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Abstract. In this paper we propose a novel image interpolation algorithm which 

preserves edges and keeps a natural texture of interpolated images. The algorithm 

is based on an idea that only pixels that belong to the same side of an edge should 

be used in interpolation of pixels that belong to an edge. Beside similarity-based 

separation of known interpolation pixels a gravity-like interpolation coefficient set 

is also introduced in order to support different number of interpolation pixels and 

their location in two dimensional plane. The algorithm also applies arbitrary 

scaling factors, thus offering a broader scope of applications. Use of a local set of 

interpolating points makes the proposed algorithm suitable for applications on 

resource-limited platforms. The edge performance is demonstrated for structured 

geometric forms, while a general interpolated image quality is evaluated using 

objective measures and subjective comparisons. A comparison with some relevant 

interpolation algorithms shows the desirable tradeoff between image quality 

(sharpness and texture) and requested computing power (run-time). 

Keywords: edge directed interpolation, edge preservation, image interpolation, 

image processing. 

1. Introduction 

In many applications, there is a mismatch between the original and desired image 

resolution. For example, multimedia systems are facing the problem of how images in 

many different formats can be presented on displays with different resolutions. 

Furthermore, in medical and satellite image diagnosis and analysis, an enhanced 

resolution is preferred. In order to provide improved resolution, image interpolation 

techniques are applied. 

Generally, image interpolation is an ill-posed problem. Interpolation pixels generally 

lie somewhere between pixels of an original image with known values. Unknown image 

values at the requested interpolation pixels should be estimated using the known values 
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at the pixels of the original image. Considering the interpolation problem in the spectral 

domain, changing the sampling frequency redefines the spectrum range and missing 

spectral components cannot be reconstructed from the known spectrum of the original 

image. This problem does not have a unique solution. Therefore, there are many 

proposed algorithms considering specific frame conditions in different applications. The 

main problem in image interpolation is to preserve the natural appearance of image 

texture while maintaining edges, i.e., the image sharpness. These are two mutually 

opposing requirements and most of interpolation algorithms pursue one of them better 

than the other. Furthermore, in many applications, an arbitrary scaling factor (not only 

integer) is requested. 

The other aspect of image interpolation is complexity of used algorithms. For certain 

applications almost unlimited computational resources are available, however, for most 

of them a compromise between interpolation complexity and expected quality must be 

made.  

In this paper we propose a novel image interpolation algorithm. The proposed 

algorithm is based on two original contributions: (i) similarity grouping of interpolating 

pixels (preserving image sharpness) and (ii) gravity-like interpolation (providing natural 

appearance of texture). The original pixels are grouped according to their similarity and 

then a new interpolated pixel is generated using the group it is affiliated with. The 

gravity-like interpolation coefficients are proportional to the inverse of the square 

distance between an interpolated pixel and known interpolating pixels. Unlike some 

other well-known solutions, the gravity-like interpolation applies arbitrary scaling 

factors. In Section II, the problem identification and related work are presented. In 

Section III, the proposed algorithm is described. Basic properties of this scheme are 

evaluated in Section IV. In Section V, the proposed solution is compared against five 

referenced interpolation algorithms using four the standard image quality measures: the 

structured similarity index measure (SSIM) [33], the sharpness measure (SM) [13], the 

peak signal to noise ratio (PSNR) [32], and blind image quality index (BIQI) [23]. 

Finally, Section VI concludes the paper. 

2. Problem identification and related work 

2.1. Problem identification 

An interpolation algorithm is applied to an original image with { Iin(v, h, c); v = 1,…, V , 

h = 1,…, H and  c = 1,…, C } where V and H are the number of pixels in the vertical 

and horizontal dimension and C is the number of color components (C = 1 for grey 

images and C = 3 for color images). For a given scaling factor F, the interpolated image 

pixels are { Iout(p, q, c); p = 1,…, Vout and q = 1,…, Hout , c = 1,..,C } where vertical and 

horizontal image sizes are Vout = F
.
V and Hout = F

.
H. The original raster and the raster of 

interpolated image are visualized in Fig. 1 (a). Considering an application with limited 

resources, the value for the interpolated pixel Iout(p, q, c) is calculated using only four 

neighboring pixels from the original image (Fig. 1 (b)): 
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where v and h are the remainder coordinates (vertical and horizontal) in the rectangle 

defined by the above pixels. 

          

Fig. 1 (a) rasters of original and interpolated images and (b) four-point neighborhood by the 

scaling factor F = 1.5 

2.2. Related work 

In this paper, we are addressing applications with limited resources where a tradeoff 

between image quality (texture and edge quality) and requested computing power (run-

time) should be analyzed. Considering these two aspects (texture vs. sharpness and 

complexity vs. expectations) image interpolation algorithms can be categorized in the 

following groups. The first group consists of the least complex algorithms, such as 

sample and hold (SH) [12], bilinear (BL) [12] and bicubic (BC) [17], with limited image 

quality. The second group includes low-complexity algorithms that preserve edges 

(image sharpness). This approach has been originally demonstrated in [3] and improved 

in recently published algorithms: adaptive image scaling based on local edge directions 

(LAI) [18], image magnification using interval information (KI) [16] and fast image 

interpolation using directional inverse distance weighting for real-time applications [15]. 

The third group of algorithms such as [10], [11], [19], [20], [28], [30], and super-

resolution convolutional neural network (SRCNN) [8] are characterized by complex 

image analysis, increased complexity and good interpolation results.  

Additionally, the arbitrary scaling factor is provided by algorithms SH [12], BL [12], 

BC [17], and LAI [18]. In contrast, the algorithms [3], KI [16], [10], [11], [19], [20], 

[28], [30], and [15] allow only integer scaling factors. For the algorithm SRCNN [8] 

model parameters have been provided for integer scaling factors only. 
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Representatives from all three algorithm groups will be further examined in this 

study. Namely, the SH and the BC algorithms from the first group, the LAI and the KI 

algorithms from the second group and the SRCNN algorithm from the third group will 

be used for image interpolation performance analysis. The regularized local linear 

regression (RLLR) [20] and adaptive sparse domain selection (ASDS) [10] will be used 

in complexity analysis.  

Design of interpolation algorithms is a trade-off between computational complexity 

and image quality. Algorithms based on an a priori knowledge about whole image 

provide better image quality but require higher computational complexity. Algorithms 

based on an a priori knowledge in a closer neighborhood of interpolated pixel decrease 

computational complexity but also decrease image quality. Image quality is defined by 

structural quality (preservation of edges) and natural outlook (texture) of an interpolated 

image. Therefore, the design of interpolation algorithms always faces three significant 

decisions: 

• The size of processed neighborhood around an interpolated pixel having a 

direct impact on computational complexity and image quality (the smallest processing 

size is 2x2 neighboring pixels of the original image);  

• Preservation of edges for identified image structures; and 

• Interpolation rule (calculating of an unknown image value at an interpolated 

pixel from known values at neighboring pixels of original image) guarantying a natural 

image outlook (texture). 

3. Similarity grouping interpolation algorithm  

In this paper we propose a low-complexity, edge-preserving and gravity-like image 

interpolation algorithm. Due to the requested low complexity the processed 

neighborhood for each interpolated pixel contains only four pixels of the original image. 

The requested preservation of edges requires identification of an edge in the processed 

neighborhood of four pixels. If an edge is present, then four pixels around the 

interpolated pixel can be divided in two groups. Pixels in each group are similar to each 

other. Separation of pixels into two groups according to their similarity is achieved by 

sorting four known image values in accordance to their similarity and finding the 

maximum difference in this array of sorted pixels. That maximum difference splits the 

array into two parts. So, two similarity groups have been defined containing pixels that 

belong to opposite sides of an edge. Then, the affiliation of the interpolated pixel to one 

of these two similarity groups have to be found according to the position of the 

interpolated pixel. Finally, the interpolated value should be calculated only using values 

of the identified similarity group. An appropriate interpolation rule should be applicable 

for any group size (1, 2, 3 or 4 points) and should provide a natural outlook of an 

interpolated image. For these purposes we propose a gravity-like algorithm. The gravity-

like interpolation method is a generalization of interpolation methods without restriction 

on number of interpolation pixels and location of interpolation pixels. Additionally, its 

filtering properties are comparable (not worse) to bicubic interpolation. Summarized, 

proposed algorithm includes four steps: sorting, similarity grouping, interpolated pixel 

affiliation and gravity-like interpolation. 
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3.1. Sorting of image values 

The four pixels of the original image (1) are grouped in two regions according to 

similarity of their values. The process starts with a sorting of values of interpolation 

pixels. Interpolation pixels are ordered in the two dimensional array and prior to the 

sorting they need to be ordered in the one dimensional array (2D to 1D ordering is 

defined in (2)). The four pixels from two dimensional array Iin are ordered in a 

sequential array S, separately for each color component (c): 

  .2,12,1),1,1(,)1(2  ssssinss hvchhvvIchvS  (2) 

 

The four indices of this array correspond row-wise to the indices of the 

four interpolation pixels: 




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
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. 

 

The sequential array S is sorted according to its values (the smallest first) what also 

defines the four indices (nc) of the sorted array from the original set [1,2,3,4]: 
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3.2. Similarity grouping 

After values of interpolation pixels are sorted they need to be grouped according to their 

similarity. This is done by finding the maximum difference between values of 

neighboring interpolation pixels in the sorted array. 

The maximum difference Dc,max between neighbors in this sorted array |Sc(k, c) - 

Sc(k+1, c)| is determined (k = 1, …, 3), together with its position kc,max (1, 2 or 3). Then, 

the color component c
*
 with the maximum image value difference Dc*,max defines the 

splitting index kc*,max and the list of original indices nc*,(k). The list nc*,(k) and splitting 

index kc*,max are used to form two groups of image pixels with the corresponding lists of 

original indices n1 and n2 such as 
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Two kinds of pixel partitions in two groups are possible: 1:3 (kc*,max = 1 or 3) or 2:2 

(kc*,max = 2). The third possibility (0:4) is allowed if the maximum difference Dc*,max is 

smaller than a predefined threshold Dth (kc*,max = 0). In total, there are seven possible 

cases of how the original pixels are partitioned.  

The role of predefined threshold Dth is to help identifying areas that do not contain an 

edge. If it is set to too high, value edges would not be detected in low contrast images. 
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Setting the threshold to low value is not that critical since it is used in edge detection in 

conjunction with other criteria. Experimental results presented in this paper are obtained 

with Dth value set to 10. 

3.3. Affiliation of the interpolated pixel 

Interpolation pixels are divided into two partitions according to their similarity in the 

previous step. Before a new pixel is interpolated, it has to be affiliated with a particular 

partition. The original pixels in the selected partition will be used for interpolation. 

Seven different partition cases are depicted in Fig. 2, where cases 1 to 4 correspond to 

the 1:3 partitioning (corner edges), cases 5 to 6 correspond to the 2:2 partitioning 

(horizontal and vertical edges), and case 7 corresponds to the 0:4 partitioning (no 

edges).  

A decision on which case is actual is based on the pattern recognition of the sorted 

image order: 
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(5) 

For each case in Fig. 2, the lines represent the assumed linear edge orientation. 

However, for case 7 the edge orientation is unknown, therefore it is also considered as 

the 0:4 partitioning.  

 

Fig. 2. Seven possible cases of partitioning with lines corresponding to the assumed edge 

orientation (cases 1-4 diagonal edge, case 5 horizontal edge, case 6 vertical edge, and case 7 no 

edge). 

Depending on a particular case and a position of the interpolated pixel one of two 

groups of original pixels is chosen for interpolation according to the following rules: 
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(6) 

where ni is the list of pixel indices belonging to the selected partition, v and h are the 

remainder coordinates defined in (1). For example, in case 1, if the new pixel is above 

the line, the original pixels 2, 3 and 4 will be used for interpolation. 

3.4. Gravity-like interpolation 

The interpolated pixel value is generated using the original pixels defined by the 

interpolation index list:  
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where w(ni(k)) are the interpolation coefficients. Note that L can take any value from 1 

to 4 (i.e., for L = 3 interpolating pixels define triangle and interpolated pixel is in its 

interior). Therefore, use of conventional interpolation algorithms is not always possible. 

The novel interpolation algorithm called gravity-like interpolation is based on the 

analogy to the gravity law: 

  i

i

i Lk
knd

Q
knw ,...,1

))((
)(

2
  

(8) 

where d(ni(k)) are the squared Euclidean distances of the four adjacent pixels to the 

interpolated pixel: 
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The condition for zero gain interpolation (the output range should be the same as the 

input range) is given by:  
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Calculating Q from (8) and (10) and putting it in (8) the final interpolation 

coefficients are given by: 
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For example, in the case of one interpolating pixel (Li = 1) there is only one 

interpolation coefficient with value one, which corresponds to the SH interpolation. 

4. Evaluation of basic properties 

Two basic properties significant for quality of interpolation are analyzed and compared 

with other interpolation algorithms: edge preservation and edge integrity. 

4.1. Edge preservation 

Advantage of the proposed algorithm in edge preservation is shown in Fig. 3 using a 

simple black and white image of a triangle with typical three edge directions: horizontal, 

vertical and diagonal. The analyzed interpolation algorithms can be used to magnify (F 

> 1) or reduce the image size (F < 1). Since more illustrative, image magnification is 

considered. 

 

Fig. 3. Image interpolation results for F = 3: a) original image, b) SH, c) BC, d) LAI, e) KI, f) 

GR. 

The SH algorithm interpolates vertical and horizontal edges well, but a stepwise 

structure is visible on the diagonal edge. The BC algorithm blurs all the edges. The LAI 

algorithm performs well on the vertical and horizontal edges and also slightly improves 

quality of the diagonal edge. The KI algorithm also performs well on the vertical and 
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horizontal edges but introduces certain artifacts on the corners and diagonal edge. The 

proposed GR algorithm preserves all edges well. However, it slightly rounds the corners. 

4.2. Edge integrity 

An inherent property of the proposed interpolation solution is the edge integrity 

preservation – no discontinuities of edges between the two interpolation rectangles 

corresponding to neighboring interpolated pixels. This property is easy to illustrate with 

an example of binary images (value 0-black and 1-white). The example is given for the 

right-vertical side of the interpolation rectangle. Assume a four-pixel constellations for 

two neighboring interpolated pixels of the original image and next to it on the right-hand 

side there are four possible constellation combinations: (a, b) = {0, 1} as shown in Fig. 

4. 

 

Fig. 4. An example of interpolation rectangle (dashed) and adjacent interpolation rectangle 

(dotted). Two right most pixels of adjacent interpolation rectangles have values a and b.   

For all four cases, the results of interpolation are shown in Fig. 5 illustrating the edge 

integrity preservation. 

 

Fig. 5. An illustration of the edge integrity preservation in an example for a scaling factor F = 20 

4.3. Gravitation like interpolation 

We did not find any previously-published ideas similar to our proposal how to generate 

interpolation coefficients using analogy with the law of gravitation: 
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where Iout(x) is the value of the interpolated pixel and Iin(xk) are known interpolation 

pixels defined by the coordinates x and xk, respectively. In general, x and xk can be N-

dimensional vectors in N-dimensional space. Thus, the algorithm application is not 

limited to 1 or 2 dimensions.  

Besides the main advantages of this approach: applicable for any number of 

interpolating points, better edge-preservation and guaranteeing integrity of edges, more 

detailed evaluation of this approach also shows some additional advantages.  

An illustration of those features for the gravity-like interpolation could be seen in a 

simple 1D example. The 1D impulse responses with the corresponding transfer functions 

(anti-aliasing LF filters) are shown in Fig. 6 for the cubic (CUB) and gravity-like (GR) 

interpolation using two lengths L = 2 and L = 6.  

 

Fig. 6. Impulse responses and amplitude transfer functions for 1D cubic and gravity-like 

interpolation 

When two interpolation points are used, the gravity-like interpolation results in a 

better suppression of aliasing candidates at frequencies higher than twice the sampling 

rate. Since the gravity-like algorithm can be applied on a larger number of interpolation 

points, the suppression of aliasing candidates can be also improved at lower frequencies. 
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The 2D impulse responses with the corresponding transfer functions (anti-aliasing LF 

filters) are shown in Fig. 7 for the SH, the BL and the GR interpolation algorithms. 

These two simple algorithms are used to emphasize the main advantages of the new 

algorithm. It is assumed that for the GR algorithm all four pixels are used (Li = 4), same 

as in the SH and BL interpolation.  

 

Fig. 7. Impulse responses of interpolation filters for SH, BL and GR interpolation; scaling factor 

F = 20 and response size 40 x 40 pixels. 

The SH impulse response is a rectangle around the impulse pixel. The BL impulse 

response has a circular shape but with pronounced vertical and horizontal directions. 

The impulse response of the proposed gravity-like interpolation (GR) has a circular 

shape with uniform values in all directions.  

The transfer function of the interpolation filter is the Fourier transform of the impulse 

response. Theoretically, it should be a low-pass filter in both directions with a cut-off 

frequency of 0.5/F, where F is the scaling factor. In this case all possible aliasing 

components at higher frequencies would be suppressed, however the edges would be 

also blurred. Transfer functions of the three evaluated interpolation methods are shown 

in Fig 8. 

 

 

Fig. 8. Amplitude transfer functions (white 1: 0 dB and black 0: below -60 dB) of interpolation 

filters for SH, BL and GR interpolations; frequency ranges in both directions (fv and fh) are 

between 0 and 0.25 (normalized). 

The SH transfer function slowly decays, especially around the vertical and horizontal 

axis, which indicates larger presence of aliasing components. Consequently, edges tend 

to be well preserved, while block-like artifacts are introduced in the image texture. The 

BL transfer function suppresses potential aliasing components in the high-frequency 

range, especially in the diagonal directions. Consequently, the interpolation texture 
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quality is better, however edges are blurred. Likewise, the GR transfer function 

suppresses high-frequency components. Nevertheless, it results in uniformly distributed 

artifacts, thus leading to improved perceptual image quality. 

5. Comparison with other interpolation algorithms 

The proposed solution will be further compared with other five widely known 

interpolation algorithms: SH, BC, LAI, KI and SRCNN. The following comparisons are 

considered: objective quality measures and subjective quality impression. 

5.1. Reference test database (LIVE) 

Experiments were performed on all 29 reference images from the reference test database 

named LIVE [25]. The test database LIVE is widely used in evaluation of quality of 

various image processing algorithms. Some considered (typical) images from this 

database are shown in Fig 9. The image Bikes is a represent of complex images. The 

image Womanhat represents portrait images. The image Cemetry contains letters and the 

image Sailing2 represents images with large homogeneous areas. 

 

 

Fig. 9. Examples of typical images from the test database LIVE. 

5.2. Objective comparison 

For an objective assessment of the interpolation image quality two established measures 

are used: image quality measurements regarding texture and edges. For both measures a 

reference magnified image is required. Therefore, an original image is scaled down by 

scaling factor F using the SH algorithm and such a scaled image is interpolated by 

scaling factor F using the evaluated algorithms. So the original image is a reference for a 

distorted interpolated image. This approach is mostly used for evaluation of 

interpolation algorithms although the scaling dawn step could be realized by other 

algorithms, e.g. cubic interpolation. We used the simple SH algorithm for scaling dawn 

in order to preserve edges. The quality of interpolation is evaluated using two well 

established metrics: the structured similarity index measure (SSIM) [33] and the 

sharpness measure (SM) [13]. The measures SSIM and SM are used to quantify the 
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interpolation quality of texture and edges, respectively. Additionally, the traditional 

PSNR measure (the simple mean square error between original and interpolated images) 

has been also considered having in mind its disadvantages [32].  

The original images were converted to 8 bit grayscale. The mean values of three 

measurements (PSNR, SSIM and SM) for all 29 reference images from the LIVE 

database are calculated for different scaling factors applying considered interpolation 

algorithms. For the KI algorithm, the results are shown only for integer scaling factors 

(non-integer scaling factors are not supported). That is also the case for the SRCNN 

algorithm, for which only model parameters used for scaling by factors 2, 3 and 4 are 

provided. For other algorithms, the results for non-integer scaling factors are also 

presented. 

The evaluation results based on the traditional PSNR measure are shown in Fig. 10. 

The proposed method shows the best result for all scaling factors but 2, where BC and 

KI show slightly better result.  

 

 

Fig. 10. The PSNR measure for different scaling factors – average for 29 LIVE reference images 

A new established image structure measure SSIM is also considered in evaluation of 

the proposed method. The SSIM measure results are shown in Fig. 11 reflecting natural 

outlook of interpolated images (texture). Again, the proposed method shows the best 

result for all scaling factors but 2, where BC and KI show slightly better result. A 

possible reason for slightly worse results of the GR method for PSNR and SSIM 

measures can be that for the scaling factor 2 all the interpolated pixels are at the same 

distance from two closest original pixels. That makes a proper choice of correct set of 

pixels to be used in interpolation harder and probably increases the number of incorrect 

decisions. 
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Fig. 11. The SSIM measure for different scaling factors – average for 29 LIVE reference images 

For evaluation of edge preservation property the SM measure is used and results are 

shown in Fig. 12. The proposed method shows the better results for almost all scaling 

factors. However, for the scaling factor 2.5 the SH method performs slightly better as 

well as for the scaling factor 4 where the KI method is better. 

 

 

Fig. 12. The SM measure for different scaling factors – average for 29 LIVE reference images 

The performance of some algorithms varied greatly between different measures. For 

example, the SH interpolation had mostly the best SM, but the worst PSNR and SSIM 

performance. In order to visualize both performances, edge preservation and natural 

texture, a 2D presentation of the SSIM and the SM measures is shown in Fig. 13 as 
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proposed in [22]. The given results correspond to averaged measures values for all 29 

reference images for scaling factor F = 3. In evaluation of different interpolation 

methods the best balance in overall quality corresponds to the right upper corner, where 

the measures for the proposed GR method are located. 

The interpolation quality of the SRCNN algorithm observed in evaluation is worse 

than expected from results presented in [9] probably due to two reasons. First, the 

original model parameters from provided by the algorithm authors (for scaling factors 2, 

3 and 4) which are obtained through training with other test image basis are used. 

Secondly, the sample-and-hold interpolation has been used for scaling dawn. Thus, there 

is probably strong dependency on a training procedure of the SRCNN method. The 

method seems to provide very good results when an a priori knowledge on images 

(acquired during training) is applicable, while other evaluated methods treat all images 

equally.  

 

Fig. 13 2D visualization (SSIM / SM) by scaling factor F = 3 / average measures for 29 LIVE 

reference images 

In summary, the proposed GR algorithm provides an excellent trade-off between the 

image quality in texture and edge areas. 

5.3. Subjective comparison 

Following the saying “a picture is worth a thousand words”, a subjective comparison is 

also performed in this study. Zoomed image details of two considered typical images 

Sailing2 (an image with large homogeneous areas) and Womanhat (a typical portrait) are 

shown in Fig. 14 for the scaling factor F = 9.  
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Fig. 14. Zoomed details of interpolated images by the scaling factor F = 9 using interpolation 

algorithms: a.) original, b.) SRCNN, c.) BC, d.) KI, e.) LAI, f.) GR  
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In addition to the zoomed details the Blind Image Quality Index (BIQI) [23, 24] 

values has been also given in Table 1. The given BIQI values are average for all 29 

LIVE reference images. BIQI scores are in a range from 0 to 100 where a lower value of 

BIQI measure represents better image quality. 

Table 1. BIQI values - average for all 29 LIVE reference images 

Algorithm Scaling 

factor 

F = 2 

Scaling 

factor 

F = 3 

Scaling 

factor 

F = 4 

SRCNN 31.16 35.60 38.76 

BC 31.83 37.85 44.57 

LAI 39.00 46.52 36.01 

KI 32.69 36.50 38.73 

GR 27.01 28.16 30.22 

 

The BC algorithm significantly blurred the edges. The KI algorithm produced a 

sharper edges with artifacts that resembles blocking effect/pixelation which can be seen 

also in the texture area close to edges. The LAI algorithm also produce sharper edges 

than BC algorithm with clear blocking effect around some edges. The SRCNN algorithm 

provided sharp edges and a bit granular texture. A granular texture is well suited for the 

human skin, but looks strange on more homogenous areas like clouds and sail. Both 

cases can be noticed in Fig. 14. 

The proposed GR algorithm preserved the sharpness of the edge while keeping a 

natural appearance of the texture. Subjective impression from zoomed details in Fig. 14 

are also confirmed by the BIQI measure values (Table 1). The proposed method has the 

smallest averaged BIQI (over 29 reference images), and is followed by the SRCNN 

algorithm which showed much better results than in objective evaluation. 

5.4. Execution time comparison 

In order to compare complexity of the evaluated algorithms, the execution times needed 

for interpolation of images of different sizes are provided in Table 2. 

The experimental results are compliant with our initial expectations. The first group 

(SH, BL and BC algorithms) showed low computational complexity as expected of data 

invariant interpolation algorithms. Locally adaptive interpolation algorithms – GR, KI 

and LAI require a greater number of operations. Due to localization of feature 

extractions to the smallest neighborhood (2 x 2 pixels) around interpolated pixel, their 

complexity is not much higher compared to the simplest algorithms (confirmed by the 

experimental results). Non-local interpolation algorithms – SRCNN, RLLR and ASDS 

extract information of the image structure using a wider image area and more 

sophisticated algorithms resulting in higher computational requirements. Based on 

experimental results (obtained by Matlab implementations provided by the authors) it is 

clear that the highest potential for algorithm optimization is in the third group of 

algorithms. 
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Table 2. Interpolation times in seconds for various image sizes for scaling factor F = 2 

Algorithm Image size 

128x128 

Image size 

256x256 

Image size 

512x512 

Image size 

750x750 

BL 0.766 2.938 8.719 23.594 

BC 0.734 2.948 11.063 22.438 

SH 0.750 2.965 11.609 24.578 

GR 1.469    5.798 20.156 41.250 

KI 1.609 6.450 23.391 46.078 

LAI 4.359 17.055 61.469 133.516 

SRCNN 24.208 77.790 253.498 476.267 

RLLR 121.719 469.078 1193.900 3997.000 

ASDS 368.406 1925.641 6785.100 15367.950 

 
*Matlab simulations were used for all algorithms. The measurements were performed on 

a PC with Intel® Core™ i7 processor @2.5Gz with 8GB of memory and SSD disk. 

6. Conclusion 

In this paper, a new image interpolation algorithm is proposed focusing on preservation 

of edges while keeping a natural appearance of texture. The proposed algorithm is 

applicable by arbitrary scaling factors. First, the original pixels are grouped into two 

similarity regions and only one group of pixels is selected for interpolation. Then, the 

gravity-like interpolation is applied to the selected pixels. 

As demonstrated, the proposed interpolation algorithm preserves not only vertical and 

horizontal, but also diagonal edges. The edge integrity is guaranteed for the proposed set 

of interpolation rules. This may work particularly well for images with text. 

Additionally, the gravity-like interpolation provides a natural appearance of texture 

regions. 

In terms of edge and texture quality, the proposed algorithm is almost in all cases 

better than competitive algorithms. Regarding the required computing power (run-time) 

the proposed algorithm is comparable with other simple algorithms and can be identified 

as an appropriate solution in many applications on platforms with limited resources. 

Therefore, the proposed algorithm provides the desirable tradeoff between image quality 

and computing complexity. 

Further work may include enlargement of an area used for the similarity grouping 

(i.e., 4 x 4 pixels) and improvement on the method used for the similarity grouping. The 

number of pixels used for the interpolation should remain unchanged (up to four as in 

proposed method). This may improve similarity grouping, but would probably not 

increase needed processing power significantly since similarity grouping is done only 

once for all pixels bounded by four original pixels. 
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