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ABSTRACT

In this work we propose a blind successive interference cancellation receiver for asynchronous

direct-sequence code-division multiple-access (DS-CDMA) systems using a maximum mean en-

ergy (MME) optimization criterion. The covariance matrix of the received vector is used in

conjunction with the MME criterion to realize a blind successive interference canceler that is

referred to as the BIC-MME receiver. Simulation results show that this scheme offers perfor-

mance gains over the well known blind receiver that is based on the minimum mean squared

error (MMSE) optimization criterion. Further, the BIC-MME receiver is particularly effective

in the presence of a few strong interferers as may be the case in the downlink of DS-CDMA

systems where intracell user transmissions are orthogonal. The receiver is also shown to perform

well in the presence of estimation errors of the covariance matrix making it suitable for use in

time-varying channels. An iterative implementation that results in reduced complexity is also

studied
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1. Introduction

In DS-CDMA systems, in general, crosscorrelations between signature (spreading) sequences

are nonzero. This results in multiple-access interference (MAI) which can disrupt reception of

highly attenuated desired user signal. This is known as the near-far effect. To combat this

problem several multiuser receivers have been proposed (for example, see [1, 2, 3, 4, 5]). These

receivers are denoted as centralized because they require knowledge of parameters (signature

sequences, amplitudes and timing) for all users in the system. Therefore, they are more suitable

for processing at the base station.

For the downlink, it is desirable to devise decentralized receivers. Decentralized receivers

exploit the knowledge of the desired user parameters only. The use of short signature sequences

simplify the task of multiuser detection and interference cancellation, since a receiver can adap-

tively learn (estimate) the structure of the MAI [6]. Decentralized receivers may be further

classified into data aided and nondata aided receivers. Data aided adaptive multiuser detection

is an approach which does not require a prior knowledge of the interference parameters. But,

it requires a training data sequence for every active user. For example, adaptive receivers in

[3, 7, 8] are based on the MMSE criterion, and the one in [9] is based on minimizing probability

of bit-error. More recently, decision feedback detectors using the MMSE criterion have been

proposed [10, 11].

Blind (or nondata aided) multiuser detectors require no training data sequence, but only

knowledge of the desired user signature sequence and its timing. The receivers treat MAI and

background noise as a random process, whose statistics must be estimated. Majority of blind

multiuser detectors are based on estimation of second order statistics of the received signal.

In [12], a blind adaptive MMSE multiuser detector is introduced (proven to be equivalent

to the minimum output energy (MOE) detector). A subspace approach for blind multiuser

detection is presented in [13]; where both the decorrelating and the MMSE detector are obtained

blindly. Further, adaptive and blind solutions are analyzed in [14], with an overview in [6]. A

comprehensive treatment of multiuser detection can be found in [15].

The receiver in this work is based on determining the most (on average) dominant baseband

interference components at the output of DS-CDMA system. Preliminary results on this idea
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was first presented in [16]. In Chapter 3, the maximum mean energy (MME) criterion is

introduced. It is shown that the MME criterion is strongly related to the Karhunen-Loéve (KL)

expansion of the received signal and to the eigendecomposition (ED) of the covariance matrix.

In Chapter 4 we present a novel blind receiver. It is based on the MME criterion and requires

estimation of the second order statistics. The receiver executes interference cancellation (IC)

in a successive manner; starting with most dominant interference component and successively

cancelling weaker ones. Therefore it may be viewed as a blind equivalent to the centralized

successive interference cancellation (SIC) scheme [4, 17] and we refer to this receiver as the

blind interference cancellation-maximum mean energy (BIC-MME) receiver. In order to reduce

the complexity of receiver implementations, we also propose an iterative solution for the MME

optimization. Simulation results are presented in Chapter 5.

Time-varying systems are of special interest in future DS-CDMA systems. These variations

could be due to either the radio channel or due to the variations in traffic such as anticipated

in packet networks [18, 19, 20, 21] that may result in high user activity (on/off) and short

transmission periods (burstiness) in the channel. Feasibility of adaptive and blind interference

cancellation in these systems is directly impacted by the reliability of required estimates, using

limited number of samples. Therefore, in this work, special attention is paid to the analysis of

the receiver performance in the case of limited number of samples used for the estimation of

the covariance matrix of the input signal. Our simulation results indicate that the BIC-MME

receiver outperforms the blind MMSE receiver in all cases, and particularly when the number

of samples used for estimation of the covariance matrix is limited. In Chapter 6 we present

an interpretation for the above behavior using results from estimation of eigenvectors based on

sample covariance matrices. We conclude in Chapter 7.
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2. Background

We now present the asynchronous DS-CDMA system model and briefly review the MMSE

criterion. The received baseband signal, r(t), in antipodal K-user asynchronous DS-CDMA

additive white Gaussian noise (AWGN) system is

r(t) =
J∑

i=−J

K∑

k=1

Ak bk (i) sk(t− iT − τk) + σn(t) (2.1)

where Ak is the received amplitude, bk(i) ∈ {−1,+1} is binary, independent and equiprobable

data, sk(t) is the signature sequence which is assumed to have unit energy, τk is relative time

offset, all for the kth user. T is the symbol period and n(t) is AWGN with unit power spectral

density. 2J + 1 is the number of data symbols per user per frame.

It is well known that asynchronous system with independent users can be analyzed as syn-

chronous if equivalent synchronous users are introduced, which are effectively additional in-

terferers [15]. Sufficient statistics are obtained by sampling at 2f0, where f0 is the maximum

bandwidth of the chip waveforms in the desired user signature sequence [15, 12]. In this work

we consider the received signal r(t) over only one symbol period that is synchronous to the

desired user (k = 1). The discrete representation for the received signal in (2.1) can be written

in vector form as

r =
L∑

k=1

Ak bk sk + σ n (2.2)

where the number of the interferers (L−1 = 2 (K−1)) is doubled due to equivalent synchronous

user analysis. r, sk and n are vectors in <M , where M is the number of chips per bit.

For the sake of a completeness, the well known MMSE optimization criterion is briefly

repeated here (proven to be equivalent to the MOE criterion [12]). For a vector d ∈ <M , the

mean squared error is MSE = E
[
(r>d− b1)2

]
. The linear MMSE detector c is obtained as

c = arg min
d

(
E
[
(r>d− b1)2

]
− γ (s>1 d− 1)

)
(2.3)

where the vector d is constrained to be

s>1 d = 1 (2.4)

The solution of (2.3) is given as (for user 1) c = R−1
r s1, where Rr = E[r r>] is the covariance

matrix of the input process r [13]. The matrix Rr has to be invertible. If an estimate of
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the covariance matrix Rr i.e., sample covariance matrix R̂r, is available, approximation of the

optimal MMSE detector is

ĉ = R̂−1
r s1 (2.5)

which is denoted as blind MMSE (BMMSE) receiver. In this work, the above receiver is used

as a reference for performance evaluations.
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3. MME Optimization Criterion

Let us define for a M -dimensional vector u, the mean energy (ME) as

ME = E
[
(r>u)2

]
(3.1)

Let us further constrain the vector u such that

u>u = 1 (3.2)

We now consider maximization of the ME, with respect to the vector u. The problem can be

solved by the method of Lagrange multipliers [22]. Let

ψ(u) = E
[
(r>u)2

]
− γ (u>u− 1) (3.3)

Necessary condition for v ∈ <M to maximize (3.3) is ∇(ψ(v)) = 0, which results in

Rr v = γ v (3.4)

It is obvious from (3.4) that v and γ are an eigenvector and an eigenvalue of the matrix Rr,

respectively. In general, there is a set of eigenvectors and eigenvalues, which are related as

Rr V = V D (3.5)

where V is a matrix whose columns are the eigenvectors (v1, · · · ,vM ), and D is diagonal matrix

of the corresponding eigenvalues (λ1, · · · , λM ).

The constraint (3.2) only sets the vector v to have unit energy and it is different from that

in (2.4) which defines energy of the vector c with respect to the desired user signature sequence

s1. We may note that the MME criterion is more related to signal space, as a whole, unlike the

MMSE criterion that is focused on the specific signal component (s1).

To gain more insight into the MME criterion that results in (3.4) and (3.5), let us consider

the discrete form of the KL expansion of the received vector r [23]. This expansion allows

the M -dimensional stochastic process r to be represented as a superposition of vectors xi from

orthonormal basis, scaled by statistically uncorrelated random variables ai, (i = 1, · · · , N) as

r =
N∑

i=1

ai xi (3.6)
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The vectors xi are orthonormal (x>i xj = δij , where δij is the Kronecker delta function) and

the random variables ai are defined as ai = r>xi. The random variables ai are uncorrelated

and with expected energy λi (E [ai aj ] = λi δij). The above condition results in

E
[
r r>

]
xi = λi xi, i = 1, · · · , N (3.7)

It is obvious that the equations (3.4) and (3.7) are identical. Therefore, the vectors xi are the

column vectors (eigenvectors) of the matrix V and λi are the diagonal elements (eigenvalues)

of the matrix D. In the following, xi and vi (i = 1, · · · , N) are used interchangeably, and if Rr

is invertible, then N = M [24]. This analogy allows us to make following conclusions: If the

matrix V and D are obtained from (3.5), the column vectors in V are orthonormal basis which

span the received signal space in the mean squared sense [23]. The diagonal elements of the

matrix D are the mean energies of the received vector r along the orthonormal vectors from the

basis. Thus, instead of analyzing the actual set of users (vectors) in the received vector r (as

is done in the case of centralized receivers), we are evaluating the corresponding vector space

which is characterized by the orthogonal basis and uncorrelated coefficients. From the above

we conclude:

Proposition 1 The eigenvector of Rr that corresponds to the maximum eigenvalue (λmax) is

the vector that maximizes the ME (mean energy) in (3.1).

Proposition 1 follows from the analogy between the MME criterion and the interpretation based

on the KL expansion. Let us denote the eigenvector from Proposition 1 as vmax (the maximizer

of ME). In addition, we claim:

Proposition 2 If the contribution of vmax is removed from the matrix Rr, as follows: R′r =

Rr − λmax vmax v>max, then the eigenvector v′max that corresponds to the maximum eigenvalue

of R′r is the same as the eigenvector that corresponds to the second largest eigenvalue of Rr. In

addition, the matrix R′r is covariance matrix of the vector r′ = r− (r>vmax) vmax.

Proposition 2 is a consequence of the spectral theorem [24] and we present a proof in Appendix A.

The results in Propositions 1 and 2 form the basis for the blind interference cancellation scheme

presented in this work. We now sketch an outline of how the above two results can be exploited

to derive a blind successive interference cancellation scheme. Note that the contribution of the

desired user can be removed from the covariance matrix Rr as follows:

Ri = Rr −A2
1 s1 s>1 (3.8)
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where Ri = E[i i>] is the interference covariance matrix, with i =
∑L
k=2 Ak bk sk +σ n. Observe

that in the above procedure no knowledge is required of the desired user’s bit decision (infor-

mation). Only the knowledge of the desired signal power A2
1 is needed. Further, if the MME

criterion is now applied on Ri (i.e., we determine the eigenvector corresponding to the maximum

eigenvalue of Ri), then we can capture the most dominant interference (energy) component.

The above process can be successively repeated and would result (due to Proposition 2) in

successive cancellation of components in the interference subspace, starting from the strongest

to the weakest.
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4. An Application of the MME Criterion in the Blind IC

Receiver

We now present a blind successive interference cancellation scheme where we incorporate the

MME criterion and realize the blind interference cancellation-maximum mean energy (BIC-

MME) receiver. As depicted in Figures 4.1 and 4.2, the receiver executes the following steps

(blocks in Figure 4.1):

1. Estimation of the matrix Rr according to

R̂r(i) =
1

n

i∑

k=i−n+1

r(k) r>(k) (4.1)

where R̂r is the sample covariance matrix, n is the size of the averaging window (number

of samples), and i is time index (will be omitted in the following text). 1

2. Remove the desired user contribution from R̂r. If the desired user amplitude (A1) is

known or estimated we can apply (3.8). The result of this step is that R̂i contains only

the interference components and there is no desired user contribution (A2
1 s1 s>1 ).

Note that the amplitude A1 may not be known at the receiver. Therefore in our simulation

results (in Chapter 5), we considered the amplitude estimate Â1 using the outputs of the

MF for user 1. Our results indicate that the performance is not very sensitive to the errors

in amplitude estimation.

3. Find the maximizer (v̂max) of the ME, i.e., the vector that takes, on average, most of the

interference energy. According to Proposition 1, the maximizer is the eigenvector that

corresponds to the maximum eigenvalue (λ̂max) of the matrix R̂i.

To find the maximizer it is not necessary to perform the ED in full. An iterative solution

can be applied. As an example, we use the power method (PM) [24] to derive an iterative

solution for the MME criterion. Starting with an initial guess v̂0
max which contains some

component of v̂max

v̂i+1
max =

R̂iv̂
i
max∣∣∣R̂iv̂imax

∣∣∣
(4.2)

1Notation: ẑ denotes an estimate of z.
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Start detection 

Estimate the covariance 
matrix Rr of the 
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Remove the desired user 
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Yes 
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Detect the desired user 

No 

End detection 
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Figure 4.1: Flow chart illustrating the BIC-MME scheme.
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Figure 4.2: Block scheme of the BIC-MME receiver.
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where i is iteration step. While other advanced iterative and subspace tracking algorithms

are well known [25, 26], this topic is not further analyzed in this work. In the case of the

simulations in Chapter 5, the PM is observed to perform well. In Chapter 5, as a stopping

rule we have used
(
v̂i+1
max

)>
v̂imax ≥ TPM (4.3)

where TPM is some threshold value.

4. Remove the maximizer contribution from the matrix R̂i to yield

R̂′i = R̂i − λ̂maxv̂maxv̂>max (4.4)

According to Proposition 2, this step prepares the estimate of the second order statistics

(R̂′i) for evaluation of the maximizer in the next IC stage.

5. To prevent excessive cancellation of the desired user from the input vector r, we introduce

an optional block. This block is useful in the case when the crosscorrelation between

the desired user signature sequence and the interferer signature sequences is very high.

For example, a simple threshold criterion could be applied to determine if cancellation is

viable. If
∣∣(s>1 v̂max)

∣∣ > TC (4.5)

where TC is some threshold value, then step (6) below is skipped, i.e., the IC is not

performed (in Figure 4.2, the switch S1 is in the position 2). If this block is not applied,

the switch S1 is always in the position 1.

6. Cancel the maximizer contribution as

r′ = r− (r>v̂max) v̂max (4.6)

7. A variety of stopping rules can be defined for the whole procedure. If all significant

components of the interference (defined by a specific rule) are cancelled, the detection

b̂1 = sgn(r′>s1) is performed, otherwise the steps (3) - (7) are repeated, where, for the

new IC stage r and Ri take the values of r′ and R′i, respectively. For example, the last IC

stage can be the one where the measured (estimated) signal to interference ratio (SIR) is

maximum or above a target value. This step can be used to control the trade-off between

performance and complexity of the receiver.
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5. Simulation Results

We consider a synchronous AWGN DS-CDMA system, using randomly generated signature

sequences with processing gainM = 64. The users are independent and three cases are analyzed:

1. System with L = 16 users, and equal-energy interferers: A2
i /A

2
1 = 25, i = 2, · · · , 16.

2. Lightly loaded system with L = 4 users, and very strong equal-energy interferers: A2
i /A

2
1 =

400, i = 2, · · · , 4.

3. System with L = 16 users; three strong equal-energy interferers: A2
i /A

2
1 = 25, i =

2, · · · , 4, and twelve interferers with the same energy as the desired user: A2
i /A

2
1 = 1, i =

5, · · · , 16. This scenario may correspond to a system with different transmission powers

that accommodate different quality of service (QoS).

Performance of the conventional matched filter (MF), the centralized MMSE receiver, the

BMMSE receiver (detector in (2.5)) and the single user lower bound (SULB) are used as bench-

marks for evaluation of the BIC-MME receiver. The centralized MMSE assumes perfect knowl-

edge of all the signature sequences, amplitudes and the variance of the AWGN. The BMMSE

and the BIC-MME receiver use the same sample covariance matrix R̂r. The matrix is estimated

according to (4.1). The BIC-MME performs the ED, and the iterative solution (using the PM)

is denoted as BIC-MME-PM. Unless stated otherwise, we assume that the amplitude of the

desired user is known exactly.

For the case 1, Figure 5.1(a) depicts bit-error rate (BER) as a function of signal to noise

ratio (SNR) (with respect to the desired user). The results are obtained after a total of 15 IC

stages, which is where the BER reaches minimum. Additional IC stages result in a deterioration

of the performance for this particular example. For SNR = 8 dB, BER versus number of IC

stages is presented in Figure 5.1(b). Equivalent results, for the case 2, with a total of 3 IC

stages and SNR = 6 dB are shown in the figures 5.2(a) and 5.2(b), respectively. These results

are evaluated for the window size n = 500 (the number of the samples used in (4.1)). Note

that the performance of the BIC-MME is near-optimum in the case 2. In this lightly loaded

system, even in the presence of very strong interferers, a small number of IC stages (3 stages)

WINLAB Proprietary 12



is sufficient to fully cancel the interference with negligible negative effect on the desired user

(just a small fraction of the desired user energy is removed by the IC).

We now study the effect of accuracy of the covariance matrix estimation on the performance

of the BIC-MME receiver. Figures 5.3(a) and 5.3(b), correspond to the case 1 (for SNR = 8dB)

and the case 2 (for SNR = 6 dB), respectively. The above figures depict BER with respect to

different window size n. According to the results above, the BIC-MME receiver outperforms

the BMMSE receiver. The gain introduced by the BIC-MME, with respect to the BMMSE,

increases as the averaging window gets smaller.

Considering the iterative solution (BIC-MME-PM), Figure 5.3(b) shows that the PM suc-

cessfully replaces the ED (difference in performance between the two schemes is negligible). The

case 1 is more affected by the application of the PM (Figure 5.3(a)). This is expected because

the number of the IC stages is five times greater than in the case 2 and the computational

error accumulated is greater. For the above example, the threshold in (4.3) is TPM = 0.999.

Regarding the convergence of the PM method, we have observed that the number of iterations,

before the criterion in (4.3) is met, has never exceeded 25, and most of the vectors (maximizers)

required less than 10 iterations. Further, in our results, no effort has been made to improve

the initial guess v̂0
max. It is selected randomly. Therefore, the convergence could be further

accelerated if v̂0
max is improved (see [24]).

We consider the performance of our receiver in the case 3. Figure 5.4 depicts BER with

respect to number of IC stages, SNR = 8 dB and n = 500. The same figure presents the

performance of the match filter (MF-12) for the system without the strong interferers (only the

desired user and the twelve equal-energy interferers, with perfect power control with respect to

the desired user). Note, that after 3 IC stages, the BIC-MME completely cancels the strong

users (it reaches the MF-12 performance). For this particular case, the minimum BER is reached

after 15 IC stages; but, for the sake of lower complexity of the receiver (i.e., smaller number

of IC sages), interference cancellation can be stopped in some earlier IC stage at the expense

of lower performance (higher BER). Furthermore, the performance of the iterative solution

(BIC-MME-PM) seems to follow that of the BIC-MME receiver. This suggests that the low

complexity iterative solution cancels the strongest interferers completely, and brings the system

into the well studied perfectly power controlled state. This scheme may be applied for the

interference cancellation of strong users in a system with different transmission powers that

accommodate different QoS, or in a system with a few very strong interferers as may be the

case for the downlink where intracell user transmissions are orthogonal.
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Figure 5.1: (b) BER vs. Number of IC stages, Case 1, SNR = 8 dB, n = 500.
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Figure 5.2: (b) BER vs. Number of IC stages, Case 2, SNR = 6 dB, n = 500.
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Figure 5.4: BER vs. Number of IC stages, Case 3, SNR = 8 dB, n = 500.

We also study performance of the receiver if an estimate of the desired user amplitude is used

instead of the perfectly known amplitude. We have tested the performance of the scheme that

applies a simple estimation of the amplitude as Â1 = 1
n

∑n
i=1 |rT (i) s1|. The results, for the

case 3, are presented in Figure 5.4, as the BIC-MME-AE. We have not recognized substantial

difference in the performance with respect to the solution for the case when the amplitude is

known exactly.
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6. Interpretation of the BIC-MME Performance

We now present an interpretation of why the BIC-MME performs well in the case of iterative

implementation using the PM and in the presence of estimation errors of the covariance matrix.

Let us first emphasize the following properties of the BIC-MME scheme:

Property 1 For the matrix Ri, assume that there is a set S of eigenvectors vi ∈ S that corre-

spond to dominant eigenvalues with small absolute difference between them, i.e., the interference

has almost the same energy in all directions of the subspace spanned by the true eigenvectors

from S. The BIC-MME scheme tends to cancel the whole subspace, rather than to cancel just a

specific eigenvector in S. Therefore, there is no need for the vectors to be estimated with high

degree of accuracy. It is sufficient that the estimated vectors (v̂i) are orthogonal and fall well

into the subspace spanned by the true eigenvectors (vi ∈ S) (i.e., v̂i has most of its energy

confined to the subspace formed by the true eigenvectors from S.)

The following property is the consequence of Proposition 2.

Property 2 Assuming that the BIC-MME scheme executes a total of Q IC stages, the total

contribution of Q eigenvectors of the matrix Ri is cancelled from the input vector r. The

order in which the vectors are processed (i.e., their contribution is cancelled) does not affect the

performance of the scheme (assuming perfect estimation of the vectors).

6.1 Iterative Implementation Using the PM

We now discuss the performance of the BIC-MME scheme that uses the PM iterative implemen-

tation. An attractive feature of such an implementation is that it avoids the need for a full-scale

ED of the covariance matrix at every IC stage (see step 3 in Chapter 4). The PM algorithm ex-

hibits very good convergence properties if the absolute difference between dominant eigenvalues

are significant [24]. If vmax is one of the vectors that are described in Property 1 (vmax ∈ S),

v̂imax (see equation (4.2)) converges very quickly with respect to the vectors that are out of

the set, i.e., the estimate lies in the subspace spanned by the set S after a very small number

of iterations. However, once inside the subspace, the convergence is significantly slowed down.
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According to Property 1, this drawback should not affect the performance of the BIC-MME

scheme significantly. This is the reason why the BIC-MME with the iterative PM works well

even after a small number of iterations, which is also confirmed by the simulation results in

Chapter 5. Furthermore, Property 2 shows that the BIC-MME scheme with the iterative PM

solution works well even when the descending order for evaluated eigenvalues is not guaran-

teed. In other words, if there are a few strong interference vectors in the interference subspace,

then the order in which the interference vectors (maximizers) are cancelled does not affect the

performance. These are favorable characteristics for low complexity iterative solutions.

6.2 Estimation of Eigenvectors

We now analyze the properties of eigenvector estimates of the sample covariance matrix in (4.1).

This analysis is used to explain why the BIC-MME scheme performs well in the presence of

eigenvector estimation errors that result when the sample covariance matrix is estimated using

small sample sizes. In the following, we will assume that the sample covariance matrix is that of

observation vectors that are multivariate Gaussian. Even though this assumption is not true in

the presence of MAI, we will justify the following analysis through a numerical validation. Let

the subspace spanned by the eigenvectors that correspond to distinct and significant eigenvalues

(λ1, · · · , λP ) be denoted as the signal subspace. The dimension of the signal subspace is P .

The noise subspace is spanned by the eigenvectors that correspond to repeated eigenvalues

(λ = λP+1, · · · , λM ) with multiplicity M−P [13, 27]. To analyze estimation of the eigenvectors,

let us observe the crosscorrelation (projection) v̂>i vj between the estimate of ith eigenvector

(v̂i, i = 1, · · · , P ) and the jth true eigenvector (vj , j = 1, · · · ,M). These values, v̂>i vj , can be

used to characterize errors of the eigenvector estimates. When i 6= j, it can be shown that v̂>i vj

is unbiased, i.e., E
[
v̂>i vj

]
= 0. Further, the variance can be approximated as (see Appendix

B)

E
[
(v̂>i vj)

2
]
≈ 1

n

λiλj
(λi − λj)2

(6.1)

Note that the second order moment E
[
(v̂>i vj)

2
]

is the mean energy of the eigenvector estimate

v̂i in the direction of the true eigenvector vj . We have constrained the eigenvector estimates

to be unit energy, i.e., E
[
(v̂>i v̂i)

2
]

= 1. From the above an observation follows:

Observation 1 The estimate v̂i of the eigenvector vi tends to be clustered (i.e., v̂i has most

of its energy) within the subspace spanned by the true eigenvector vi and eigenvectors that

correspond to eigenvalues that are very close to λi. Inspection of (6.1) reveals that the above

statement is true even when the number of samples is small.
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To justify Observation 1 (that is based on analysis using Gaussian statistics), and to validate

its claims for a DS-CDMA system with MAI, the following simulation example is presented:

Example 1: We consider a synchronous AWGN DS-CDMA system, using randomly generated

signature sequences with L = 16 users and processing gain M = 64. The signature sequences

have happened to be linearly independent in this example; therefore the dimension of the signal

subspace is P = 16. The users are independent and have the same SNR = 10 dB. The sample

covariance matrix is evaluated according to (4.1). The ED is performed for 1000 different

sample covariance matrices, and the results are averaged. Because of the identical behavior

of the values which correspond to the repeated eigenvalues (λi, i = 17, · · · , 64), the results for

λi, i = 21, · · · , 64 are omitted from the following figures.

In Figure 6.1(a), a true eigenvalue profile (λi, i = 1, · · · , 20) is presented where the eigen-

values are sorted in descending order. In Figure 6.1(b), we present analytical (see (6.1)) and

simulation results for E
[
(v̂>i vj)

2
]

for i, j = 1, · · · ,M (which is the normalized mean energy of

the eigenvector estimate v̂i in the direction of the true eigenvector vj). Specifically, we have

shown the results for i = 5 and i = 10, but the results appear to be similar for all i = 1, · · · , P .

The abscissa represents the index j arranged in descending order of the eigenvalues. The sample

size is n = 1000. From the figure, the theoretical results closely resemble the simulations. This

confirms the applicability of the above theoretical analysis (based on Gaussian statistics) for

the case of DS-CDMA systems. In addition, in Figure 6.1(c) we show the simulation results

results for i = 10, with different sample size values (n = 200, 500, 1000) used for estimating the

sample covariance matrix. Both, Figure 6.1(b) and 6.1(c) reveal that the most of the energy of

the eigenvector estimate v̂i is confined within the space spanned by the true eigenvector vi and

eigenvectors that correspond to the closest (neighboring) eigenvalues to λi even for different

sample size n. These results support Observation 1.

Now, let us discuss how the estimation errors of the eigenvectors affect performance of the

BIC-MME scheme. According to Property 1, there is no need for the eigenvectors from the set S

to be estimated exactly. Rather, it is sufficient that the eigenvector estimates (v̂i) are orthogonal

and well confined within the subspace spanned by the true eigenvectors (vi ∈ S). Under these

conditions, the BIC-MME scheme will successfully cancel the whole subspace spanned by S.

Recall that the set S corresponds to the span of the eigenvectors that have eigenvalues that are

very close in amplitude. By Observation 1, even in the case of small sample size n used for the

estimation of the sample covariance matrix, the estimates {v̂i|vi ∈ S} are clustered within the

subspace S. Consequently, the BIC-MME receiver will perform well when small sample sizes

are used for the estimation of the covariance matrix. For example, in Figure 6.1(c), it is seen
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that the estimate v̂i for i = 10, has most of its energy confined to the subspace formed by vj ,

j = 8, 9, 10, 11, 12. This is true for all values of n shown, i.e., n = 200, 500, 1000.

Unlike the BIC-MME receiver, the BMMSE receiver, in addition to the eigenvector es-

timates, also requires the eigenvalue estimates [13]. This results in the performance of the

BMMSE receiver being more sensitive to the sample size n. Using the analysis in Appendix B

and the results in [28] it can be shown that the BMMSE requires greater number of samples

for the estimation of the covariance matrix than the BIC-MME receiver to achieve the same

performance (see simulation results in Figures 5.3(a) and 5.3(b)). Further investigation of this

issue is beyond the scope of this work.
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(Simulations), i = 10, n = 200, 500, 1000.
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7. Discussion and Conclusion

We have introduced the MME optimization criterion which is then used to implement a blind

IC receiver. The ability of the receiver to exceed the performance of the blind MMSE is

confirmed via simulation results. It is seen that this scheme is particularly effective for a system

with fewer, very strong interferers and smaller number of samples used for the estimation of the

covariance matrix. This may be a very viable solution for implementation on the downlink where

transmissions are usually synchronized within a cell such that intracell users are orthogonal and

intercell interference may be dominant. However, in the presence of multipath these assumptions

do not necessarily hold, but the receiver is still effective since it does not use knowledge of

interference parameters. Regarding the use of sample covariance estimates, we have presented

an explanation of why the BIC-MME receiver performs well in the presence of estimation

errors. A low complexity iterative solution using the power method for eigendecomposition is

also studied. The properties of the receiver make it an attractive solution for implementation

in time-varying channels as well as packet DS-CDMA systems with bursty traffic. This is an

area of further investigation.
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A. Appendix

Proof of Proposition 2

According to the spectral theorem [24]

Rr =
N∑

i=1

λi vi v
>
i (A.1)

where the eigenvalues and corresponding eigenvectors are sorted in descending order, i.e., the

maximizer for Rr is vmax = v1 and λmax = λ1. Second largest eigenvalue has index 2. Further

R′r = Rr − λmax vmax v>max =
N∑

i=1

λi vi v
>
i − λ1 v1 v>1 =

N∑

i=2

λi vi v
>
i (A.2)

From the above, the largest eigenvalue of the matrix R′r has index 2, which is the second

largest eigenvalue of the matrix Rr and v′max = v2. This proves the first part of Proposition 2.

Consider

r′ = r− (r>vmax) vmax =
N∑

i=1

(r>vi)vi − (r>v1)v1 =
N∑

i=2

(r>vi)vi (A.3)

where the set of equalities follows from the KL expansion (see equation (3.6)). The covariance

matrix of r′ is

E
[
r′r′>

]
= E



N∑

i=2

N∑

j=2

(
(r>vi)(r

>vj)viv
>
j

)

 (A.4)

According to the KL expansion, the random variables ai = (r>vi) and aj = (r>vj) for i 6= j

and i, j = 1, · · · , N are uncorrelated and E [ai aj ] = λi δij . Using the above properties in (A.4),

we get

E
[
r′r′>

]
=

N∑

i=2

λi vi v
>
i = R′r (A.5)

which concludes the proof of Proposition 2.
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B. Appendix

In this appendix we present analysis that leads to the approximation in (6.1). Consider the

M -dimensional covariance matrix R = E
[
r r>

]
of the random vector r. Let λi and vi,

(i = 1, · · · ,M) be the true eigenvalues and eigenvectors, respectively. Let V denote a ma-

trix whose columns are the true eigenvectors, sorted in descending order of the corresponding

true eigenvalues. The sample covariance matrix is defined as

R̂(i) =
1

n

i∑

k=i−n+1

r(k) r>(k) (B.1)

where i and k are time indices (will be omitted in the following), λ̂i and v̂i (i = 1, · · · ,M) are the

eigenvalue and eigenvector estimates, respectively. Let us perform a similarity transformation

as

A = V−1 R̂ V = V> R̂ V (B.2)

In the case of perfect estimate (R̂ = R) the matrix A is diagonal, with eigenvalues λi (i =

1, · · · ,M) on the diagonal. But, in general

A =




λ1 + a11 a12 · · · a1M

a21 λ2 + a22 · · · a2M

...
...

. . .
...

aM1 aM2 · · · λM + aMM




(B.3)

where aij , (i, j = 1, · · · ,M) is the deviation of the sample value. The matrix A is symmetric

(aij = aji) and for the off-diagonal elements (i 6= j)

aij =
1

n

i∑

k=i−n+1

xi(k)xj(k) (B.4)

and for the diagonal elements

aii =
1

n

i∑

k=i−n+1

xi(k)xi(k) − λi (B.5)

where xi(k) = r>(k) vi and xj(k) = r>(k) vj , where k is time index. We assume that xi(k) (i =

1, · · · ,M) are observations from a zero-mean normal distribution, andE[xi(k)2 xi(l)
2] = E[xi(k)2]E[xi(l)

2]
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for k 6= l. Under the above assumptions it can be shown that

E[a2
ij ] =

λiλj
n

(B.6)

Further [28],

O(aij) = O
(√

E[a2
ij ]
)

=
1√
n
≡ O(δ) (B.7)

where we have used O(δ) to represent O(aij). In order to evaluate the eigenvector estimates, let

us introduce a similarity transformation which suppresses the off-diagonal elements of A. Let us

denote this new matrix (with off-diagonal elements suppressed) as B. Originally, the idea was

presented in [28], and applied in order to analyze the eigenvalue estimates, but here we extend

the approach to study characteristics of eigenvector estimates. Specifically, the transformation

is

B = C A C−1 (B.8)

where the diagonal elements of B will further approach the eigenvalue estimates (i.e., the eigen-

values of R̂). In general, a similarity transformation leaves the eigenvalues unaltered [24]. In

the following, we construct the matrix C that yields the necessary transformation in (B.8). Let

us assume that

C = I + Y (B.9)

where the entries of Y are defined as follows

Y =




0 y12 · · · y1M

y21 0 · · · y2M

...
...

. . .
...

yM1 yM2 · · · 0




(B.10)

To simplify the derivations we may assume that

Y> = −Y ⇒ yij = −yji, (i, j = 1, · · · ,M) (B.11)

Further, let us assume that

O(yij ) ≤ O(δ) (i, j = 1, · · · ,M) (B.12)

Any element bij of the matrix B is

bij =
M∑

l=1





[
λlcil +

M∑

k=1

cikakl

]
cjl −

M∑

k=1, k 6=l, k 6=j
clkcjk +

M∑

m=1,m6=l
clm

M∑

k=1, k 6=l, k 6=j
clkcjk + · · ·







(B.13)
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where cii = 1 and cij = yij ⇒ cij = −cji. Under the assumptions in (B.9)-(B.12), all off-

diagonal elements bij (i 6= j) can be further simplified as

bij = λjcij + λicji + aji + O(δ2) (B.14)

Now, in the case of λi 6= λj , we can suppress the off-diagonal elements bij in (B.14) as follows.

Choose

yij =
aij

λi − λj
(B.15)

This implies O(bij) = O(δ2). Note, that to satisfy the assumption in (B.12), it follows from

(B.15) that we require

O(aij ) < O(|λi − λj |) (B.16)

or, in other words, we require that the sampling errors aij (which are of order 1√
n

) be smaller

than the distances |λi − λj | between the corresponding eigenvalues. In the case of λi = λj (as

would happen in noise subspace), we set

yij = 0 (B.17)

This results in O(bij) = O(δ), which implies that the off-diagonal elements in A that correspond

to the noise subspace are left unaltered by the transformation in (B.8).

Having the off-diagonal elements suppressed, the diagonal elements of the matrix B approach

the eigenvalue estimate, i.e., eigenvalues of R̂. We now study the eigenvector estimates. Note

that

C−1 = (I + Y)−1 = (I − Y + Y2 −Y3 · · ·) (B.18)

Let us approximate

C−1 ≈ (I − Y)⇒ C−1 = C> (B.19)

This approximation is justified by (B.18) and (B.12). Then the transformations in (B.2) and

(B.8) can be written as

B = C V> R̂ V C> (B.20)

Based on the above, the matrix B can be approximated as a diagonal matrix. From (B.19), the

matrix V C> is orthogonal. Therefore, according to the spectral theorem [24], the columns of

the matrix V C> in (B.20) are approximately the eigenvectors of the sample covariance matrix

R̂. Thus

Ṽ ≈ (V C>)⇒ C> ≈ (V>Ṽ) (B.21)

where Ṽ is the matrix whose columns are the eigenvectors (v̂i, i = 1, · · · ,M) of R̂. To character-

ize the estimation errors of the eigenvector estimates we observe crosscorrelations (projections)
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v̂>i vj , i 6= j, (i, j = 1, · · · ,M). Now, we study the first and second moments of the above

projections. From (B.21) it follows that

cij ≈ (v̂>i vj) (B.22)

For i 6= j and λi 6= λj

E
[
(v̂>i vj)

]
≈ E[cij ] = 0 (B.23)

and

E
[
(v̂>i vj)

2
]
≈ E[c2ij ] =

1

n

λiλj
(λi − λj)2

(B.24)

which is the required result in (6.1).
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