis connects results of information theory with practical wireless
communication systems. Using a block-fading channel model, where the block
length corresponds to the channel coherence time, we consider two pilot based
approaches for the estimation. Per transmit antenna, the first approach uses
a single pilot symbol per block with different power than data symbols, while
the second approach uses more than one pilot symbol per block with same
power as data symbols. In the MIMO case, the orthogonality between the
pilots assigned to different transmit antennas is assumed. The effects of the
estimation error are evaluated in the case of the estimates being available at
the receiver only (open loop). The presented analysis is a study of mismatched
receiver algorithms in MIMO systems.

1. Introduction

Fading channels are an important element of any wireless propagation environ-
ment [9]. Different aspects of fading channels have been studied and publicized. It
has been recognized that the inherent temporal and spatial variations of wireless
channels impose stringent demand on design of a communication system to allow
it approach the data rates that are achievable in, for example, wire-line systems. A
number of different solutions exploit variations in wireless channels. For example, a
transmitter optimization scheme (using power control), known as the water pouring
algorithm, maximizes the capacity for the constrained average transmit power [12]
(see also [3]). In addition to power control, recent applications of variable coding
rate and modulation formats illustrate a wide range of resource allocation tech-
niques used to exploit and combat effects of fading channels in multiuser wireless
systems [24]. An extensive review of the information theoretical aspects of commu-
nications in fading channels is given in [1]. Furthermore, modulation and channel
coding for fading channels is also being studied (see [1] and references therein).

Multiple-transmit multiple-receive antenna systems represent an implementa-
tion of the MIMO concept in wireless communications [6]. This particular multiple
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antenna architecture provides high capacity wireless communications in rich scatter-
ing environments. It has been shown that the theoretical capacity (approximately)
increases linearly as the number of antennas is increased [6, 7]. This and related
results point to the importance of understanding all aspects of MIMO wireless sys-
tems. For example, the studies regarding propagation [4, 5, 23], detection [8, 21],
space-time coding and implementation aspects [11, 20, 27] are well publicized.

Next generation wireless systems and standards are supposed to operate over
wireless channels whose variations are faster and/or further pronounced. For exam-
ple, using higher carrier frequencies (e.g., 5 GHz for 802.11a) results in smaller scale
of spatial variations of the electro-magnetic field. Also, compared to SISO chan-
nels, MIMO channels have greater number of parameters that a receiver and/or
transmitter has to operate with, consequently pronouncing the channel variations.
In addition, there has been a perpetual need for supporting higher mobility within
wireless networks. These are just a few motivations for studying the implications
of channel variations on achievable data rates in wireless systems.

In this paper we analyze how the estimation error of the channel response affects
the performance of a MIMO wireless system. Considering the practical importance
of single-input single-output (SISO) systems, we analyze them as a subset of MIMO
systems. Considering terminology in literature (see [1] and references therein),
the channel response estimate corresponds to channel state information (CSI). We
assume a frequency-flat time-varying wireless channel with additive white Gaussian
noise (AWGN). The above system may also correspond to one subchannel (i.e.,
carrier) of an OFDM wireless system [25]. We consider two pilot arrangement
schemes in this paper. The first scheme uses a single pilot symbol per block with
the different power than the data symbol power. The second scheme uses more than
one pilot symbol per block, whose power is the same as the data symbol power.
For the given pilot schemes, in both cases, maximum-likelihood (ML) estimation
of the channel response is considered [18]. In the MIMO case, the orthogonality
between the pilots assigned to different transmit antennas is assumed. The effects
of the estimation error are evaluated in the case of the estimates being available at
the receiver only. The presented analysis may be viewed as a study of mismatched
receiver algorithms in MIMO systems. The analysis connects results of information
theory (see [16, 22] and references therein) with practical wireless communication
systems (employing pilot assisted channel estimation) and generalizing it to MIMO
systems. We believe that the presented results are directly applicable to current
and next generation wireless systems. Furthermore, the results may be used as
baseline benchmarks for performance evaluation of more advanced estimation, such
as anticipated in future systems.

2. System Model

In the following we present a MIMO communication system that consists on M
transmit and N receive antennas (denoted as a M ×N system). At the receiver we
assume sampling with the period Tsmp = 1/B, where B is the signal bandwidth,
thus preserving the sufficient statistics. The received signal is a spatial vector y

(2.1) y(k) = H(k)x(k)+n(k), y(k) ∈ CN ,x(k) ∈ CM ,n(k) ∈ CN ,H(k) ∈ CN×M

where x is the transmitted vector, n is AWGN (E[nnH] = N0 IN×N ), and H is the
MIMO channel response matrix, all corresponding to the time instance k. We assign
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index m = 1, · · · , M to denote the transmit antennas, and index n = 1, · · · , N to
denote the receive antennas. Thus, hnm(k) is the n-th row and m-th column element
of the matrix H(k). Note that it corresponds to a SISO channel response between
the transmit antenna m and the receive antenna n. The n-th component of the
received spatial vector y(k) = [y1(k) · · · yN (k)]T (i.e., signal at the receive antenna
n) is

(2.2) yn(k) =

M∑

m=1

hnm(k)gm(k) + nn(k)

where gm(k) is the transmitted signal from the m-th transmit antenna (i.e., x(k) =
[g1(k) · · · gM (k)]T), and n(k) = [n1(k) · · ·nN(k)]T. To perform estimation of the
channel response H(k), the receiver uses a pilot (training) signal that is a part of
the transmitted data. The pilot is sent periodically, every K sample periods. We
consider the transmitted signal to be comprised of two parts: one is the data bearing
signal and the other is the pilot signal. Within the pilot period consisting of K
symbols, L symbols (i.e., signal dimensions) are allocated to the pilot, per transmit
antenna. As a common practical solution (see [11,20,27]), we assume that the pilot
signals assigned to the different transmit antennas, are mutually orthogonal. For
more details on signal design for multiple transmit antenna systems see also [13,14].
Consequently we define a K-dimensional temporal vector gm = [gm(1) · · · gm(K)]T,
whose k-th component is gm(k) (in (2.2)), is defined as

(2.3) gm =

K−LM∑

i=1

ad
imdd

imsd
i

︸ ︷︷ ︸
Data

+

L∑

j=1

ap
jmdp

jms
p
jm

︸ ︷︷ ︸
Pilot

.

In the above the first sum is the information, i.e., data bearing signal and the
second corresponds to the pilot signal, corresponding to the transmit antenna m.
Superscripts ”d” and ”p” denote values assigned to the data and pilot, respectively.
dd

im is the unit-variance circularly symmetric complex data symbol. The pilot
symbols (dp

jm, j = 1, · · · , L) are predefined and known at the receiver. Without

loss of generality, we assume that |dp
jm|2 = 1. We also assume that the amplitudes

are ad
im = A, and ap

jm = AP , and they are known at the receiver. Further, the
amplitudes are related as AP = αA. Note that the amplitudes are identical across
the transmit antennas (because we assumed that the transmit power is equally
distributed across them).

Furthermore, sd
i = [sd

i (1) · · · sd
i (K)]T, (i = 1, · · · , (K − LM)) and s

p
jm =

[sp
jm(1) · · · sp

jm(K)]T, (j = 1, · · · , L, and m = 1, . . .M) are waveforms, denoted
as temporal signatures. The temporal signatures are mutually orthogonal. For
example, sd

i (or s
p
jm) could be a canonical waveform (i.e., could be a TDMA-like

waveform, where sd
i (or s

p
jm) is the unit-pulse at the time instance i). Alternately,

sd
i (or s

p
jm) could also be a K-dimensional Walsh sequence spanning all K sample

intervals (i.e., similar to a CDMA-like waveform [15]). As said earlier, we assume
that the pilot signals are orthogonal between the transmit antennas. The indexing
and summation limits in (2.3) conform to this assumption, i.e, temporal signatures
s
p
jm(j = 1, · · · , L) are uniquely assigned to the transmit antenna m. In other words,

transmit antenna m must not use the temporal signatures that are assigned as pi-
lots to other antennas and assigned to data, which is consequently lowering the
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achievable data rates (will be revisited in the following sections). Unlike the pilot
temporal signatures, the data bearing temporal signatures sd

i (i = 1, . . . , (K−LM))
are reused across the transmit antennas, which is an inherent property of MIMO
systems, potentially resulting in high achievable data rates.

We rewrite the received spatial vector in (2.1) as

(2.4) y(k) = H(k)(d(k) + p(k)) + n(k), d(k) ∈ CM ,p(k) ∈ CM

where d(k) is the information, i.e., data bearing signal and p(k) is the pilot portion
of the transmitted spatial signal, at the time instance k. The m-th component of
the data vector vector d(k) = [d1(k) · · · dM (k)]T (i.e., data signal at the transmit
antenna m) is

(2.5) dm(k) =

K−LM∑

i=1

ad
imdd

imsd
i (k).

The m-th component of the pilot vector p(k) = [p1(k) · · · pM (k)]T (i.e., pilot signal
at the transmit antenna m) is

(2.6) pm(k) =

L∑

j=1

ap
jmdp

jmsp
jm(k).

Let us now describe the assumed properties of the MIMO channel H(k). The
channel coherence time is assumed to be greater or equal to KTsmp. This assump-
tion approximates the channel to be constant over at least K samples (hnm(k) ≈
hnm, for k = 1, · · · , K, for all m and n), i.e., approximately constant during the
pilot period. In the literature, channels with the above property are known as
block-fading channels [25]. Furthermore, we assume that the elements of H are
independent identically distributed (iid) random variables, corresponding to highly
scattering channels. In general, the MIMO propagation measurements and model-
ing have shown that the elements of H are correlated (i.e., not independent) [4,5,23].
In addition, assuming independence is a common practice because the information
about correlation is usually not available at the receiver and/or the correlation is
time varying (not stationary) and hard to estimate. Based on the above, the re-
ceived temporal vector at the receiver n, whose k-th component is yn(k) (in (2.2)),
is

(2.7) rn = [yn(1) · · · yn(K)]T =

M∑

m=1

hnmgm + nn, rn ∈ CK

where nn = [nn(1) · · ·nn(K)]T and E[nnnH
n ] = N0 IK×K .

Note that when applying different number of transmit antennas, the total av-
erage transmitted power must remain the same, i.e., conserved. This is a common
assumption in MIMO systems [6, 7]. Also, the power is equally distributed across
the transmit antennas. The average transmit power (from all transmit antennas)
is

(2.8) Pav = M

(∑K−LM

i=1
(ad

im)2 +
∑L

j=1
(ap

jm)2
)

K
= M

((K − LM) + Lα2)A2

K
.
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Thus

(2.9) A =

√
K

((K − LM) + α2L)

Pav

M
.

As seen from the above, we assume that the total average transmitted energy
(within the pilot period) is the same, but differently distributed between the data
bearing portion of the signal and the pilot. Consequently, we observe the per-
formance of the system with respect to the amount of transmitted energy that is
allocated to the pilot (percentage wise). This percentage is denoted as µ and is
given as

(2.10) µ =
Lα2

(K − LM) + Lα2
100 [%].

As said earlier, in this study we consider two different pilot arrangements:

(1) L = 1 and AP 6= A. The amplitude is

(2.11) A1 =

√
K

((K − M) + α2)

Pav

M
.

In the remainder of the paper, the above pilot arrangement is referred
to as case 1. For example, in SISO systems the above pilot arrangement
is applied in CDMA wireless systems (e.g., IS-95 and WCDMA [15]).
In MIMO systems, it is applied in narrowband MIMO implementations
described in [11, 20, 27]. Also, it is applied in a wideband MIMO imple-
mentation based on 3G WCDMA [2].

(2) L ≥ 1 and AP = A (α = 1). The amplitude is

(2.12) A2 =

√
K

(K − L(M − 1))

Pav

M
.

In the remainder of the paper, the above pilot arrangement is referred to as
case 2. Note that the above pilot arrangement is frequently used in SISO
systems, e.g., wire-line modems [19] and some wireless standards (e.g.,
IS-136 and GSM [25]). To the best to our knowledge, this arrangement is
not used in MIMO systems.

3. Estimation of Channel Response

Due to the orthogonality of the pilots and assumption that the elements of H

are iid, it can be shown that to obtain the maximum likelihood estimate of H it is
sufficient to estimate hnm (for m = 1, · · · , M, n = 1, · · · , N), independently. This
is identical to estimating a SISO channel response between the transmit antenna
m and receive antenna n. The estimation is based on averaging the projections of
the received signal on dp

jms
p
jm (for j = 1, · · · , L and m = 1, · · · , M) as

ĥnm =
1

LAP

L∑

j=1

(dp
jms

p
jm)Hrn

(3.1) = hnm +
1

LAP

L∑

j=1

(dp
jms

p
jm)Hnn
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where ĥnm denotes the estimate of the channel response hnm. It can be shown that
for a frequency-flat AWGN channel, given pilot signal [18] and assumed properties
of H, (3.1) is the maximum-likelihood estimate of the channel response hnm. The
estimation error is

(3.2) ne
nm =

1

LAP

L∑

j=1

(dp
jms

p
jm)Hnn.

Note that ne
nm corresponds to a white Gaussian random process with distribution

N (0, N0/(L (αA)2)). Thus, the channel matrix estimate Ĥ is

(3.3) Ĥ = H + He

where He is the estimation error. It can be shown that each component of the
error matrix He is an independent and identically distributed random variable ne

nm

given in (3.2) (where ne
nm is the n-th row and m-th column element of He).

Having the channel response estimated, the estimate of the transmitted data
that is associated with the temporal signature sd

i is obtained starting from the
following statistics

(3.4) zni =
1

A
(sd

i )
Hrn

where the amplitude A is assumed to be known at the receiver. The above procedure
is the matched filtering operation and zni corresponds to the n-th component of
the vector

(3.5) zi = [z1i · · · zNi]
T = H di +

1

A
ni, i = 1, . . . , K − LM

where the m-th component of di = [dd
i1 · · · d

d
iM ]T is dd

im (data transmitted from the
antenna m and assigned to the temporal signature sd

i ). Also, E[nin
H
i ] = N0 IN×N .

It can be shown that zi is a sufficient statistic for detecting the transmitted data.
As a common practice, the detection procedure assumes that the channel re-

sponse is perfectly estimated, and that Ĥ corresponds to the true channel response.
Let us rewrite the expression in (3.5) as

(3.6) zi = (H + He) di +
1

A
ni −He di = Ĥ di +

(
1

A
ni −He di

)
.

The effective noise in the detection procedure (as a spatial vector) is

(3.7) n̄i =

(
1

A
ni −He di

)
.

For the given Ĥ, the covariance matrix of the effective noise vector is

(3.8) Υ = Υ(A) = E
n̄i|Ĥ

[n̄in̄
H

i ] =
N0

A2
I + E

He|Ĥ
[HeHe

H]

and it is a function of the amplitude A. As said earlier He is a matrix of iid

Gaussian random variables with distribution N (0, N0/(L (αA)2)).
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4. Estimates Available to Receiver:

Open Loop Capacity

Assuming that the channel response estimate is available to the receiver, only,
we determine the lower bound for the open loop ergodic capacity as follows.

(4.1) C ≥ R =
K − LM

K
E

Ĥ

[
log2 det

(
IM×M + ĤĤHΥ−1

)]
.

The term (K−LM)/K is introduced because L temporal signature per each trans-

mit antenna are allocated to the pilot. Also, the random process Ĥ has to be
stationary and ergodic (this is a common requirement for fading channel and er-
godic capacity [1, 17]). We assume that the channel coding will span across great
number of channel blocks (i.e., we use the well known infinite channel coding time
horizon, required to achieve error-free data transmission with rates approaching
capacity [26]).

In the above expression, equality holds if the effective noise (given in (3.7)) is
AWGN with respect to the transmitted signal. If the effective noise is not AWGN,
then the above rates represent the worst-case scenario, i.e., the lower bound [10]. In
achieving the above rates, the receiver assumes that the effective noise is interfer-
ence which is independent of the transmitted data with Gaussian distribution and
spatial covariance matrix Υ. In addition, in the above expression R represents an
achievable rate for reliable transmission (error-free) for the specific estimation pro-
cedure assumed. Knowing the channel response perfectly or using a better channel
estimation scheme (e.g., decision driven schemes) may result in higher achievable
rates.

In the following we compare the above result to an information theoretical
result presented in [1] (page 2641, expression (3.3.55)). The result is presented
for the conventional SISO case, introducing capacity lower bound for mismatched
decoding as

(4.2) C ≥ R∗ = E
ĥ

[
log2

(
1 +

ĥ2P

E
h|ĥ(|h − ĥ|2)P + N0

)]

where h and ĥ are the SISO channel response and its estimate, respectively. The
above result is general, not specifying the channel response estimation procedure.
The bound in (4.1) is an extension of the information theoretical bound in (4.2),
capturing the more practical pilot assisted channel response estimation scheme and
generalizing it to the MIMO case. Consequently,

Proposition 1. For the SISO case (M = 1, N = 1), the rate R in (4.1) and
R∗ in (4.2), are related as

(4.3) R =
K − L

K
R∗, for P =

K

(K − L) + α2L
Pav

where ĥ is obtained using the pilot assisted estimation.

5. Examples and Numerical Results

5.1. SISO Systems. To illustrate the above analysis we start with SISO sys-
tems. In the SISO case, all previously defined spatial vectors and related matrices

are now single dimensional (e.g., di, H, Ĥ and Υ are now scalars di, h, ĥ and υ,
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respectively). We assume that E[|h|2] = Γ. We define the average symbol signal-
to-noise (SNR) ratio as

(5.1) SNR = 10 log10

[
ΓPav

N0

]

and the effective SNR (in dB) as

(5.2) SNRe(A) = 10 log10

( ε

υ

)

where ε = E[|diĥ|2]. In the following, we denote SNRe1 = SNRe(A1) (where A1

is defined in (2.11)) and SNRe2 = SNRe(A2) (where A2 is defined in (2.12)). In
Figure 1, we plot the effective SNR (i.e., SNRe) as a function of the allocated
power to the pilot (equation (2.10)), for different values of SNR (corresponding to
the channel background noise). In this example, a pilot period K is 10 symbols
and coincides with the coherence time. A frequency-flat Rayleigh fading channel
is assumed. The results are shown for the pilot arrangements corresponding to
both case 1 and case 2. In the case of the ideal knowledge of the channel response,
the effective SNR does correspond to the conventional definition of the SNR (i.e.,
where the channel background noise is the only noise in the system, as defined in
the equation (5.1)).
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Figure 1. Effective SNR vs. power allocated to the pilot, SISO
system, SNR = 4, 12, 20dB, coherence time K = 10 symbols,
Rayleigh channel.

Further, in Figure 2, we present the rate R in (4.1) as a function of the power
allocated to the pilot (equation (2.10)). The assumptions are identical to ones
related to Figure 1. For the ideal knowledge of the channel response we apply the
ergodic capacity formula [1]. In Figure 3 and 4, for SNR = 20dB, we present the
achievable rates vs. power allocated to the pilot for different channel coherence
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Figure 2. Achievable open-loop rates vs. power allocated to the
pilot, SISO system, SNR = 4, 12, 20dB, coherence time K = 10
symbols, Rayleigh channel.

time lengths K = 10, 20, 40, 100. In case 1 and case 2, by increasing the channel
coherence time length we observe that the maximum rate is reached for lower
percentage of the power allocated to the pilot.

Regarding the achievable rates, from the above results we observe that case 1 is
less sensitive to the pilot power allocation than case 2 (i.e., in case 2, R is dropping
faster if the allocated power is different than the one that results in the maximum
value). Further, for the same channel coherence time lengths, case 1 is reaching the
maximum rate at a lower power allocated to the pilot than for case 2 (see Figure 3
and 4).

For the given SNR, we define the capacity efficiency ratio η as the ratio between
the maximum rate R (with respect to the pilot power) and the ergodic capacity
Cm×n in the case of the ideal knowledge of the channel response, i.e.,

(5.3) ηm×n =
maxµ R

Cm×n

.

The index m and n correspond to number of transmit and receive antennas, re-
spectively. In Figure 5, we show that the capacity efficiency ratio η1×1 increases as
the channel coherence time is getting longer.

5.2. MIMO Systems. In Figure 6, we present the rate R in (4.1) as a func-
tion of the power allocated to the pilot (equation (2.10)), for different number of
transmit and receive antennas. In this and following cases we observe just the pilot
arrangement case 1 (treating case 2 impractical for MIMO systems). We observe
the rates for the Rayleigh channel, SNR = 12dB and the channel coherence time



10 DRAGAN SAMARDZIJA AND NARAYAN MANDAYAM

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

R
at

e[
bi

ts
/s

ym
bo

l]

Pilot power[%]

Ideal channel knowledge
Case 1, K=100
Case 1, K=40
Case 1, K=20
Case 1, K=10

Figure 3. Achievable open-loop rates vs. power allocated to the
pilot, case 1, SISO system, SNR = 20dB, for different channel
coherence time lengths K = 10, 20, 40, 100 symbols, Rayleigh chan-
nel.
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Figure 4. Achievable open-loop rates vs. power allocated to the
pilot, case 2, SISO system, SNR = 20dB, for different channel
coherence time lengths K = 10, 20, 40 symbols, Rayleigh channel.
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Figure 5. Capacity efficiency ratio vs. channel coherence time
length (K = 10, 20, 40, 100 symbols), SISO system, SNR =
4, 20dB, Rayleigh channel.

length K = 40. Solid lines correspond to a system with the channel response es-
timation, and dashed lines to a system with the ideal knowledge of the channel
response. Further, in Figure 7 we show the capacity efficiency ratio η for differ-
ent number of transmit and receive antennas vs. different channel coherence time
lengths. We observe that as the number of transmit antenna increases, the sensitiv-
ity to the channel response estimation error is more pronounced (while keeping the
same number of receive antennas). For example, for the same channel coherence
time length, the capacity efficiency ratio of the 4 × 4 system is lower than in the
case of the 3 × 4 system.

6. Conclusion

In this paper we have studied how the estimation error of the frequency-flat
time-varying channel response affects the performance of a communication sys-
tem. We have considered multiple-input multiple-output (MIMO) wireless systems,
where we have approximated the channel as a block-fading channel. The presented
analysis may be viewed as a study of mismatched receiver algorithms in MIMO
systems. We have considered two pilot based schemes for the estimation. The
first scheme uses a single pilot symbol per block with the different power than
the data symbol power. The second scheme uses more than one pilot symbol per
block, whose power is the same as the data symbol power. We have studied the
performance in terms of the effective SNR and achievable data rates (i.e., capacity
lower bounds). We have presented how the performance depends on the percentage
of the total power allocated to the pilot, background noise level and the channel
coherence time length. Our results have shown that the first pilot-based approach



12 DRAGAN SAMARDZIJA AND NARAYAN MANDAYAM

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

R
at

e[
bi

ts
/s

ym
bo

l]

Pilot power [%]

4x4
3x4
2x4
1x4
1x1

Figure 6. Achievable open-loop rates vs. power allocated to the
pilot, MIMO system, SNR = 12dB, coherence time K = 40 sym-
bols, Rayleigh channel, solid line corresponds to a system with the
channel response estimation, and dashed line to the case of the
ideal channel response knowledge.
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Figure 7. Capacity efficiency ratio vs. channel coherence time
length (K = 10, 20, 40, 100 symbols), MIMO system, SNR =
12dB, Rayleigh channel.
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is less sensitive to the fraction of power allocated to the pilot. Furthermore, we
have observed that as the number of transmit antennas increase, the sensitivity to
the channel response estimation error is more pronounced (while keeping the same
number of receive antennas). The effects of the estimation error are evaluated in
the case of the estimates being available at the receiver only (open loop), and the
future work will address the case when the estimates are fed back to the transmitter
(closed loop) allowing water pouring transmitter optimization.
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