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Abstract— We propose a channel state information (CSI)
feedback scheme based on unquantized and uncoded (UQ-UC)
transmission. We consider a system where a mobile terminal
obtains the downlink CSI and feeds it back to the base station
using an uplink feedback channel. If the downlink channel is
an independent Rayleigh fading channel, then the CSI may be
viewed as an output of a complex independent identically dis-
tributed Gaussian source. Further, if the uplink feedback channel
is AWGN, it can be shown that that UQ-UC CSI transmission
(that incurs zero delay) is optimal in that it achieves the same
minimum mean squared error (MMSE) distortion as a scheme
that optimally (in the Shannon sense) quantizes and encodes the
CSI while theoretically incurring infinite delay. Since the UQ-UC
transmission is suboptimal on correlated wireless channels, we
propose a simple linear CSI feedback receiver that can be used
to improve the performance of UQ-UC transmission while still
retaining the attractive zero-delay feature. We provide bounds
on the performance of the UQ-UC CSI feedback. Furthermore,
we explore its application and performance in multiple antenna
multiuser wireless systems.

I. INTRODUCTION

The tremendous capacity gains due to transmitter optimiza-
tion in multiple antenna multiuser wireless systems [1]–[5]
rely heavily on the availability of the channel state information
(CSI) at the transmitter. In such scenarios, aside from the issue
of how to estimate the CSI, another interesting question is how
to transmit (or feedback) the CSI? A fundamental question that
arises is that, is it necessary for reliable CSI feedback to follow
the principles outlined by the ”digital dogma”? In other words,
is it necessary that the CSI be optimally quantized and encoded
(in a Shannon theoretic sense) for it to be reliable? Are there
ways to mitigate the delay (which is theoretically infinite) that
is imposed by such a Shannon theoretic approach?

In this paper we consider a system where a mobile terminal
obtains the downlink CSI and feeds it back to the base
station using an uplink feedback channel. If the downlink
channel is an independent Rayleigh fading channel, then the
CSI may be viewed as an output of a complex independent
identically distributed (iid) Gaussian source. Further, if the
uplink feedback channel is AWGN and the downlink CSI
is perfectly known at the mobile terminal, it can be shown
that unquantized and uncoded (UQ-UC) CSI transmission
(that incurs zero delay) is optimal in that it achieves the
same minimum mean squared error (MMSE) distortion as a
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scheme that optimally (in the Shannon sense) quantizes and
encodes the CSI while incurring infinite delay. Results on the
optimality of unquantized and uncoded transmission have also
been discussed in other contexts in [6]–[8]. Since the UQ-UC
transmission is suboptimal on correlated wireless channels, we
propose a simple linear CSI feedback receiver that can be
used in conjunction with the UQ-UC transmission while still
retaining the attractive zero-delay feature. Furthermore, we
describe an auto regressive (AR) correlated channel model and
present the corresponding performance bounds for the UQ-UC
CSI feedback scheme. We also explore the performance limits
of such schemes in the context of achievable information rates
in multiple antenna multiuser wireless systems.

II. BACKGROUND

Consider the communication system in Figure 1. The system
is used for transmission of unquantized and uncoded outputs
(i.e., symbols) of the source. The source is complex, continu-
ous in amplitude and discrete in time (with the symbol period
Tsym). We assume that the symbols x are zero-mean with unit
variance. The average transmit power is P , while the channel
introduces additive zero-mean noise n with variance N0.

Fig. 1. Unquantized and uncoded transmission that achieves the MMSE
distortion of the transmitted signal.

At the receiver, the received signal y is multiplied by the
conjugate of g. Consequently, the signal x̂ at the destination
is

x̂ = g∗y = g∗
(√

Px + n
)

(1)

and x̂ is an estimate of the transmitted symbol x. We select
the coefficient g to minimize the mean squared error (MSE)
between x̂ and x. Thus,

g = arg min E|x̂ − x|2 = argf min E|f∗
(√

Px + n
)
− x|2.

(2)
Consequently,

g =
√

P

P + N0
(3)



and the corresponding mean squared error is

min E|x̂ − x|2 =
1

1 + P
N0

. (4)

The MSE corresponds to a measure of distortion between the
source symbols and estimates at the destination.

Let us now relate the above results to the transmission
scheme that applies optimal quantization and channel coding.
Based on the Shannon rate distortion theory [9], for a given
distortion D�, the average number of bits per symbol at the
output of the optimal quantizer is

R = log2

(
1 +

1 − D�

D�

)
. (5)

Note that the optimal quantizer that achieves the above rate
incurs infinite quantization delay. For the AWGN channel, the
maximum transmission rate is

C = log2

(
1 +

P

N0

)
. (6)

As in the case of the optimal quantizer, the optimal channel
coding would incur infinite coding delay. Furthermore, optimal
matching (in the Shannon sense) of the quantizer and the
channel requires that

R = C ⇒ D� = 2−C =
1

1 + P
N0

. (7)

The above distortion is equal to the MSE for the UQ-UC
transmission scheme given in (4) (see also [7]). The above
result points to the optimality of the UQ-UC scheme (while
it incurs zero delay) when the source is iid Gaussian and the
channel is AWGN.

III. UQ-UC CSI FEEDBACK

Using the above result, we now motivate why UQ-UC
transmission schemes can be used for CSI feedback in wireless
systems. Consider a communication system that consists of
a base station transmitting data over a downlink channel. A
mobile terminal receives the data, and transmits the CSI of
the downlink channel state hdl over an uplink channel. Let us
assume that the mobile terminal estimates the downlink CSI
hdl perfectly. If the downlink channel is iid Rayleigh, then
the CSI is an iid complex Gaussian random variable. In this
case, if the uplink channel is AWGN and it is independent
of the downlink channel, then it follows directly from the
earlier discussion that the above UQ-UC scheme is optimal
for transmission of the downlink CSI over the uplink channel.
In other words, UQ-UC transmission (with zero delay) of the
downlink CSI will achieve the same distortion as a scheme
that optimally (in the Shannon sense) quantizes and encodes
the CSI while incurring infinite delay.

To further distinguish the fact that the UQ-UC CSI feedback
transmission does not imply an ”analog” communication1 sys-
tem, we now illustrate an example of how such a scheme could

1While we use the term unquantized (UQ) in the UQ-UC nomenclature,
it must be pointed out that any practical transmission scheme will require at
least some level of coarse quantization.

be applied in the context of a CDMA system. The functional
blocks of the mobile terminal in a CDMA system are depicted
in Figure 2. Using a pilot-assisted estimation scheme, the
mobile terminal obtains an estimate of the downlink channel
hdl, denoted as h̄dl. The downlink channel estimate h̄dl is the
CSI to be transmitted on the uplink channel hul. The estimate
h̄dl modulates (i.e., multiplies) a Walsh code that is specifically
allocated as a CSI feedback carrier as shown in Figure 2.
The second Walsh code is allocated for the conventional
uplink data transmission. For generality, the uplink pilot is also
transmitted allowing the base station to obtain an estimate h̄ul

of the uplink channel hul.

Fig. 2. CDMA mobile terminal that applies the UQ-UC CSI feedback.

In general, the downlink and uplink channel estimation is
not perfect, i.e., h̄dl = hdl+edl and h̄ul = hul+eul, where edl

and eul are the channel state estimation errors on the downlink
and the uplink, respectively. The estimation errors are modeled
as AWGN, which is typical to pilot-assisted channel state
estimation schemes (see [10] and the references therein).
Consequently, the downlink and uplink estimation errors are
distributed as NC(0, Ne

dl) and NC(0, Ne
ul), respectively, where

NC(0, σ2) denotes a complex zero-mean Gaussian random
variable distribution with the variance σ2.

Consider a signal/system model, where at the time instant i,
the uplink received signal corresponding to the CSI feedback
is

y(i) = hul(i)
√

P csi
ul h̄dl(i) + n(i) (8)

where hul(i) is the uplink channel state, P csi
ul is the CSI

feedback transmit power, h̄dl(i) is the estimate of the downlink
channel hdl that is being fed back and n(i) is the AWGN on
the uplink with the variance N0. Using the received signal in
(8) and an estimate of h̄ul(i), the CSI feedback receiver at the
base station will estimate the transmitted CSI hdl(i). In the
following derivations we assume that the uplink and downlink



channel states are mutually independent and correspond to
zero-mean and unit-variance complex Gaussian distribution
NC(0, 1).

Using the same approach as given in Section II, the up-
link CSI feedbeck receiver w is derived from the following
optimization

w = argv min Ehdl(i), y(i)|h̄ul(i)|v∗y(i) − hdl(i)|2 =
s

u
(9)

where

u = Ey(i)|h̄ul(i)
[y(i) y(i)∗] =

= P csi
ul

(
Ne

ul(1 + Ne
dl)

1 + Ne
ul

+
|h̄ul(i)|2(1 + Ne

dl)

(1 + Ne
ul)

2

)
+ N0. (10)

The above result is based on the fact that the conditional
distribution p(hul(i)|h̄ul(i)) is a complex Gaussian distribu-

tion NC
(

h̄ul(i)
1+Ne

ul
,

Ne
ul

1+Ne
ul

)
and hdl(i) is independent of h̄ul(i).

Furthermore,

s = Ehdl(i), y(i)|h̄ul(i) [hdl(i)∗ y(i)] =
√

P csi
ul

h̄ul(i)
1 + Ne

ul

. (11)

The uplink receiver then estimates the downlink CSI hdl(i) as

ĥdl(i) = w∗y(i) (12)

with the MSE distortion being

Ehdl(i), y(i)|h̄ul(i)|w∗y(i) − hdl(i)|2 = 1 − s s∗

u∗ =

=

P csi
ul

N0

(
Ne

ul(1+Ne
dl)

1+Ne
ul

+ Ne
dl

(1+Ne
ul

)2 |h̄ul(i)|2
)

+ 1
P csi

ul

N0

(
Ne

ul
(1+Ne

dl
)

1+Ne
ul

+ 1+Ne
dl

(1+Ne
ul

)2 |h̄ul(i)|2
)

+ 1
. (13)

Note that as the estimation errors approach zero, Ne
dl → 0 and

Ne
ul → 0, the receiver in (9) is identical to the receiver in (3).

IV. UQ-UC CSI FEEDBACK ON CORRELATED CHANNELS

The MSE distortion achieved by the UQ-UC CSI feedback
transmission scheme is optimal when the downlink is iid
Rayleigh and the uplink is AWGN, and further, the uplink
and the downlink are also mutually independent with perfect
channel estimation of hdl and hul. In reality, there may
the following situations that arise in wireless systems: (1)
temporal correlations in the downlink channel, (2) temporal
correlations in the uplink channel, and (3) correlations between
the uplink and the downlink channels (as is in TDD systems).
In each of these cases, it is of interest to quantify the MSE
distortion achieved by the UQ-UC CSI feedback. Since, an
exact analysis is not readily tractable, we propose to quantify
such performance through upper and lower bounds in each of
the above scenarios.

A. Performance Bounds

Let us assume that the uplink and downlink channel states
are independent (which is typical in FDD wireless systems).
Both the uplink and downlink channels are varying in time
and are assumed to be ergodic. If the scheme shown in Figure

1 is now applied on the CSI feedback channel, using the result
in (13), it follows that the MSE is

MSEub
uq−uc = Eh̄ul



(

Ne
ul(1+Ne

dl)
1+Ne

ul
+ Ne

dl

(1+Ne
ul

)2 |h̄ul|2
)

+ N0
P csi

ul(
Ne

ul
(1+Ne

dl
)

1+Ne
ul

+ 1+Ne
dl

(1+Ne
ul

)2 |h̄ul|2
)

+ N0
P csi

ul


 .

(14)
Clearly this serves as an upper bound on the MSE achieved

by any additional processing that accounts for both the down-
link and the uplink CSI feedback channel being correlated
channels.

To illustrate an approach to derive a lower bound, consider
an Lth order auto regressive (AR) process model for the
downlink channel as

hdl(i) =
L∑

j=1

cjhdl(i − j) + c0 ndl(i), (15)

where ndl(i) is a complex Gaussian random variable with
distribution NC(0, 1). The coefficients cj (j = 0, · · · , L)
determine the correlation properties of the channel. ndl(i)
is the innovation sequence that describes the evolution to
successive channel states. This is a quasi-static block-fading
channel model where the temporal variations of the chan-
nel are characterized by the correlation between successive
channel blocks. The above model gives a general framework
for describing the correlations in the downlink channel states
through the coefficients cj (j = 0, · · · , L).

Using an approach outlined in [11], [12] and Appendix, it
is possible to approximate the well known Jakes correlated
fading model by relating parameters such as carrier frequency
and mobile speed to the AR model coefficients. The Jakes
model corresponds to a continuous time-varying channel,
while the AR model to a quasi-static block-fading channel.
To connect these two models, we assume that the channel is
constant for a duration of τ seconds (i.e., this duration may be
viewed as the channel coherence time) and τ is the absolute
time difference between successive channel states hdl(i) and
hdl(i−1). Furthermore, the correlation E[hdl(i)hdl(i−k)∗] =
J0(2πfdkτ) where fd is the maximum Doppler frequency (see
Appendix). For a more detailed analysis of auto regressive-
moving average (ARMA) processes and wireless channel
modeling we refer the reader to [13], [14] and the references
therein.

Let us assume that the above model and the previous
channel states hdl(i − j) (j = 1, · · · , L) are known at the
CSI feedback transmitter and receiver. In addition, in deriving
the lower bound, we will assume that the estimation errors
edl = 0 and eul = 0 (i.e., perfect channel state estimation).
In this idealized case, having only the innovation ndl(i) trans-
mitted over the uplink CSI feedback channel, the receiver can
estimate the channel state hdl(i). We will now use arguments
similar to that used in deriving (7) to arrive at a lower bound
for the MSE of the UQ-UC scheme. Consider the distortion
of the innovation sequence

Din = E|n̂dl(i) − ndl(i)|2, (16)



where n̂dl(i) is an estimate of ndl(i). Then the average number
of bits per symbol at the output of the optimal quantizer is

Rin = log2

(
1 +

1 − Din

Din

)
. (17)

Furthermore, the ergodic capacity of the uplink channel is

C̄ul = Ehul

[
log2

(
1 +

|hul|2P csi
ul

N0

)]
. (18)

Then the optimal matching (in the Shannon sense) of the
quantization and channel coding of the innovation ndl(i)
results in

Rin = C̄ul. (19)

Hence the MSE

Din = E|n̂dl(i) − ndl(i)|2 = 2−C̄ul . (20)

Thus from equations (15) and (20) it follows that the MSE of
hdl(i) is lower bounded as

E|ĥdl(i) − hdl(i)|2 ≥ c2
02

−C̄ul . (21)

Since this bound is obtained using idealized knowledge of the
previous channel states and also a channel coding scheme that
achieves the ergodic capacity of the uplink channel, we expect
it to be loose.

B. Feedback Receivers for Enhancing UQ-UC CSI Feedback
Schemes

While the previous subsection considered the performance
limits of the MSE distortion achieved by the UQ-UC CSI
feedback transmission, in this subsection we will outline signal
processing techniques that could be used to improve the
performance of UQ-UC schemes. The specific approach that
we propose is to design receivers on the CSI feedback channel
that can exploit the channel correlations and thus improve
the performance in cases where the UQ-UC CSI feedback
transmission is suboptimal. We illustrate such an approach
through a design of a linear CSI feedback receiver in the
following.

The uplink received signal in (8) is used to form a temporal
K-dimensional received vector as

y(i) = [y(i) y(i − 1) · · · y(i − K + 1)]T. (22)

The uplink receiver then estimates the downlink CSI hdl(i) as

ĥdl(i) = wHy(i) (23)

where w is a linear filter that is derived from the following
MMSE optimization

w = argv min E|vHy(i) − hdl(i)|2. (24)

For the given estimates of the uplink channel h̄ul(i) =
[h̄ul(i) h̄ul(i−1) · · · h̄ul(i−K +1)]T we define the following
matrix

U = Ey(i)|h̄ul(i)

[
y(i) y(i)H

]
(25)

and the vector

s = Ehdl(i), y(i)|h̄ul(i)
[hdl(i)∗ y(i)] . (26)

It can be shown that the linear MMSE CSI feedback receiver
w is given as

w = U−1s. (27)

As is evident from the equations (25)-(27), the linear trans-
formation w takes into account implicitly the following cor-
relations: (1) temporal correlations in the downlink channel,
(2) temporal correlations in the uplink channel and (3) the
correlations between the uplink and the downlink. In fact,
when K = 1 and the uplink and the downlink are mutually
independent, then the above receiver will achieve the MSE
distortion upper bound in equation (14). In all other cases, the
performance will be superior, thereby enhancing the perfor-
mance of the UQ-UC CSI feedback transmission.

C. Numerical Results: Distortion Performance

We now present the upper and lower bounds derived in the
previous sections for different scenarios corresponding to the
uplink and downlink CSI. Specifically we take into account
the effect of background noise levels, estimation errors and
channel correlation. We characterize the quality of the uplink
CSI feedback channel through its SNR given as

SNRcsi
ul = 10 log

P csi
ul

N0
. (28)

In order to quantify the effect of the estimation errors on the
UQ-QC scheme, we proceed in the following way. Recall that
the uplink channel estimate is given as h̄ul = hul + eul. We
quantify the estimation performance by the following SNR
term

SNRe
ul = 10 log

1
Ne

ul

, (29)

where Ne
ul is the variance of eul. The corresponding quantity

that is used to characterized the downlink channel estimation
error is

SNRe
dl = 10 log

1
Ne

dl

. (30)

First we consider a case when the uplink and downlink
channels are mutually independent. The channels correspond
to the iid Rayleigh block-fading model (i.e., for every time
instant independent channel states are instantiated for the
uplink and downlink). In Figure 3 we set SNRcsi

ul = 20 dB
and present the MSE bounds as functions of SNRe

ul and/or
SNRe

dl. We compare the curves corresponding to the perfect
downlink estimation (SNRe

dl = +∞) and variable SNRe
ul

versus the perfect uplink estimation (SNRe
ul = +∞) and

variable SNRe
dl (i.e., the curve with marker × versus �).

From these results we note that the MSE upper bound is more
affected by the errors in the uplink than the downlink channel
state estimation. In this particular example, for the estimation
SNRs exceeding 25 dB, the increase in the distortion due to
the imperfect knowledge of the channel states is negligible, as
evidenced by the flattening of the MSE upper bound.

We now investigate the MSE distortion for correlated chan-
nels. The downlink and uplink channels are modeled as an AR
process (L = 10) whose coefficients are chosen to correspond
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Fig. 3. MSE bounds vs. SNRe
ul and/or SNRe

dl, for iid Rayleigh block-
fading on the uplink and downlink and SNRcsi

ul = 20 dB.

to the Jakes model for a carrier frequency of 2 GHz and the
coherence time τ = 2 msec (i.e., duration of one channel
block). The correlation between the uplink and downlink
channel is quantified as

ρ = E [hdl(i) hul(i)∗] (31)

where the coefficient |ρ| ≤ 1. In addition, the uplink has
an average SNRcsi

ul = 10 dB and the estimation is perfect
(SNRe

ul = +∞ and SNRe
dl = +∞). In Figure 4 we

show the MSE of the UQ-UC scheme with the linear CSI
feedback receiver and the MSE upper bound for different
mobile terminal velocities. These results show that the linear
receiver in combination with the UQ-UC transmission is able
to exploit the channel correlations and improve the perfor-
mance. Note that when the mobile terminal velocities are low
the improvement is greater (because the successive channel
states are more correlated which is exploited by the linear CSI
feedback receiver). Also, the improvement is greater when the
uplink and downlink channels are mutually correlated (i.e., for
ρ = 0.9), as may be the case in TDD systems.

V. UQ-UC CSI FEEDBACK FOR TRANSMITTER

OPTIMIZATION IN MULTIPLE ANTENNA MULTIUSER

SYSTEMS

The discussion thus far has focused on performance lim-
its and enhancements from the point of view of the MSE
distortion achieved due to the UQ-UC CSI feedback trans-
mission. A more direct performance issue that needs to be
considered is the overall capacity of a system that actually
uses the CSI feedback information. We will consider the UQ-
UC CSI feedback in a multiple antenna multiuser system. As
an example, consider the system shown in Figure 5, where
there are M transmit antennas at the base station and N
single-antenna mobile terminals. In the above model, xn is
the information bearing signal intended for mobile terminal
n and yn is the received signal at the corresponding terminal
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(for n = 1, · · · , N ). The received vector y = [y1, · · · , yN ]T is

y = HSx + n,

y ∈ CN ,x ∈ CN ,n ∈ CN ,S ∈ CM×N ,H ∈ CN×M (32)

where x = [x1, · · · , xN ]T is the transmitted vector (E[xxH] =
Pdl IN×N ), n is AWGN (E[nnH] = N0 IN×N ), H is the
MIMO channel state matrix, and S is a transformation (spatial
pre-filtering) performed at the transmitter. Note that the vectors
x and y have the same dimensionality. Further, hnm is the nth
row and mth column element of the matrix H corresponding
to a channel between mobile terminal n and transmit antenna
m.

Fig. 5. System model consisting of M transmit antennas and N mobile
terminals.

Application of the spatial pre-filtering results in the com-
posite MIMO channel G given as

G = HS, G ∈ CN×N (33)

where gnm is the nth row and mth column element of the
composite MIMO channel state matrix G. The signal received
at the nth mobile terminal is

yn = gnnxn︸ ︷︷ ︸
Desired signal for user n

+
N∑

i=1,i �=n

gnixi

︸ ︷︷ ︸
Interference

+ nn. (34)



In the above representation, the interference is the signal that
is intended for other mobile terminals than terminal n. As said
earlier, the matrix S is a spatial pre-filter at the transmitter. It
is determined based on optimization criteria that we address
later in the text and has to satisfy the following constraint

trace
(
SSH

) ≤ N (35)

which keeps the average transmit power conserved. We repre-
sent the matrix S as

S = AP, A ∈ CM×N ,P ∈ CN×N (36)

where A is a linear transformation and P is a diagonal
matrix. P is determined such that the transmit power remains
conserved. We study the zero-forcing (ZF) spatial pre-filtering
scheme where A is represented by

A = HH(HHH)−1. (37)

As can be seen, the above linear transformation is zeroing the
interference between the signals dedicated to different mobile
terminals, i.e., HA = IN×N . The xn’s are assumed to be
circularly symmetric complex random variables each having
Gaussian distribution NC(0, Pdl). Consequently, the maximum
achievable data rate (capacity) for mobile terminal n is

RZF
n = log2

(
1 +

Pdl|pnn|2
N0

)
(38)

where pnn is the nth diagonal element of the matrix P defined
in (36). In this study we apply a suboptimal, yet a simple
solution

P =

√
N

trace (AAH)
IN×N (39)

that guarantees the constraint in (35).
To perform the above spatial pre-filtering, the base station

obtains CSI corresponding to each downlink channel state
hnm. The CSI is obtained from each mobile terminal using
the UQ-UC CSI feedback. In other words, at time instant i,
terminal n (n = 1, · · · , N ) is transmitting the corresponding
CSI hnm(i) (m = 1, · · · ,M ) via the uplink CSI feedback
channel. Relating to the analysis in the previous sections,
each hnm(i) corresponds to a different hdl(i). Instead of
the ideal channel state hnm(i), the spatial pre-filter applies
the estimate ĥnm(i) obtained from the uplink CSI feedback
receiver. Therefore at the base station instead of the true H,
in the expressions (37) and (39), Ĥ is applied whose entries
are ĥnm(i) (m = 1, · · ·M and n = 1, · · · , N ). Consequently,
the maximum achievable data rate for mobile terminal n is

R̂ZF
n = log2

(
1 +

Pdl|ĝnn|2
Pdl

∑N
i=1,i �=n |ĝni|2 + N0

)
. (40)

where ĝnm is the nth row and mth column element of the
composite MIMO channel state matrix

G = HÂP̂ (41)

with

Â = ĤH(ĤĤH)−1 and P̂ =

√√√√ N

trace
(
ÂÂH

)IN×N . (42)

Note that ÂP̂ forms a spatial pre-filter. It is mismatched
because it applies Ĥ instead of the true H.

In Figure 6 we present downlink sum data rates where
SNRdl = 10 dB, and M = 3 and N = 3. The rates are
presented as functions of the mobile terminal velocity using
the approximate Jakes model for a carrier frequency 2 GHz
and the coherence time τ = 2 msec and spatially uncorrelated
channels. The uplink CSI feedback channel is with the average
SNRcsi

ul = 10 dB, and it is independent of the downlink. In
addition, we present the rates for instantaneous ideal channel
knowledge and a delayed ideal channel knowledge (2 msec
delay) which may correspond to a practical feedback scheme
that quantizes and encodes the CSI. For example, in 3G
WCDMA HSDPA system 2 msec corresponds to the duration
of a radio packet which may be used to transmit quantized
and encoded CSI, incurring the minimum delay of 2 msec.
We note that under the UQ-UC CSI feedback with the linear
receiver, the performance is better for channels with higher
correlations (i.e., lower mobile terminal velocities). For the
moderate and higher velocities, the UQ-UC CSI feedback
scheme is outperforming the case of the delayed ideal channel
knowledge. Note that in the above example we assume that
the estimation is perfect (SNRe

ul = +∞ and SNRe
dl = +∞).
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Fig. 6. Average downlink sum data rate vs. mobile terminal velocity, fc =
2 GHz, M = 3, N = 3, spatially uncorrelated, SNRdl = 10 dB and
SNRcsi

ul = 10 dB.

VI. CONCLUSION

In this paper we have considered a system where a mobile
terminal obtains the downlink CSI and feeds it back to
the base station using an uplink feedback channel. If the
downlink channel is an independent Rayleigh fading channel



and the uplink feedback channel is AWGN, we have shown
that unquantized and uncoded CSI transmission (that incurs
zero delay) is optimal in that it achieves the same minimum
mean squared error distortion as a scheme that optimally
quantizes and encodes the CSI while incurring infinite delay.
We have proposed a simple linear CSI feedback receiver
that exploits the channel correlations while still retaining the
attractive zero-delay feature. Furthermore, we described the
AR correlated channel model and presented the corresponding
performance bounds for the UQ-UC CSI feedback scheme. We
explored the performance limits of the scheme in the context of
downlink multiple antenna, multiuser transmitter optimization.
We showed that the UQ-UC scheme can a provide reliable and
fast feedback of CSI even in the case of high terminal mobility.

APPENDIX

In this appendix we show how for the given correlation
between the downlink channel states, the correlated channel
states are generated and the coefficients c0 to cL of the AR
model in (15) are determined. The correlation between the
downlink channel states is given as

φ(k) = E[hdl(i)hdl(i − k)∗] for |k| ≤ L (43)

where φ(−k) = φ(k)∗, and for |k| > L, φ(k) = 0. As
said earlier, we assume that φ(0) = 1. The corresponding
correlation matrix is R = E[hdl(i)hdl(i)H] where hdl(i) =
[hdl(i)hdl(i− 1) · · ·hdl(i−L)]T. Considering that the matrix
R can be decomposed as R = QQH, the correlated channel
states hdl(i), · · · , hdl(i − L) are obtained from the following
operation

hdl(i) = Q n (44)

where n is a random, L + 1-dimensional, zero-mean vector
with the correlation matrix E[nnH] = I.

Further, based on the AR model in (15) we form a set of
L + 1 linear equations

φ(0) =
L∑

j=1

cjφ(−j) + c2
0 (45)

and

φ(k) =
L∑

j=1

cjφ(k − j) k = 1, · · · , L. (46)

Let us define the following matrix

Φ =




1 φ(1)∗ φ(2)∗ · · · φ(L)∗

0 φ(0) φ(1)∗ · · · φ(L − 1)∗

...
...

...
...

0 φ(L − 1) φ(L − 2) · · · φ(0)


 (47)

and vectors
c = [c2

0 c1 · · · cL]T (48)

and
f = [φ(0) φ(1) · · · φ(L)]T. (49)

The above system of linear equations can be rewritten as

f = Φc. (50)

The least squares solution of the above linear equation is

c̃ = [c̃2
0 c̃1 · · · c̃L]T = (ΦH Φ)−1 ΦH f . (51)

From the above we directly adopt the solutions for the coef-
ficients ci = c̃i for i = 1, · · · , L. Let us now determine the
coefficient c0. From the model in (15), the innovation term is

c0 ndl(i) = hdl(i) −
L∑

j=1

cjhdl(i − j) = zHhdl(i) (52)

where z = [1 − c∗1 · · · − c∗L]T. In order to guarantee that the
innovation is unit-variance, while maintaining the correlation
R, the coefficient c0 is selected as

c0 =
√

zHRz. (53)

To approximate the Jakes model using the finite length AR
model in (15) we select elements of the vector f as

φ(k) = J0(2πfdkτ), k = 0, · · · , L (54)

where fd is the maximum Doppler frequency and τ is the
time difference between successive channel states hdl(i) and
hdl(i− 1). Satisfying the Nyquist sampling rate, the period τ
should be such that τ < 1/(2fd).
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