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Communication Efficiency of Error Correction
Mechanism Based on Retransmissions

Dragan Samardzija

Summary

• The SNR gap between the capacity and throughput stays constant as SNR increases.
• The relative efficiency is improving with SNR.
• A minor improvement when combining retransmitted frames.

I. SYSTEM OUTLINE

In this document we analyze efficiency of a communication system that applies the error correction
mechanism using retransmissions. Namely, the transmitter sends a block consisting of Nin information
and Noh overhead bits, such that Nb = Nin + Noh. No forward error correction coding is applied. The
transmission is performed using digital modulation, where R bits are transmitted per each modulation
symbol. For example, RBPSK = 1, RQPSK = 2, R16−QAM = 4 and R64−QAM = 6. Therefore the Nb bits
are transmitted using a frame consisting of

Ns = ⌈Nb/R⌉ (1)

symbols.
Upon the reception, the receiver estimates the transmitted symbols and then maps them back onto the

corresponding bits, i.e., performs demodulation. The receiver determines whether or not the received block
of bits is error-free1. If an error is present, the receiver sends a request for the retransmission of the block.
While discarding the overhead, only successfully received frames contribute to the average data rate, i.e.,
throughput. Assuming that there are no missed errors, the throughput is

T = R
(
1− Noh

Nb

)
(1− FER) [bits/symbol] (2)

where FER is the frame error rate such that

FER = 1− (1− SER)Ns . (3)

SER is the symbol error rate, i.e., the probability that the receiver demodulator fails to correctly estimate
the transmitted symbol.

In the above case, frames in error are simply discarded. However, the receiver may combine the corre-
sponding retransmitted frames, thus improving probability of successful reception when retransmissions
occur. Consequently, the throughput becomes

T ∗ = R
(
1− Noh

Nb

) (1− FER1) +
∞∑
j=2

1

j

(1− FERj)
j−1∏
k=1

FERk

 (4)

where FERj corresponds the jth transmission of a frame.

1In practice, to enable the receiver to determine a potential presence of errors, a check code word is added consisting of Ncw bits (e.g.,
for a cyclic redundancy code CRC, if an error is present, it is detected with probability 1− 2−Ncw ). The Ncw bits would contribute to the
Noh overhead bits.
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II. SYMBOL ERROR RATE

In this analysis we focus on quadrature-amplitude modulation (QAM) schemes such as QPSK, 16-QAM
and 64-QAM. The modulation alphabet consist of M constellation points, MQPSK = 4, M16−QAM = 16
and M64−QAM = 64. In order to determine their symbol error rates we first consider their corresponding
pulse-amplitude modulation (PAM) schemes, each with

√
M uniformly-spaced levels. A QAM scheme

may be viewed as two independent orthogonalized PAM schemes assigned to the inphase (i.e., cosine)
and quadrature (i.e., sine) component, respectively. Consequently, the relationship between the symbol
error rates of the two schemes is

SERQAM = 1− (1− SERPAM)2. (5)

Therefore we will first determine the SERPAM .
The PAM amplitude levels that are symmetric about the origin (i.e., antipodal) are

Ai = A
(
(i− 1)− 1

2
(
√
M − 1)

)
, i = 1, · · · ,

√
M (6)

where A is the distance between the adjacent levels. The average PAM signal power is

PPAM =
1√
M

√
M∑

i=1

A2
i =

∑√
M

i=1

(
(i− 1)− 1

2
(
√
M − 1)

)2
√
M︸ ︷︷ ︸
Υ

A2 = ΥA2. (7)

In the case of additive white Gaussian noise (AWGN) channel, the probability of error when the ith
amplitude level is transmitted is

Pe(i) =


1√
2πσ

∫∞
A/2 e

− x2

2σ2 dx i = 1,
√
M

2√
2πσ

∫∞
A/2 e

− x2

2σ2 dx i = 2, · · · ,
√
M − 1

(8)

where σ2 is the AWGN variance. Since the symbols are equally probable,

SERPAM =
1√
M

√
M∑

i=1

Pe(i) =

√
M − 1√
M

2√
2πσ

∫ ∞

A/2
e−

x2

2σ2 dx =

=

√
M − 1√
M

erfc

(
A

2
√
2σ

)
=

√
M − 1√
M

erfc

1

2

√
PPAM

2σ2Υ

 . (9)

Since two orthogonalized PAM schemes correspond to one QAM scheme, the signal and noise power
relate as

PQAM = 2 PPAM andN0 = 2 σ2. (10)

Consequently, the signal to noise ratio (SNR) is

SNR =
PQAM

N0

=
PPAM

σ2
. (11)

Based on the expressions (5), (7), (9) and (11)

SERQAM = 1−

1− √
M − 1√
M

erfc

1

2

√√√√√
√
M SNR

2
∑√

M
i=1

(
(i− 1)− 1

2
(
√
M − 1)

)2



2

. (12)

In the case of BPSK,
√
M = 2, the SERPAM in (9) should be modified considering that the signal

occupies only one dimension, i.e., component, thus doubling the power per component,

SERBPSK =
1

2
erfc

√PBPSK

2σ2

 =
1

2
erfc

(√
SNR

)
. (13)

Considering typical modulation schemes, the SER as a function of SNR is depicted in Figure 1.
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Fig. 1. The SER as a function of SNR.

III. THROUGHPUT

Using the SER that is derived in the previous section, in Figure 2 the throughput in (2) is depicted
as a function of the block length Nb, for SNR = 20 dB, 64-QAM and Noh = 32 bits2. The function
presents a trade-off between a large block, that lowers the relative overhead, and a small block that lowers
the FER. Depending on the SNR and modulation scheme, the block length Nb is selected such that the
corresponding throughput is maximized.
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Fig. 2. The throughput as a function of the block length Nb, for SNR = 20 dB, 64-QAM and Noh = 32 bits.

Once the optimal block length is selected, the throughout is compared against the AWGN channel
capacity

C = log2(1 + SNR) [bits/symbol]. (14)

2A typical CRC applies a 32-bit check code word, guaranteeing very low probability of missed errors.
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For typical modulation schemes, the throughput and capacity, as functions of SNR, are depicted in Figure
3.
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Fig. 3. The throughput and capacity as functions of SNR.

Assuming that the transmitter has an ability to select a modulation scheme that results in the highest
throughput for a specific SNR (i.e., tracking the throughput envelope in Figure 3), the SNR gap between
the capacity and throughput stays constant as SNR increases. In other words, the rate of capacity and
throughput increase with SNR is the same. In the given example the SNR gap is approximately 8 dB.

However, in relative terms, the throughput of this communication scheme is approaching the channel
capacity with SNR, i.e., its relative efficiency is improving. For example, based on Figure 3, at 10 dB and
then 40 dB, the throughput is respectively reaching approximately 42% and 74% of the channel capacity.

Let us now consider the case when the receiver combines, i.e., adds the corresponding retransmitted
frames. In that case, for a frame that is transmitted j times (because of errors detected in its previous
j − 1 transmissions), the SNR is

SNRj = j SNR. (15)

Using the above, the envelope of the throughput in (4) is depicted in Figure 4. It is compared to the
case when the receiver does not combine retransmitted frames, i.e., the throughput envelope in (2). The
block length Nb is optimized for each receiver scheme, individually. From the results we note a minor
improvement when combining retransmitted frames.
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Fig. 4. The throughput envelopes and capacity as functions of SNR.


