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Abstract 

This paper focuses on fundamental system deployment 
aspects of location estimation in 802.11-based wireless 
networks. We concentrate on adaptable infrastructure-based 
approaches, where sniffers measure received signal strength 
from clients to locate them. Our implementation experience 
and experimental results show that sniffer-based location 
estimation is feasible and works well provided some important 
rules are followed. By studying data over a 6-month period, 
we observe that adaptation of models is necessary for good 
location estimation, and we show that our techniques enable 
location estimation with minimal profiling. We also present an 
intriguing client-assisted approach for location estimation 
where a client, APs and sniffers collaborate to locate a 
terminal in enterprise (infrastructure-mode) wireless 
networks.  

1. Introduction 
Many signal strength (SS)-based techniques have been 

proposed for location estimation in wireless networks, 
especially 802.11-based networks. While several researchers 
have concentrated on techniques for location estimation and 
improvements to them [3][4][6][7][8][11][12], there has been 
little work done in studying the systems aspects of how such 
techniques will actually be deployed. In particular, it has been 
implicitly assumed that the deployments will be client-based, 
where (i) the SS models are built by profiling the site, using 
measurements from visible access points (APs), and (ii) for 
location estimation, a client reports back SS measurements 
from visible access points, and these measurements are 
compared against the SS model to locate it. However, many 
enterprises, especially for ease of management (i.e., 
provisioning, security, deployment and maintenance) would 
prefer an infrastructure-based deployment where simple 
sniffers monitor client activity and measure the SS of 
transmissions from clients. With reducing chipset prices, low-
cost sniffers can be built, and they can also provide a platform 
for supporting other monitoring services like security, 
intrusion detection, and QoS measurements. The use of an 
infrastructure-based (i.e., sniffer-based) deployment does raise 
several interesting options and issues that we study here.1 

                                                           
1 Portions of this work were done when S. Ganu was 

visiting Avaya Labs. 

In this paper we present Palantir, an infrastructure-based 
monitoring and location estimation system. We articulate the 
opportunities and challenges raised by such a sniffer-based 
deployment, and present our implementation insights and 
experimental results. A fundamental question we ask is: Is the 
use of sniffers for location estimation adequate, and how does 
it compare to client-based location estimation? We make some 
interesting experimental observations on the system-level 
reciprocity of SS measurements and their impact on location 
estimation, compare client-based and sniffer-based location 
estimation, and study the impact of the location of sniffers on 
location estimation.  

Additionally, most of the recent work in location 
estimation techniques requires a substantial amount of site 
profiling to build their SS models [3][6][7][11]. Changing 
radio environments at a site [5][7] due to environmental, 
building and occupancy conditions affect signal propagation 
models and may require frequent re-profiling. Infrastructure 
changes, e.g., adding/moving access points also adversely 
impact signal strength models. Environments like warehouses 
and malls are especially dynamic. Our experiments reported in 
this paper show the need for adaptation of location estimation 
SS models even in seemingly static environments. Techniques 
for location estimation that do minimal or no profiling [5] will 
be particularly useful in this context; our work described in 
this paper supports such architectures. We also motivate and 
present a new client-assisted approach for location estimation, 
where client terminals, APs, and sniffers collaborate to locate 
the clients in an (infrastructure-mode) wireless network.  

1.1. Related Work 

Prior techniques for model building in location estimation 
include work where each point is mapped to a SS (Signal 
Strength) vector [6] or a SS probability distribution [11]. For 
matching a SS vector to a model, nearest neighbor [6] or 
probabilistic techniques [11] are used. The necessity of model 
adaptation was identified in [5][7], and [5][9] considered 
methods of simplifying model building. Providing client 
libraries and APIs to support client-based deployments was 
studied in [7]. 

 Infrastructure-based approaches using sniffers have been 
proposed [10][16][17], but there is little work comparing them 
with client-based approaches, or understanding the issues 
associated with their use. In [10], the authors discuss a sniffer-
based approach for location in prison environments 
concentrating on the RF hardware used. In particular, the 



nature of their environment was specialized, and there was 
little discussion of issues like channel hopping, number of 
sniffers and their location, profiling and adaptation issues, 
comparing client- and sniffer-based approaches, etc., that is 
the main focus of this paper. We are also not aware of any 
investigation into mixing client-provided information with 
sniffed information for location estimation.   

In Section 2, we present our Palantir system, discussing 
the design of our sniffers in detail. We then present our 
location estimation experimental results in Section 3. Our 
experiments use data from a 6-month period. In Section 4, we 
introduce our model of client-assisted location estimation and 
study its benefits.  

2.  The Palantir System 
We designed and implemented Palantir, an infrastructure-

based monitoring and location estimation system. The Palantir 
system uses sniffers to monitor information about clients, and 
uses the monitored information for location estimation and 
security. In this paper, we concentrate on the location 
estimation aspect of Palantir, which is based on received SS. 

The design of the Palantir system is motivated by the 
LEASE architecture [5] that uses sniffers and emitters in a 
new way for location estimation. The LEASE architecture and 
method requires minimal profiling and automatically adapts 
the SS model used for location estimation when the 
environment changes. The concentration in this paper is on the 
sniffers used to detect clients and the SS of the transmissions 
from the clients. Available sniffing tools (software) [14] are 
mostly monolithic, client-based and do not provide any 
location estimation or remote monitoring capabilities. While a 
basic wireless sniffer is quite easy to build, the aspects of 
using a sniffer for location estimation are intriguing as 
described below in Section 2.1. Our location estimation 
strategy is described in Section 2.2. 

2.1. Sniffers in Palantir 

The sniffers are the main component in Palantir, and are 
built on a single board computer platform with a dual Ethernet 
interface and a PCMCIA slot for a wireless card [15] that 
allows easy deployment. The sniffers operate in a passive 
scanning mode and sense the wireless medium on all or 
predetermined channels. They listen for communication from 
wireless terminals and record and timestamp information. In 
particular, the sniffers capture the management, control and 
data frames and decode information such as the MAC address, 
SSID etc. which is present in the frame header, and also 
extract the received SS from its wireless interface card. 
Currently, we do not decrypt the payload and only look at 
information that is unencrypted in the header. The 
measurements are sent by each sniffer to a centralized 
database, and used for security assessments and location 
estimation. The sniffer’s wireless interface is entirely passive, 
and all communication with the database is through its 
Ethernet interface. The sniffers could either be co-located with 
AP’s or at other positions based on the availability of Ethernet 
jacks and power outlets. Some of the issues we encountered 
while deploying sniffers and using them for location 
estimation are discussed below. 

2.1.1. Asymmetry of signal strength 
While performing experiments with Palantir, we found that 

there exists some asymmetry while measuring SS between two 
devices. Our experiment here involved a sniffer co-located 
with an AP. A client measured the received SS from the AP 
(using probe request responses) while the co-located sniffer 
measured the SS from the client (using packets received), and 
the difference, ∆SS, was computed. (Both client and AP were 
transmitting at the same power level.) With different locations 
of the client, we observed that ∆SS could be as large as 10 
dBm. Some of this discrepancy may be attributed to the non-
simultaneous measurement of SS in the two directions. This 
will still leave a residual asymmetry and any system must be 
resilient to this variation. (We also experimented with 
interchanging the wireless cards between the client and the 
sniffer, and using different types of cards; in all cases, we 
observed asymmetry.) We refer to this as system-level 
asymmetry of SS. It is not clear if this asymmetry affects 
location estimation, which is typically a function of many 
signal strength measurements, and we analyze that later in 
Sections 3.2 and 3.3.    

2.1.2. Number of packets received 
An important consideration in sniffer design is to ensure 

that “typical” client activity can be sniffed. (This is a new 
issue when compared to a client-based system.) More 
importantly, since typical enterprises would use several 
channels (e.g., the three non-overlapping channels in 
802.11b), and sniffers need to measure SS from all radio-
visible clients, they must scan more than one channel. The 
number of packets received at the sniffer depends on the 
sweep rate of the sniffers and the dwell time on each channel. 
Note that for general sniffing, it is sufficient to see one packet 
from a client; for location estimation, seeing more helps a lot 
given the vagaries of SS behavior [6][7][12].  

To study the issue of number of packets seen, we 
conducted a trace-driven simulation. We captured time-
stamped packets from one HTTP and one email transaction; 
typical activities a mobile client would perform. (We did this 
for a VPN and non-VPN access from the client, considering 
current wireless deployment architectures [18], and observed 
similar results.) The transactions were short, and completed in 
approximately 4s (for sending one short email) and 10s (for 
http; here we made a request to cnn.com with all embedded 
images). Assuming that the sniffer was at a random channel at 
the start of the transaction, and the client was at a fixed 
channel, we computed the average and minimum packets seen 
(over several choices for the random channel) for the 
respective transactions. Representative results are summarized 
in Figure 1. 

We observe that (i) when only three channels (e.g., the 
non-overlapping channels in 802.11) are used and need to be 
sniffed for location estimation, typical transactions (like email 
and http) provide enough packets (measured as the average 
and minimum number of packets seen) for SS measurement 
for an appropriate choice of channel dwell time, and (ii) if all 
11 channels need to be sniffed, a specific transaction might 
not get recorded by the sniffers. However, for a “chatty” 
terminal, the probability of the sniffer missing the terminal’s 



traffic will decrease substantially with the number of 
transactions. 

 

Figure 1 Average and Minimum packets received for E-
mail and HTTP traffic 

Motivated by our observations, in our current deployment 
(where only the three non-overlapping channels are used in 
the enterprise), we configured the sniffers to sweep at the rate 
of three channels per second, giving a dwell time on each 
channel of 333 ms. We also have the ability to determine the 
IP address of most clients (e.g., by querying appropriate 
management information bases, MIBs) and eliciting (in most 
cases) packets from the clients in response to a ping. Similar 
actions are possible at the MAC layer also. 

2.1.3. Channel estimation 
Our implementation allows sniffers to be configured to 

sweep through all channels, a few channels or dwell on a 
particular channel. The results from Figure 1 motivate this 
aspect, since having to scan on many channels may result in 
not receiving sufficient packets from a client, unless all the 
sniffers in radio-range of a terminal are tuned to the channel in 
which the client is transmitting. This requires us to know the 
channel on which a client is transmitting. Channel information 
can be determined based on the class of clients targeted.  
“Associated” clients. The channel information is already 
embedded in the beacons (both in infrastructure and ad-hoc 
mode) [2]. A terminal is on the same channel as the AP with 
which it is associated. Thus, we can determine the channel for 
the terminal.  
Other clients. In this case, the terminal is not associated with 
an AP (e.g., is operating in ad-hoc mode, or is a rogue of some 
sort). Since the adjacent channels of 802.11b are overlapping 
[2], we observed that the sniffers are able to receive and 
decode packets correctly even +1 channel on either side of the 
actual channel on which the terminal dwells. In this case, the 
sniffer uses a heuristic of estimating the client’s channel to be 

the one on which it records the strongest signal strength. We 
observed that in most cases our heuristic works; however, and 
interestingly, it is not perfect (i.e., the strongest signal is 
occasionally seen from an adjacent channel). We hope to 
study this issue in more detail later. Our current work 
emphasizes associated clients.  

2.1.4. Location of  the Sniffers 
The location of sniffers will likely be dictated by location 

of power outlets and/or Ethernet jacks (since power over 
Ethernet is supported in our sniffers). However, if there are 
several choices for sniffer placement, which ones should be 
chosen? Co-locating sniffers with APs is a definite possibility, 
but is there a benefit in not doing so? We investigate this 
experimentally in Sections 3.4 and 4. We note that APs are 
usually deployed for coverage with some (minimal) overlap, 
and not to ensure location estimation which typically requires 
a view of multiple APs at any point on the floor. We have also 
observed sites with APs deployed linearly, leading to obvious 
ambiguity in location estimation. We expect that 
administrators would prefer to deploy passive sniffers rather 
than additional APs. While deploying sniffers “far away” from 
APs could technically lead to some packets getting lost due to 
hidden station problems, we have not noticed in our 
experiments any discernible issues due to this.  

2.2. Location Estimation via SS in Palantir 

The location estimation technique in Palantir is based on the 
one in [5], and is summarized in this section. Specifically, the 
floor of the building is divided into (3ft × 3ft) grids, the 
received SS data from the profiled points at each sniffer is 
smoothed and local bivariate interpolation (using Akima 
splines [1]) is used to estimate the SS at the center of each 
grid.  Putting together the estimates for all sniffers provides a 
SS vector at each grid center, or the model. A client’s received 
SS at each sniffer is compared against this model using nearest 
neighbor search [6] to get the estimated location of the client. 
The technique allows for an SS model to be built with very 
few profiled points; these profiled points are expected to be 
uniformly distributed on the floor of the site.  We also peg 
signal strength from below at a small value s (-92dBm), i.e., 
the absence of SS is interpreted as a SS of s. We note that in 
LEASE [5], by deploying stationary emitters at the points 
where profiling is desired, the most current SS model can be 
adaptively and automatically built. 

3. Location Estimation Experiments and Results 

3.1. Experimental setup 

The experiments reported in this paper were performed at a 
site we refer to as BR over the course of 6 months. Site BR 
measures 225ft × 144ft and has five deployed APs (the 
diamonds in Figure 2). We used five sniffers in our 
experiments, and a client (IPAQ running Linux). We 
experimented with two different sniffer deployment locations 
(co-located with APs, shown using the squares, and a 
“diamond” configuration, shown using the triangles in Figure 
2). We experimented with SS data collected using client-and 
sniffer-based profiling, where the profiling was done in the 
“open” areas of the building. Note that the diamond 
configuration has two sets of three collinear sniffers; in 



normal deployments, such collinearity will be avoided, but in 
our experiments we gain valuable insight with such a scenario. 

 
 
 
 
 
 
 
 

 

 

 

Figure 2 Site BR, and placement of APs and sniffers. 

When profiling, we took several measurements at different 
points on the floor, and at every point the following steps were 
taken:  

• Measure the signal strength from the access points at the 
client and record it as a client reading (x, y, client ss-
vector) 

• Generate and send a short burst of packets from the client. 
The sniffers then record the signal strength from this 
client and report to a database with a timestamp. This 
comprises the sniffer reading (x, y, sniffer ss vector) 

We broadly grouped the data sets into three categories: Set 
A (original data) had only client readings, Set B (data taken 
about 4 months later) had client and sniffer readings with 
sniffers co-located with APs, and Set C (data taken about 5 
months later) had client and sniffer readings with the sniffers 
in the diamond configuration. Unless otherwise specified (e.g., 
as in Section 3.5), each result represents experiments using 
data from one set; we note that the conclusions presented here 
largely hold independent of the data set used. In all cases, the 
data used for testing location estimation was always different 
from the one used to build the model. (The technique for 
model building and location estimation was summarized in 
Section 2.2.) In our results presented below, the estimation 
error is the median error (chosen for easy comparison with 
prior work), and the error is depicted as a function of the 
number of profiled points. In effect, the points chosen to build 
the model were chosen as close to be as uniformly spaced as 
possible on the floor, from the data in the model-building set.  
A client-based model refers to a model built using client 
readings, and a sniffer-based model refers to a model built 
using sniffer readings. Similarly, the tests are referred to as 
client-based tests and sniffer-based tests depending on the 
readings used.  

Several experiments were run using different combinations 
of the collected data. The following sub-sections describe in 
detail the various experiments performed and their results. 

3.2. Comparing Client and Sniffer-based approaches  

We compared the performance of a client-based approach 
against a sniffer-based approach for location estimation; the 
sniffers were co-located with the APs. As shown in Figure 3, 
we see that both client and sniffer-based approaches perform 
comparably. The result is quite interesting when taken in 
conjunction with our observations from Section 2.1.1, and 
raises the question of whether interchanging the SS models 
(i.e., using a client-based model for sniffer-based testing) 
would work. We study this below in Section 3.3. 

 

Figure 3 Client vs. sniffer-based location estimation; Data: 
Set B. 

We would like to re-iterate here a result from [5], also 
shown by Figure 3 that the technique from Section 2.2 
provides very good location estimation in absolute terms with 
very little profiling. In particular, we note that the median 
error of 14.3-10.3 ft with 15-24 profiled points is better than 
reported in prior work [6] using comparable profiling. Note 
also that the area of site BR (approx. 32000 sq. ft.) is much 
larger than the site in [6] (approx. 10500 sq. ft.).  

3.3. Asymmetric profiling and testing 

 

Figure 4 Mixing client- and sniffer-based profiling and 
location estimation; data: Set B 



We determined the location estimation accuracy when a 
client-based model is used for sniffer-based testing and vice-
versa. In this case (data from set B), the sniffers and APs were 
co-located. As shown in Figure 4, we found that in mixing the 
two techniques, there is a discernible degradation in the 
performance. This seems reasonable when taken in 
conjunction with the observation from Section 2.1.1 that from 
a “system” point of view, SS measurements are not always 
reciprocal. Figure 4 suggests that symmetry is recommended 
in approaches for profiling and location estimation; i.e., use a 
client (sniffer)-based model when locating using a client 
(sniffer)-based approach. 

3.4. Location estimation errors vs. location of sniffers 

As noted in Section 2.1.4, where we locate sniffers could be 
an important issue, and we may not co-locate sniffers with 
APs depending on AP placement and coverage. In this 
context, we placed the sniffers in two different configurations, 
the co-located and diamond configurations (See Section 3.1). 
Table 1 shows “visibility”, i.e., the percentage of profiled 
points seen by k sniffers, as a function of k, the number of 
sniffers that see points.  

Number of sniffers, k   
Case 0 1 2 3 4 5 

Co-located 0 13.2 18.4 46.0 22.4 0 
Diamond 0 0 6.8 20.2 33.7 39.3 

Table 1 Percentage of profiled points seen by k sniffers. 
We observe that the diamond configuration seems to have 

more visibility in that more profiled points are seen by more 
sniffers. Figure 5 shows the sniffer-based location estimation 
results for the two configurations.  

 

Figure 5 Performance with two different sniffer 
placements; data: Set B (co-located), Set C (diamond). 

We find that the co-located configuration performs a little 
better than the diamond configuration in our experiment, 
likely due to the obvious ambiguity in some estimates 
introduced by the collinear sniffers in the diamond 
configuration. We note that more sniffers seeing a point need 
not always directly translate to better location estimation. The 

non-co-located (diamond) configuration, however, has 
additional benefits that we explore later in Section 4. 

3.5. A Case for Adaptation: Using an older Model 

We used client readings from our three sets of data for this 
experiment. We used a model built using an earlier data set 
against test points collected more recently. As shown in Figure 
6, we found that the median error results are substantially 
higher for the cases where the tests were performed using 
models that were built much earlier, especially when the 
number of points used for profiling is larger. Interestingly, 
when using an older profile, the error seems to “level out” and 
not go down with increased profiling.  

 
Figure 6 Using an older profile for location estimation. 
Data set A > B > C, where “>” means “older than”. 

This seems to indicate that the radio model does change 
over time. The result may be considered a little surprising, 
since our site is not very dynamic (unlike a mall, restaurant, or 
warehouse, for example), but does see changes in its 
occupancy amount at different times. We conclude that the 
model needs to adapt to changes in the environment in order 
to have reasonable accuracy in location estimation. Our 
techniques facilitate easier adaptation since they require 
minimal profiling without compromising location estimation 
accuracy.  

4.  Client-Assisted Location Estimation 
In this section, we study an interesting twist to the location 

estimation deployment problem. Consider that we profile and 
build an SS model using the sniffer readings and also for the 
APs, using the client readings. As described earlier in this 
paper, the sniffers report the SS measured from client 
transmissions. Additionally, assume that the client also reports 
the SS seen from the APs (e.g., using appropriate APIs [7]). 
How much additional benefit is gained by using the 
information from the clients? We refer to this architecture in 
which the sniffers locate clients, but where the client helps in 
its location by providing SS readings from visible APs as 
client-assisted location estimation.  Clearly, client assistance 
has particular relevance when the sniffers are not co-located 
with the APs. 

To experimentally study the benefit of client-assistance, we 
took the data from Set C and melded the client and sniffer data 



appropriately. In particular, we created a vector of size 10 for 
each profiled point corresponding to the 5 sniffer readings and 
the 5 client-based readings. We built a model using this data 
set and tested against an appropriate test set, where each point 
in the test set also had a SS vector of size 10, with 5 sniffer 
readings and 5 client-based readings.  

Figure 7 shows the results of the experiment. We see that 
there is a significant advantage in client-assistance, with an 
improvement in median estimation error of a few feet.  

 
Figure 7 Client-assisted location estimation; data: Set C. 

Figure 7 can also be interpreted somewhat loosely as the 
improvement observed with increasing the number of sniffers 
(or the number of APs if one were to use a fully client-based 
deployment.)  In particular, client-assistance with 5 APs and 5 
sniffers is (using the intuitions from Sections 3.2 and 3.3) 
almost like having 5 sniffers co-located with the APs in 
addition to the existing 5 sniffers. We note some interesting 
aspects though. Many applications would likely require 
location estimation that is adequately provided by just the 
sniffers (5, in our case), and this can be achieved with no 
client changes or involvement. For other applications that 
require more precision, client-assistance can be used. Sniffers 
provide monitoring benefits in addition to location estimation, 
and will likely be deployed in enterprises.  Hence, client-
assisted infrastructure-based location estimation architecture 
will provide the benefits of both worlds.  

While the result from Figure 7 may at first glance seem to 
contradict an observation in [7] where the authors suggest that 
there is little advantage in going over 3 APs, we note that all 
location estimation results are dependent (at least) on the size 
of the site. While we also expect diminishing returns with 
more sniffers, we believe that with larger sites, increasing the 
number of sniffers proportionally might help. 

5. Conclusion 
In this paper, we have studied practical issues in 

infrastructure-based deployment for location estimation in 
WLAN networks. Using sniffers to monitor clients and a 
signal-strength based model for location estimation, we have 
discussed several issues in sniffer implementation, including 
reciprocity of signal strength, number of packets expected to 
be seen by the sniffers, location of sniffers, etc. Through 
detailed experiments using data collected over a period of 6 
months, we have demonstrated that a sniffer-based approach 

to location estimation is both feasible and desirable, provided 
certain rules (described in the paper) are followed. We have 
seen good location estimation with minimal profiling. We 
have also shown that having a sniffer-based approach where 
the sniffers are not co-located with APs, and where clients 
assist in their location enables an interesting client-assisted 
location estimation strategy that provides good estimates of a 
terminal’s location.  
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