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Abstract—In this paper, we propose a blind successive interfer-
ence cancellation receiver for asynchronous direct-sequence code-
division multiple-access (DS-CDMA) systems using a maximum
mean energy (MME) optimization criterion. The covariance ma-
trix of the received vector is used in conjunction with the MME
criterion to realize a blind successive interference canceler that is
referred to as the BIC-MME receiver. The receiver executes in-
terference cancellation in a successive manner, starting with the
most dominant interference component and successively cancelling
the weaker ones. The receiver is compared against various central-
ized and decentralized receivers, and it is shown to perform well in
the presence of estimation errors of the covariance matrix, making
it suitable for application in time-varying channels. We also ana-
lyze properties of the covariance matrix estimates which are rel-
evant to the performance of the BIC-MME receiver. Further, the
BIC-MME receiver is particularly efficient in the presence of a few
strong interferers as may be the case in the downlink of DS-CDMA
systems where intracell user transmissions are orthogonal. An it-
erative implementation that results in reduced complexity is also
studied.

Index Terms—Blind interference cancellation, CDMA downlink,
successive interference cancellation.

I. INTRODUCTION

I N direct-sequence code-division multiple-access
(DS-CDMA) systems, in general, cross correlations

between signature (spreading) sequences are nonzero. This
results in multiple-access interference (MAI) which can disrupt
reception of highly attenuated desired user signals. This is
known as the near–far effect. To combat this problem, several
multiuser receivers have been proposed (for example, see
[1]–[5]). These receivers are denoted as centralized because
they require knowledge of parameters (signature sequences,
amplitudes, and timing) for all users in the system. Therefore,
they are more suitable for processing at the base station.

For the downlink, it is desirable to devise decentralized re-
ceivers. Decentralized receivers exploit knowledge of the de-
sired user parameters only. The use of short signature sequences
simplifies the task of multiuser detection and interference can-
cellation, since a receiver can adaptively learn (estimate) the
structure of the MAI [6]. Decentralized receivers may be further

Paper approved by A. Goldsmith, the Editor for Wireless Communication of
the IEEE Communications Society. Manuscript received May 15, 2000; revised
January 15, 2001. This work was supported in part by the New Jersey Com-
mission on Science and Technology under the New Jersey Center for Wireless
Communication Technologies. This paper was presented in part at CISS’2000,
Princeton University, Princeton, NJ, March 2000.

D. Samardzija is with the Wireless Research Laboratory, Bell Labs, Lucent
Technologies, Holmdel, NJ 07733 USA (e-mail: dragan@lucent.com).

N. Mandayam and I. Seskar are with the WINLAB, Rutgers University, Pis-
cataway, NJ 08854 USA (e-mail: narayan, seskar@winlab.rutgers.edu).

Publisher Item Identifier S 0090-6778(02)01366-1.

classified into data-aided and nondata-aided receivers. Data-
aided adaptive multiuser detection is an approach which does
not require a prior knowledge of the interference parameters.
But, it requires a training data sequence for every active user. For
example, adaptive receivers in [3], [7], [8] are based on the min-
imum mean square error (MMSE) criterion, and the one in [9] is
based on minimizing probability of bit-error. More recently, de-
cision feedback detectors using the MMSE criterion have been
proposed [10], [11].

Blind (or non data-aided) multiuser detectors require no
training data sequence, but only knowledge of the desired user
signature sequence and its timing. The receivers treat MAI and
background noise as a random process, whose statistics must be
estimated. Majority of blind multiuser detectors are based on
estimation of second-order statistics of the received signal. In
[12], a blind adaptive MMSE multiuser detector is introduced
(proven to be equivalent to the minimum output energy (MOE)
detector). A subspace approach for blind multiuser detection
is presented in [13] where both the decorrelating and the
MMSE detector are obtained blindly. Further, adaptive and
blind solutions are analyzed in [14], with an overview in [6].
Recently, a blind solution based on higher order statistics and
nonliner cancellation is presented in [15]. A comprehensive
treatment of multiuser detection can be found in [16].

The receiver in this paper is based on determining the most
(on average) dominant baseband interference components at the
output of a DS-CDMA system. Preliminary results on this idea
were first presented in [17]. In Section III, the maximum mean
energy (MME) criterion is introduced. In Section IV, we present
a novel blind receiver. It is based on the MME criterion and re-
quires estimation of the second-order statistics. We use the term
“blind” in this paper to describe our receiver even though it re-
quires the power of the desired user in addition to the desired
user signature sequence. While this may be slightly different
from what is termed as “blind” in the literature [6], we still use
this nomenclature because the receiver requires no knowledge
of the interferers and also works well with estimates of the de-
sired user power. The receiver executes interference cancella-
tion (IC) in a successive manner, starting with the most dom-
inant interference component and successively cancelling the
weaker ones. Therefore, it may be viewed as a blind equiva-
lent to the centralized successive interference cancellation (SIC)
scheme [4], [18], and we refer to this receiver as the blind in-
terference cancellation-maximum mean energy (BIC-MME) re-
ceiver. The difference between the two schemes is that the cen-
tralized SIC receiver cancels interferers one by one (using hard
or soft decisions), usually following the sequence of ordered
powers, while in the case of the BIC-MME receiver components
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from the interference subspace (eigenvectors) are projected out
and successively cancelled from the received vector. In order to
reduce complexity of the receiver implementation, we also pro-
pose an iterative solution for the MME optimization. Simulation
results are presented in Section V.

Time-varying systems are of special interest in future
DS-CDMA systems. These variations could be due to either
the radio channel or due to the variations in traffic such as
anticipated in packet networks [19]–[22] that may result in
high user activity (on/off) and short transmission periods
(burstiness) in the channel. Feasibility of adaptive and blind
interference cancellation in these systems is directly impacted
by the reliability of required estimates, using a limited number
of samples. Therefore, in this paper, special attention is paid to
the analysis of the receiver performance in the case of a limited
number of samples used for the estimation of the covariance
matrix of the input signal. Our simulation results indicate that
the BIC-MME receiver outperforms the blind MMSE receiver
in all cases, and particularly when the number of samples
used for estimation of the covariance matrix is limited. In
Section VI, we present an interpretation for the above behavior
using results from the estimation of eigenvectors based on
sample covariance matrices. We conclude in Section VII.

II. BACKGROUND

We now present the asynchronous DS-CDMA system model
and briefly review the MMSE criterion. The received baseband
signal, , in an antipodal -user asynchronous DS-CDMA
additive white Gaussian noise (AWGN) system is

(1)

where is the received amplitude, is bi-
nary, independent, and equiprobable data, is the signature
sequence which is assumed to have unit energy,is relative
time offset, all for the th user, is the symbol period, is
AWGN with unit power spectral density, is the additive noise
variance, and is the number of data symbols per user per
frame.

It is well known that an asynchronous system with indepen-
dent users can be analyzed as synchronous if equivalent syn-
chronous users are introduced, which are effectively additional
interferers [16]. Sufficient statistics are obtained by sampling
at , where is the maximum bandwidth of the chip wave-
forms in the desired user signature sequence [12], [16]. In this
paper we consider the received signal over only one symbol
period that is synchronous to the desired user . The dis-
crete representation for the received signal in (1) can be written
in vector form as

(2)

where the number of the interferers is
doubled due to equivalent synchronous user analysis., , and

are vectors in , where is the number of chips per bit.

For the sake of completeness, the well-known MMSE opti-
mization criterion is briefly repeated here (proven to be equiva-
lent to the MOE criterion [12]). For a vector , the mean
square error is . The linear MMSE
detector is obtained as

(3)

The solution of (3) is given as (for user 1) , where
is the covariance matrix of the input process

[13]. The matrix has to be invertible. If an estimate of
the covariance matrix i.e., sample covariance matrix , is
available, approximation of the optimal MMSE detector is

(4)

which is denoted as a blind linear MMSE (BMMSE) receiver.
In this paper, the above receiver is used as one of the refer-
ences for performance evaluations. Different implementations
of the blind linear MMSE detector are presented in the litera-
ture. One of the solutions that circumvent the inversion of the
covariance matrix is presented in [23]. We will also refer to
the solution in [23] in the numerical results section. The readers
should note that in this paper we do not analyze and compare
different receivers and their implementations that rely on using
adaptive (i.e., stochastic gradient) algorithms. We focus only on
closed-form solutions in order to avoid issues that arise from
the adaptive stochastic gradient algorithm and, consequently, to
make clear comparisons between basic forms of different re-
ceivers.

III. MME O PTIMIZATION CRITERION

Let us define, for an -dimensional vector , the mean en-
ergy (ME) as

(5)

Let us further constrain the vectorsuch that . A nec-
essary condition for a vector to maximize the
(5) is

(6)

It is obvious from (6) that and are an eigenvector and an
eigenvalue of the matrix , respectively. In general, there
is a set of eigenvectors and eigenvalues, which are related as

, where is a matrix whose columns are the
eigenvectors , and is diagonal matrix of the
corresponding eigenvalues .

In order to set a basis for further discussion, we repeat the
following well-known results from linear algebra.

Proposition 1: The eigenvector of that corresponds to the
maximum eigenvalue is the vector that maximizes the
ME (mean energy) in (5).

Let us denote the eigenvector from Proposition 1 as (the
maximizer of ME).

Proposition 2: Furthermore, if the contribution of
is removed from the matrix , as follows:

, then the eigenvector
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that corresponds to the maximum eigenvalue of is the
same as the eigenvector that corresponds to the second largest
eigenvalue of . In addition, the matrix is covariance
matrix of the vector .

Proposition 2 is a consequence of the spectral theorem [24].
The results in Propositions 1 and 2 form the basis for the blind
interference cancellation scheme presented in this paper. We
now sketch an outline of how the above two results can be ex-
ploited to derive a blind successive interference cancellation
scheme. Note that the contribution of the desired user can be
removed from the covariance matrix as follows:

(7)

where is the interference covariance matrix, with

. Observe that in the above procedure
no knowledge is required of the desired user’s bit decision (in-
formation). Only the knowledge of the desired signal power
is needed. Further, if the MME criterion is now applied to
(i.e., we determine the eigenvector corresponding to the max-
imum eigenvalue of ), then we can capture the most dom-
inant interference (energy) component. The above process can
be successively repeated and would result (due to Proposition 2)
in the successive cancellation of components in the interference
subspace, starting from the strongest to the weakest.

IV. A N APPLICATION OF THEMME CRITERION IN THE BLIND

IC RECEIVER

We now present a blind successive interference cancellation
scheme where we incorporate the MME criterion and realize
the blind interference cancellation-maximum mean energy
(BIC-MME) receiver. As depicted in Figs. 1 and 2, the receiver
executes the following steps (blocks in Fig. 1).

1) Estimation of the matrix according to

(8)

where is the sample covariance matrix,is the size of
the averaging window (number of samples), andis time
index (will be omitted in the following text).1

2) Remove the desired user contribution from. If the de-
sired user amplitude is known or estimated, we can
apply (7). The result of this step is that contains only
the interference components and there is no desired user
contribution .

Note that the amplitude may not be known at the re-
ceiver. Therefore, in our simulation results (in Section V),
we considered the amplitude estimate using the out-
puts of the MF for user 1. Our results indicate that the
performance is not sensitive to the errors in amplitude es-
timation.

3) Find the maximizer of the ME, i.e., the vector that
takes, on average, most of the interference energy. Ac-
cording to Proposition 1, the maximizer is the eigenvector

1Notation:ẑ denotes an estimate ofz.

Fig. 1. Flow chart illustrating the BIC-MME scheme.

that corresponds to the maximum eigenvalue of

the matrix .
To find the maximizer, it is not necessary to perform the

eigendecomposition in full. An iterative solution can be
applied. As an example, we use the power method (PM)
[24] to derive an iterative solution for the MME criterion.
Starting with an initial guess which contains some
component of

(9)

where is iteration step. While other advanced iterative
and subspace tracking algorithms are well known [25],
[26], this topic is not further analyzed in this paper. In the
case of the simulations in Section V, the power method is



SAMARDZIJA et al.: BLIND SUCCESSIVE INTERFERENCE CANCELLATION FOR DS-CDMA SYSTEMS 279

Fig. 2. Block scheme of the BIC-MME receiver.

observed to perform well. In Section V, as a stopping rule
we have used

(10)

where is some threshold value.
4) Remove the maximizer contribution from the matrix

to yield

(11)

According to Proposition 2, this step prepares the estimate
of the second-order statistics for evaluation of the
maximizer in the next IC stage.

5) To prevent excessive cancellation of the desired user from
the input vector , we introduce an optional block. This
block is useful in the case when the cross correlation be-
tween the desired user signature sequence and the inter-
ferer signature sequences is very high. For example, a
simple threshold criterion could be applied to determine
if cancellation is viable. If

(12)

where is some threshold value, then step 6) below is
skipped, i.e., the IC is not performed (in Fig. 2, the switch

is in the position 2). If this block is not applied, the
switch is always in the position 1.

6) Cancel the maximizer contribution as

(13)

7) A variety of stopping rules can be defined for the whole
procedure. If all significant components of the interfer-
ence (defined by a specific rule) are cancelled, the detec-
tion is performed, otherwise steps 3)–7)
are repeated, where, for the new IC stage,and take
the values of and , respectively. For example, the last
IC stage can be the one where the measured (estimated)
signal-to-interference ratio (SIR) is maximum or above
a target value. This particular method is used in the case
of the numerical results that are presented in Section V.
Furthermore, this step can be used to control the tradeoff
between performance and complexity of the receiver.

While the linear blind MMSE receiver implementation in [23]
is very attractive in that it requires no matrix inversion, it still
implicitly requires not only the estimates of the eigenvectors
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but also the eigenvalues, which is a general property of all blind
MMSE receivers. We will show in Section V that the BIC-MME
receiver is more robust to estimation errors of the covariance
matrix because it does not require eigenvalues but only their
relative ordering for the purpose of determining the cancella-
tion order. In Section VI, we will also show that the estimation
errors of eigenvectors have a specific structure which makes the
BIC-MME receiver particularly robust.

V. SIMULATION RESULTS

We consider a synchronous AWGN DS-CDMA system, using
randomly generated signature sequences with processing gain

. The users are independent and three cases are ana-
lyzed:

1) System with users, and equal-energy interferers:
.

2) Lightly loaded system with users, and very strong
equal-energy interferers: .
This scenario may correspond to the situation on the
downlink where intracell interference is negligible (due
to orthogonality of transmission) and few dominant in-
tercell interferers may be present. This could also reflect
a situation where the desired user is in a deep fade.

3) System with users; three strong equal-energy in-
terferers: , and twelve inter-
ferers with the same energy as the desired user:

. This scenario may correspond to a
system with different transmission powers that accommo-
date different quality of service (QoS).

Performance of the conventional matched filter (MF), central-
ized nonlinear SIC receiver [4], [5], centralized linear MMSE re-
ceiver [16], blind linear MMSE receiver (BMMSE) (detector in
(4) [13]), and the single-user lower bound (SULB) are used as
benchmarks for evaluation of the BIC-MME receiver. The cen-
tralized linearMMSEandSICreceiverassumetheperfectknowl-
edge of all amplitudes, signature sequences, and the variance of
the AWGN. The SIC applies power ordering, and two different
flavors of the receiver are presented: the first applies matched fil-
tering (denoted as SIC-MF, see [4], [18]) and the second applies
the MMSE detector (denoted as SIC-MMSE, see [5]) in detec-
tion of the interferers, which are nonlinearly reconstructed and
cancelled.TheBMMSEand theBIC-MMEreceiveruse thesame
sample covariance matrix . The matrix is estimated according
to (8) and we show results for different sample sizeused for
the covariance matrix estimate. Note that the centralized linear
MMSE receiver is equivalent to the BMMSE receiver that uses
an infinite number of samples for estimating the covariance ma-
trix .Wehaveused implementations fromboth [13]and
[23] to realize the BMMSE receiver. Their performance is iden-
tical but [23] is attractive in that it circumvents matrix inversion.
TheBIC-MMEreceiverperformstheeigendecomposition,while
the iterative solution (using the power method) is denoted as the
BIC-MME-PM receiver (where PM stands for power method).
Unless stated otherwise, we assume that the amplitude of the de-
sired user is known exactly.

For case 1, Fig. 3(a) depicts the bit error rate (BER) as a func-
tion of the SNR (with respect to the desired user). The results are

obtainedaftera totalof15 ICstages,which iswhere theestimated
SINR reaches maximum. For the same case, the BER versus the
number of IC stages is presented in Fig. 3(b) for an SNR dB.
In this particular example, after stage 15, the performance deteri-
orates. This is due to an excessive cancellation of the desired user
in stages 16 and 17. This occurs because the interference energy
is already cancelled in the first 15 stages in this example. Note
that, for this example, 15 is the number of independent dimen-
sions in the interference subspace. Our stopping rule (maximum
estimated SINR) recognized stage 15 as the last stage, while the
results for stages 16 and 17 are used just to illustrate the effects
of excessive cancellation. Note that the SIC-MF receiver fails to
follow the performance of other receivers in the higher SNR re-
gion.This isduetoerrorpropagationindetectionof the interferers
that are sequentially cancelled. The reader should note that case
1 represents a scenario that is not favorable to the centralized SIC
receiver [4] and hence its poor performance. This problem is not
present in the case of the SIC-MMSE (overlaps with SULB) and
the BIC-MME receiver.

Equivalent results, for case 2, with a total of 3 IC stages and
SNR dB are shown in Fig. 4(a) and (b), respectively. Note
that the performance of the BIC-MME is near optimum in case
2. In this lightly loaded system, even in the presence of very
strong interferers, a small number of IC stages (three stages) is
sufficient to fully cancel the interference with a negligible nega-
tive effect on the desired user (just a small fraction of the desired
user energy is removed by the IC). In addition, in this particular
example, the linear blind MMSE (BMMSE ) receiver
does not perform well because it is dominated by the estimation
errors of the covariance matrix.

In Fig. 5, we present the performance of the various receivers
as a function of the disparity between the desired user and in-
terferers. For a system with 16 users, the BER is shown as a
function of the ratio of the interferer power to the desired user
power. The SNR for the desired user is set to 12 dB. The results
suggest that the BIC-MME receiver is near–far resistant.

We now study the effect of accuracy of the covariance ma-
trix estimation on the performance of the BIC-MME receiver.
Fig. 6(a) and (b) correspond to case 1 (for SNR dB) and
the case 2 (for SNR dB), respectively. The above figures
depict BER with respect to different window size. According
to the results above, the BIC-MME receiver outperforms the
BMMSE receiver. The gain introduced by the BIC-MME re-
ceiver, with respect to the BMMSE receiver, increases as the
averaging window gets smaller.

Considering the iterative solution (BIC-MME-PM, where
PM stands for te power method), Fig. 6 shows that the power
method successfully replaces the eigendecomposition (the dif-
ference in performance between the two schemes is negligible).
For the above example, the threshold in (10) is .
Regarding the convergence of the power method, we have
observed that the number of iterations, before the criterion in
(10) is met, has never exceeded 25, and most of the vectors
(maximizers) required less than 10 iterations. Furthermore, in
our results, no effort has been made to improve the initial guess

. It is selected randomly. Therefore, the convergence could
be further accelerated if is improved (see [24]).
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(a)

(b)

Fig. 3. (a) BER versus SNR, case 1,M = 64 spreading,L = 16 users,A =A = 25; i = 2; . . . ; 16. (b) BER versus number of IC stages, case 1,M = 64

spreading,L = 16 users,A =A = 25; i = 2; . . . ; 16, SNR = 12 dB.

We consider the performance of our receiver in case 3. Fig. 7
depicts the BER with respect to the number of IC stages, SNR

dB and . The same figure presents the performance
of the match filter (MF-12) for the system without the strong in-
terferers (only the desired user and the twelve equal-energy in-
terferers, with perfect power control with respect to the desired

user). The performance of the MF-12 corresponds to the case
of perfect cancellation of the strong interferers. Note, that after
three IC stages, the BIC-MME receiver completely cancels the
strong users (it reaches the MF-12 performance). For this par-
ticular case, the maximum estimated SINR is reached after 15
IC stages; but, for the sake of lower complexity of the receiver
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(a)

(b)

Fig. 4. (a) BER versus SNR, case 2,M = 64 spreading,L = 4 users,A =A = 400; i = 2; . . . ; 4. (b) BER versus number of IC stages, case 2,M = 64

spreading,L = 4 users,A =A = 400; i = 2; . . . ; 4, SNR= 8 dB.

(i.e., smaller number of IC sages), interference cancellation can
be stopped in some earlier IC stage at the expense of lower per-
formance (higher BER). Furthermore, the performance of the
iterative solution (BIC-MME-PM) seems to follow that of the
BIC-MME receiver. This suggests that the low-complexity iter-
ative solution cancels the strongest interferers completely and

brings the system into the well-studied perfectly power con-
trolled state. This scheme may be applied for the interference
cancellation of strong users in a system with different transmis-
sion powers that accommodate different QoS, or in a system
with very few strong interferers, as may be the case for the
downlink where intracell user transmissions are orthogonal.
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Fig. 5. BER versus power ratio:10 log (A =A ) ; i = 2; . . . ; 16,M = 64 spreading,L = 16 users, SNR= 12 dB.

We also study the performance of the receiver if an estimate
of the desired user amplitude is used instead of the perfectly
known amplitude. We have tested the performance of the
scheme that applies a simple estimation of the amplitude
as . The results, for case 3, are
presented in Fig. 7, as the BIC-MME-AE receiver (where
AE stands for amplitude estimation). In this and many other
examples explored, we have not observed much difference in
the performance with respect to the solution for the case when
the amplitude is known exactly.

In summary, based on the above results, we may conclude that
the BIC-MME receiver successfully follows and in some cases
exceeds the performance of various centralized receivers (unlike
the BIC-MME receiver, we have assumed that the centralized
receivers possess the knowledge of all system parameters). In
all cases, it is shown that the BIC-MME receiver exceeds the
performance of the well-known linear blind MMSE detector.

VI. I NTERPRETATION OF THEBIC-MME PERFORMANCE

We now present an interpretation of why the BIC-MME re-
ceiver performs well in the case of iterative implementation
using the power method and in the presence of estimation errors
of the covariance matrix. Let us first emphasize the following
properties of the BIC-MME scheme.

Property 1: For the matrix , assume that there is a set
of eigenvectors that correspond to dominant eigenvalues
with small absolute difference between them, i.e., the interfer-
ence has almost the same energy in all directions of the sub-
space spanned by the true eigenvectors from. The BIC-MME
scheme tends to cancel the whole subspace, rather than to cancel
just a specific eigenvector in. Therefore, there is no need for
the vectors to be estimated with a high degree of accuracy. It

is sufficient that the estimated vectors are orthogonal and
fall well into the subspace spanned by the true eigenvectors

(i.e., has most of its energy confined to the sub-
space formed by the true eigenvectors from.)

The following property is the consequence of Proposition 2.
Property 2: Assuming that the BIC-MME scheme executes

a total of IC stages, the total contribution ofeigenvectors of
the matrix is cancelled from the input vector. The order in
which the vectors are processed (i.e., their contribution is can-
celled) does not affect the performance of the scheme (assuming
perfect estimation of the vectors).

A. Iterative Implementation Using the Power Method

We now discuss the performance of the BIC-MME scheme
that uses the power method iterative implementation. An attrac-
tive feature of such an implementation is that it avoids the need
for a full-scale eigendecomposition of the covariance matrix at
every IC stage (see step 3 in Section IV). The power method
exhibits very good convergence properties if the absolute differ-
ence between dominant eigenvalues are significant [24]. If
is one of the vectors that are described in Property 1 ,

[see (9)] converges very quickly with respect to the vec-
tors that are out of the set, i.e., the estimate lies in the subspace
spanned by the set after a very small number of iterations.
However, once inside the subspace, the convergence is signif-
icantly slowed down. According to Property 1, this drawback
should not affect the performance of the BIC-MME scheme sig-
nificantly. This is the reason why the BIC-MME receiver with
the iterative power method works well even after a small number
of iterations, which is also confirmed by the simulation results
in Section V. Furthermore, Property 2 shows that the BIC-MME
scheme with the iterative power method solution works well
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(a)

(b)

Fig. 6. (a) BER versus window sizen, case 1,M = 64 spreading,L = 16 users,A =A = 25; i = 2; . . . ; 16, SNR= 12 dB. (b) BER versus window sizen,
case 2,M = 64 spreading,L = 4 users,A =A = 400; i = 2; . . . ; 4, SNR= 8 dB.

even when the descending order for evaluated eigenvalues is
not guaranteed. In other words, if there are a few strong inter-
ference vectors in the interference subspace, then the order in
which the interference vectors (maximizers) are cancelled does
not affect the performance. These are favorable characteristics
for low-complexity iterative solutions.

B. Estimation of Eigenvectors

We now analyze properties of the eigenvector estimates of
the sample covariance matrix in (8). This analysis is used to ex-
plain why the BIC-MME scheme performs well in the presence
of eigenvector estimation errors that result when the sample co-
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Fig. 7. BER versus number of IC stages, case 3,M = 64 spreading,L = 16 users,A =A = 25; i = 2; . . . ; 4,A =A = 1; j = 5; . . . ; 16, SNR= 8 dB.

variance matrix is estimated using small sample sizes. In the
following, we will assume that the sample covariance matrix is
that of observation vectors that are multivariate Gaussian. Even
though this assumption is not true in the presence of MAI, we
will justify the following analysis through a numerical valida-
tion. Let the subspace spanned by the eigenvectors that corre-
spond to distinct and significant eigenvalues be
denoted as the signal subspace. The dimension of the signal sub-
space is . The noise subspace is spanned by the eigenvectors
that correspond to repeated eigenvalues
with multiplicity [13], [27]. To analyze estimation of
the eigenvectors, let us observe the cross correlation (projec-
tion) between the estimate of theth eigenvector

and the th true eigenvector .
These values, , can be used to characterize errors of the
eigenvector estimates. When , it can be shown that
is unbiased, i.e., . Further, the variance can be
approximated as (see the Appendix)

(14)

Note that the second-order moment is the mean
energy of the eigenvector estimatein the direction of the true
eigenvector . We have constrained the eigenvector estimates

to be unit energy, i.e., . From the above, an
observation follows.

Observation 1: The estimate of the eigenvector tends
to be clustered (i.e., has most of its energy) within the sub-
space spanned by the true eigenvectorand eigenvectors that
correspond to eigenvalues that are very close to. Inspection

of (14) reveals that the above statement is true even when the
number of samples is small.

To justify Observation 1 (that is based on analysis using
Gaussian statistics), and to validate its claims for a DS-CDMA
system with MAI, the following simulation example is pre-
sented.

Example 1: We consider a synchronous AWGN DS-CDMA
system, using randomly generated signature sequences with

users and processing gain . The signature
sequences have happened to be linearly independent in this
example; therefore, the dimension of the signal subspace
is . The users are independent and have the same
SNR dB. The sample covariance matrix is evaluated
according to (8). The eigendecomposition is performed for
1000 different sample covariance matrices, and the results are
averaged. Because of the identical behavior of the values which
correspond to the repeated eigenvalues ,
the results for are omitted from the fol-
lowing figures.

In Fig. 8(a), a true eigenvalue profile is
presented where the eigenvalues are sorted in descending order.
In Fig. 8(b), we present analytical [see (14)] and simulation re-
sults for for (which is the nor-
malized mean energy of the eigenvector estimatein the di-
rection of the true eigenvector ). Specifically, we have shown
the results for and , but the results appear to
be similar for all . The abscissa represents the
index arranged in descending order of the eigenvalues. The
sample size is . From the figure, the theoretical re-
sults closely resemble the simulations. This confirms the ap-
plicability of the above theoretical analysis (based on Gaussian
statistics) for the case of DS-CDMA systems. In addition, in
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(a)

(b)

Fig. 8. (a) Eigenvalue profile,M = 64 spreading,L = 16 users,SNR = 10 dB,n = 1000. (b) The mean energyE (v̂ v ) : simulations and theoretical
results fori = 5; 10, n = 1000.

Fig. 8(c), we show the simulation results results for ,
with different sample size values used
for estimating the sample covariance matrix. Both Fig. 8(b) and
(c) reveal that most of the energy of the eigenvector estimate

is confined within the space spanned by the true eigenvector
and eigenvectors that correspond to the closest (neighboring)

eigenvalues to even for different sample size. These results
support Observation 1.

Now, let us discuss how the estimation errors of the eigenvec-
tors affect performance of the BIC-MME scheme. According to
Property 1, there is no need for the eigenvectors from the setto
be estimated exactly. Rather, it is sufficient that the eigenvector
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(c)

Fig. 8.(Continued.) (c) The mean energyE (v̂ v ) depending on the sample sizen (simulations),i = 10, n = 200; 500; 1000.

estimates are orthogonal and well confined within the sub-
space spanned by the true eigenvectors . Under these
conditions, the BIC-MME scheme will successfully cancel the
whole subspace spanned by. Recall that the set corresponds
to the span of the eigenvectors that have eigenvalues that are
very close in amplitude. By Observation 1, even in the case of
small sample size used for the estimation of the sample co-
variance matrix, the estimates are clustered within
the subspace. Consequently, the BIC-MME receiver will per-
form well when small sample sizes are used for the estimation
of the covariance matrix. For example, in Fig. 8(c), it is seen that
the estimate for , has most of its energy confined to
the subspace formed by , . This is true
for all values of shown, i.e., .

Unlike the BIC-MME receiver, the BMMSE receiver, in ad-
dition to the eigenvector estimates, also requires the eigenvalue
estimates [13], [23]. This results in the performance of the
BMMSE receiver being more sensitive to the sample size.
Using the analysis in the Appendix and the results in [28], it can
be shown that the BMMSE receiver requires a greater number
of samples for the estimation of the covariance matrix than
the BIC-MME receiver to achieve the same performance [see
simulation results in Fig. 6(a) and (b)]. Further investigation of
this issue is beyond the scope of this paper.

VII. D ISCUSSION ANDCONCLUSION

We have introduced the MME optimization criterion which
is then used to implement a blind IC receiver. The ability of the
receiver to exceed the performance of the blind MMSE receiver
is confirmed via simulation results. It is seen that this scheme is

particularly effective for a system with fewer, very strong inter-
ferers and smaller number of samples used for the estimation of
the covariance matrix. This may be a very viable solution for im-
plementation on the downlink where transmissions are usually
synchronized within a cell such that intracell users are orthog-
onal and intercell interference may be dominant. However, in
the presence of multipath, these assumptions do not necessarily
hold, but the receiver is still effective since it does not use knowl-
edge of interference parameters. Regarding the use of sample
covariance estimates, we have presented an explanation of why
the BIC-MME receiver performs well in the presence of estima-
tion errors. A low-complexity iterative solution using the power
method for eigendecomposition is also studied. The properties
of the receiver make it an attractive solution for implementation
in time-varying channels as well as packet DS-CDMA systems
with bursty traffic. This is an area of further investigation.

APPENDIX

In this appendix, we present analysis that leads to the ap-
proximation in (14). Consider the -dimensional covariance
matrix of the random vector. Let and ,

be the true eigenvalues and eigenvectors, respec-
tively. Let denote a matrix whose columns are the true eigen-
vectors, sorted in descending order of the corresponding true
eigenvalues. The sample covariance matrix is defined as

(15)

where and are time indices (and will be omitted in the fol-
lowing) and and , are the eigenvalue and
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eigenvector estimates, respectively. Let us perform a similarity
transformation as

(16)

In the case of perfect estimate , the matrix is diag-
onal, with eigenvalues , on the diagonal. But,
in general

...
...

. . .
...

(17)

where is the deviation of the sample
value. The matrix is symmetric and for the off-
diagonal elements

(18)

and for the diagonal elements

(19)

where and , where is time
index. We assume that are observations
from a zero-mean normal distribution, and

for . Under the above assumptions, it
can be shown that

(20)

Further [28],

(21)

where we have used to represent . In order to eval-
uate the eigenvector estimates, let us introduce a similarity trans-
formation which suppresses the off-diagonal elements of.
Let us denote this new matrix (with off-diagonal elements sup-
pressed) as . Originally, the idea was presented in [28] and
applied in order to analyze the eigenvalue estimates, but here
we extend the approach to study characteristics of eigenvector
estimates. Specifically, the transformation is

(22)

where the diagonal elements of will further approach the
eigenvalue estimates (i.e., the eigenvalues of). In general, a
similarity transformation leaves the eigenvalues unaltered [24].
In the following, we construct the matrix that yields the nec-
essary transformation in (22). Let us assume that

(23)

where the entries of are defined as follows:

...
...

.. .
...

(24)

To simplify the derivations, we may assume that

(25)

Further, let us assume that

(26)

Any element of the matrix is

(27)

where and . Under the assump-
tions in (23)–(26), all off-diagonal elements can be
further simplified as

(28)

Now, in the case of , we can suppress the off-diagonal
elements in (28) as follows. Choose

(29)

This implies . Note that, to satisfy the assump-
tion in (26), it follows from (29) that we require

(30)

or, in other words, we require that the sampling errors(which
are of order ) be smaller than the distances be-
tween the corresponding eigenvalues. In the case of (as
would happen in noise subspace), we set

(31)

This results in , which implies that the off-di-
agonal elements in that correspond to the noise subspace are
left unaltered by the transformation in (22).

Having the off-diagonal elements suppressed, the diagonal
elements of the matrix approach the eigenvalue estimate, i.e.,
eigenvalues of . We now study the eigenvector estimates. Note
that

(32)

Let us approximate

(33)
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This approximation is justified by (26) and (32). Then the trans-
formations in (16) and (22) can be written as

(34)

Based on the above, the matrixcan be approximated as a diag-
onal matrix. From (33), the matrix is orthogonal. There-
fore, according to the spectral theorem [24], the columns of the
matrix in (34) are approximately the eigenvectors of the
sample covariance matrix . Thus

(35)

where is the matrix whose columns are the eigenvectors
of . To characterize the estimation errors

of the eigenvector estimates we observe crosscorrelations
(projections) . Now, we study
the first and second moments of the above projections. From
(35), it follows that

(36)

For and

(37)

and

(38)

which is the required result in (14).
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