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Abstract—In this paper, we present LEASE, a new system and 
framework for Location Estimation Assisted by Stationary 
Emitters for indoor RF wireless networks. Unlike previous 
studies, we emphasize the deployment aspect of location 
estimation engines. Motivated thus, we present an adaptable 
infrastructure-based system that uses a small number of 
stationary emitters (SEs) and sniffers employed in a novel way to 
locate standard wireless clients in an enterprise. We present the 
components of the system and its architecture, and new non-
parametric techniques for location estimation that work with a 
small number of SEs. Our techniques for location estimation can 
also be used in a client-based deployment. We present 
experimental results of using our techniques at two sites 
demonstrating the ability to perform location estimation with 
good accuracy in our new adaptable framework.  

Keywords- Location estimation, enterprise wireless, 802.11, 
deployment, adaptation, sensor networks, experimentation with real 
networks/testbeds, system design. 

I.  INTRODUCTION 
With the increasing use of wireless networking, especially 

802.11-based wireless systems in enterprise networks, the 
thrust now is to develop services that provide more than 
untethered network access. An important class comprises those 
services that use end-user location information. Such services 
include location-aware content delivery, emergency location, 
services based on the notion of closest resource, and location-
based access control. Techniques that can estimate location in 
indoor environments, preferably without client changes, are 
important to enable such services in enterprises. Traditional 
GPS methods cannot be used for this location estimation since 
they have problems working indoors. 1 

In typical wireless deployments in an enterprise, a site is 
served by several access points (APs). Client devices associate 
with an access point to obtain connectivity. Some services 
(e.g., services based on the notion of closest resource) might 
work with a gross estimate of user location, such as to which 
AP the user is connected. However, other services require more 
fine-grained estimates of location. 

                                                           
1 Portions of this work were done when S. Ganu was visiting 
Avaya Labs Research.  

Indoor wireless LAN (WLAN) location estimation can 
employ one of several physical attributes of the medium for 
estimation. The typical features that might be used are: the 
received signal strength (RSS) of communication, the angle of 
arrival of the signal, and the time difference of arrival. Among 
these, RSS is the only feature that is measurable with 
reasonably priced current commercial hardware. Related efforts 
[4, 5, 7, 14, 15, 19, 20, 25] have used RSS for location estimation 
and concentrated on locating a user in two-dimensional space, 
e.g., a point on one floor of a site. They have also demonstrated 
the viability of using RSS for the location estimation problem. 

Most previously published techniques for WLAN location 
estimation (discussed in more detail in Section II) operate in 
two phases: a model building offline phase, and an online 
phase when estimation is performed. The model constructed in 
the offline phase is, essentially, a map of signal strength 
behavior at the site. The model is either constructed using 
many measurements at the site, or is parametric and depends on 
several variables like type and number of walls and other signal 
obstructors. In the online phase, a set of signal measurements is 
mapped to a location after “consulting” the model. The 
accuracy of estimation depends on the technique used to build 
the model, and the algorithm used to match the measured signal 
strengths to the model.  

The deployment of location estimation systems can be done 
in one of two ways: in a client-based deployment [4, 5, 29], the 
client, in the online phase, measures the signal strengths as seen 
by it from various APs. This information is used to locate the 
client. The cost to an enterprise for such deployments is the 
cost of managing the client devices, profiling the site, building 
the model, and maintaining the model. In a traditional 
infrastructure-based deployment [7, 28, 30], the administrator 
deploys simple sniffing devices that monitor clients and the 
signal strength from clients. This sniffed information is used to 
locate the clients in the online phase. The cost to enterprises in 
such deployments is the cost of deploying the necessary 
hardware and software, the time and effort to build the model 
(if it is not completely automated), and the cost of maintaining 
the model (if it cannot be automated). For ease of management, 
including provisioning, security, deployment and maintenance, 
we believe that enterprises would prefer an infrastructure-based 
deployment, especially if building and maintaining the model 



can be automated.  Client-based systems [16, 20] may offer 
more privacy than infrastructure-based systems.  

Most previous work either has concentrated on pure client-
based solutions that require no additional site hardware, basic 
infrastructure deployments that use sniffers, complex custom 
hardware for location estimation, or has not addressed the issue 
of deployment and maintenance. Another important issue that 
has not been studied extensively is the cost and complexity of 
building and maintaining the model. As pointed out in [5], even 
in normal office environments, changing environmental, 
building, and occupancy conditions could affect signal 
propagation models. Static models may not be suitable for 
other dynamic location estimation environments like 
warehouses and malls. Infrastructure changes, e.g., adding, 
removing or moving APs, may also require model rebuilding. 
Using purely static techniques for building models make the 
models difficult to maintain and update. As is also pointed out 
in [20], techniques that profile the site extensively involve a 
steep upfront cost and effort to deployment, and add 
significantly to the complexity of maintaining the model. In 
this context, simple non-parametric models are preferable that 
can be built with little or no profiling and achieve location 
estimation accuracy comparable to techniques that profile the 
site extensively. 

Over the past few years, chipsets for several wireless (e.g., 
802.11-based) devices have become very cost-effective. An 
adaptive infrastructure-based solution that can be built with off-
the-shelf components and chipsets would be significantly 
beneficial. In this paper we present such a system, LEASE, that 
uses stationary emitters (SEs) and sniffers in an interesting way 
to provide an infrastructure-based location estimation solution 
for enterprises. The sniffers in LEASE can additionally be used 
for other administrative and management applications like 
security monitoring [28, 30], QoS measurements [9], etc., 
allowing their cost to be further amortized. The deployment 
model of LEASE, as we will see, allows for quick bootstrap 
and self-updating, helping to solve many of the problems 
discussed earlier. 

Our deployment model motivates a location estimation 
problem with a twist: expressed in terms of previous work in 
this area, the problem translates to being able to do location 
estimation with accuracy but minimize the amount of profiling.  
Instead of using radio propagation models that are inherently 
parametric, we present in this paper new non-parametric 
modeling techniques for building our model used for location 
estimation, and simple decision methods for floor 
determination. We present detailed experimental results with 
our technique at two multi-floor sites, and show that users can 
be located with accuracy comparable to other published 
techniques that extensively profile the site. Additionally, our 
experiments use larger sites than reported in earlier literature. 
We also introduce the notion of an effective normalized error 
metric that models many aspects of the location estimation 
problem and evaluate the performance of different approaches 
to location estimation using this metric. 

II. RELATED WORK 
As pointed out in Section I, related work in the area of 

indoor location estimation has concentrated mostly on 
algorithms for location estimation as opposed to the 
deployment and maintenance criterion. The location estimation 
techniques in a wireless network can be broadly classified 
based on the methods used to build models and the methods 
used to search the models in the online phase. For building 
models, most techniques profile the entire site and collect one 
or more signal strength samples from all visible APs at each 
sample point.  The collected information is the model where 
each point is mapped to either a signal strength vector [4, 14, 15, 
19] or a signal strength probability distribution [6, 18, 22, 25]. 
Such profiling techniques require considerable investment in 
building the model. Furthermore, if the environment changes 
[5], the profiling will need to be repeated. Alternatively, a 
parametric model that uses signal propagation physics and 
calculates signal degradation based on a detailed map of the 
building, the walls, obstructions and their construction material, 
has been proposed [17] and used for location estimation [4]. 
Obtaining detailed maps of the building and its changes over 
time is, however, a hurdle that needs to be overcome for the use 
of this method. 

In the online phase, nearest neighbor based methods [4, 15] 
or probabilistic techniques to match a presented signal strength 
vector to the model [22, 25] are used.  

 The complexity of building the model was identified in [5, 
20]. It was tackled to some extent in [20] where a specific 
circularly symmetric functional relationship between signal 
strength and distance was generated empirically for their site. 
In practice, the measured signal strength contours are usually 
anisotropic. Our approach for modeling the signal map, as 
described in Section IV.A, is very different and automatically 
models artifacts of buildings like corridors and office areas. In 
[20], the authors emphasize a client-based location model and 
raise interesting privacy issues in location-based services. We 
expect that in enterprises, based on current privacy policies 
used for other electronic transmissions like email and web-
access, the preference would be for an infrastructure-based 
solution [28, 30]. If privacy is desired, in our case, on entering 
a site a client device could download the model for that site and 
use it to determine its own location. As mentioned in [20], 
client-based approaches must also be concerned about the 
power requirements on the client devices that are inherently 
power constrained. 

Sniffing for clients to provide an infrastructure-based 
system has been proposed [7, 23, 24, 28, 30]. Pure sniffing [7, 28, 
30] does remove the dependence on specialized client software, 
but does not allow for self-adjusting models, something we 
achieve with the use of our SEs and sniffers and a location 
technique designed to operate under these constraints. Custom 
sensors have been used for location estimation in other 
interesting ways [16, 23, 24]. In [23] and similar systems, infra-
red (IR) wireless technology is used; IR technology has limited 
range and hence has not become very popular. In [16], a 
decentralized (client-based) approach using time difference of 
arrival between ultrasound and RF signals from custom sensors 
is used for location estimation. The system in [24] uses 



expensive custom RF-based hardware for location estimation, 
and an approach based on time difference of signal arrival, 
which is inherently more expensive to measure. In contrast, our 
self-adjusting system, LEASE, is easier to bootstrap, is based 
on RSS and can be built with off-the-shelf components. Recent 
advances in sensor technology [11] and projected decrease in 
the manufacturing cost allow us to provide a cost-effective 
solution in the LEASE system.  

We would like to acknowledge that in some scenarios it is 
possible that a client-based approach with full profiling is 
adequate (e.g., smaller sites with conditions where the model 
rarely changes). Our emphasis in this paper is on enterprise 
sites that require easier manageability, the ability to update 
models automatically, and to achieve location estimation from 
an infrastructure deployment. 

III. THE LEASE SYSTEM 
The LEASE system employs three main components: the 

stationary emitters (SEs), the sniffers, and the location 
estimation engine (LEE). In Figure 1 we show a possible office 
site floor with some access points (APs), SEs and sniffers. The 
location estimation engine can be anywhere in the network.  

 

 

 

 

 

 

 

 

 

 

Figure 1. A possible office site with components of the LEASE system. 

 
The SEs in the LEASE system architecture are standard, 

inexpensive wireless transmitters that send a few packets 
occasionally. The packets are meant for the sniffers, as 
described below in this section. These SEs have very small 
form factors and could be battery operated. These SEs do not 
need network connectivity either. At a few packets every hour, 
for example, the duty cycle for such SEs is extremely low. The 
SEs must, clearly, use the same RF technology as the clients 
being located. 

The sniffers sniff on the wireless medium, cycling through 
the available (or, required) frequencies, and listen for all 
communication from wireless clients and SEs, recording the 
RSS from the clients and the SEs. The recorded information is 
sent to the LEE. The LEE, as we will see later in Section IV.A, 
also needs the coordinates of the SEs. The SEs can be 
configured with their location identity as an (x, y) coordinate, 
before being deployed at that location and the packets sent by 

the SE could include its coordinate information in the payload.  
Alternatively, the identity of the SE (e.g., its MAC id) can be 
mapped to the SE's location via a table maintained at the LEE 
or the sniffers. We expect the sniffers to be fewer in number, 
presumably on the order of the number of APs. The sniffers do 
not have to be co-located with the APs. We assume that the 
sniffers are connected to a power source and have network 
connectivity to the LEE. This network connectivity could be 
through a wired medium, or the sniffers could operate as a 
wireless ad-hoc network. The sniffers could also act as a 
transparent bridge between the AP and the rest of the network. 
Note that the sniffers can additionally perform the tasks of an 
SE in LEASE, and so the total number of SEs in the system is 
really the number of pure SEs plus the number of sniffers 
deployed. 

A detailed description of the LEE and our techniques for 
location estimation appear in Section IV. Broadly speaking, the 
LEE does two activities: i) it collects from all sniffers the RSS 
from the SEs and the coordinate information of the SEs (or 
their ids and maps the ids to coordinate information). The LEE 
uses this information to build, and refine if needed, its signal 
strength model for location estimation, and ii) when a client 
needs to be located or tracked, the LEE uses the signal strength 
information from the client as recorded by all the sniffers, in 
conjunction with the model, to locate the client.  

We note that the terms SEs and sniffers as used in the 
LEASE system may have some similarity to sensors [11] and 
clarify the possible relationship here. The SEs as they appear in 
LEASE are also small, lower-power devices like sensors, but 
do not “sense” anything specific. They could, however, record 
information such as the noise level at their location, and pass it 
along in their transmitted packet. More importantly, if sensors 
are already deployed in an enterprise for other purposes, these 
sensors can serve the purpose of SEs for LEASE. We would 
like to emphasize that all that the SEs are used for is to transmit 
a few packets every so often. The detection of the packets at 
the sniffers allows RSS to be measured, which is what the 
LEASE system needs. Additionally, the sniffers in LEASE 
look like “traditional” sensors; however, they are more 
communication-intensive, require more power and may never 
transmit wirelessly, depending on the deployment 
requirements. Notice that, given our emphasis on easier 
deployment, with our SEs and the LEASE system, we have 
deliberately not introduced the notion of antenna orientation as 
in [4]. However, the system model does not limit one from 
using mechanical techniques to continually re-orient SEs and 
pass the orientation information in the payload of the SE's 
packet, or place multiple SEs at a location with oriented 
antennas.  

We now make some interesting observations regarding the 
LEASE system and previous client-based location estimation 
techniques. 

A. Observations Regarding the LEASE System 
A fundamental aspect of signal propagation taken for 

granted is the reciprocity of received signal strength [13]. 
Specifically, if stations A and B transmit to each other with 
equal power, the RSS as seen by A for transmissions from B is 

AP: SE: Sniffer: LEE:



essentially the same as the RSS as seen by B for transmissions 
from A. (This is not true for other local metrics like noise.) We 
further assume visibility, i.e., when a client needs to be located, 
packets sent by the client are viewed at the sniffers within 
range. We can elicit a transmission from a client via IP-based 
methods (e.g., a ping), or sniff the acknowledgment frames for 
MAC-layer transmissions. Visibility is necessary for 
infrastructure-based deployments.  

Let S be the set of SEs and let N be the set of sniffers in 
LEASE. Let A be the set of access points. The set A includes all 
APs used by clients in their location estimation computation. 
Let L(S), L(N), and L(A) denote the set of locations of the SEs, 
sniffers and access points respectively. 

Observation 1. Consider a client-based technique CT that only 
uses RSS for location estimation, and that uses model M(t) for 
its location estimation at time t. Reciprocity and visibility 
imply that the LEASE system with S=φ, where the LEE uses 
model M(t) for its location estimation at time t, is equivalent to 
CT if L(N) = L(A).  

Observation 1, intuitively understood even before, implies 
that the LEASE system can provide an infrastructure-based 
deployment without any SEs for currently proposed client-
based techniques.  

We now make a stronger observation about adaptive 
models. Let X be the set of points at which a profiling-based 
technique collects RSS samples to build its model for location 
estimation, and let L(X) be the set of locations of these points. 
Let T be the set of times at which RSS values are computed to 
build and rebuild a model, e.g., as suggested in [5]. We assume, 
as in prior work that the profiling techniques only measure RSS 
from the APs in A. This leads to the following observation. 

Observation 2.  Reciprocity and visibility imply that the 
LEASE system is at least as good as a profiling-based system 
when L(S) = L(X), L(N) = L(A) and the SEs in S transmit 
packets at time t ∈ T. 

Observation 2 implies that deploying the SEs and sniffers 
provides an easy way to build adaptive models. The model 
adaptation time interval affects the duty cycle and hence the 
power consumption of the SEs.  

Since parametric location estimation techniques have 
inherent problems with maintenance and bootstrapping, we 
concentrate on non-parametric models. The novel deployment 
and adaptation model of the LEASE system presents an 
interesting location estimation problem: can we develop non-
parametric techniques for location estimation that do not 
compromise on the quality of location estimation but minimize 
the number of SEs required. Based on Observation 2, we can 
also cast the problem as follows: Can we develop a profiling-
based location estimation technique that reduces the amount of 
profiling needed? We discuss this issue and present our LEE in 
the next section. 

IV. LOCATION ESTIMATION IN THE LEASE SYSTEM 
The location estimation engine (LEE) in the LEASE system 

builds and refines its model based on RSS as seen at the 
sniffers for packets received from a few SEs that are placed at 

known locations. When a client needs to be located, the LEE is 
presented the RSS for a client as seen by the set of sniffers. The 
LEE estimates the client's location by “matching” the presented 
RSS vector with the current model. We now discuss the 
method used to build the model, the criterion for rebuilding the 
model, and the method used to match a client's RSS vector with 
the model. Another issue we discuss is where to place the SEs 
and sniffers.  

A. Building the Model in LEE for a Floor at a Site 
The traditional physics-based technique to model signal 

strength has been to understand variation of RSS with distance 
from the signal source. Fundamentally, this approach is 
complicated in indoor environments due to multi-path 
propagation and signal attenuation due to obstructions such as 
walls. We use a propagation model-agnostic approach to the 
modeling problem. We cast the problem of mapping the signal 
strength at the site as a pure data-modeling problem where the 
RSS from the SEs provide a sample of the data set.  

We model the RSS as a function of the coordinates of the 
SEs at a site. This allows us to automatically handle any 
anisotropy that may be present in the data.  

We build a model for each sniffer independently as follows. 
The first step is to smooth the data points, e.g., using a 
generalized additive model (GAM) [12].  In some cases, e.g., 
when we have very few SEs that are far apart, it might not be 
necessary to smooth the data and we could skip this step. 

In the second step we generate a synthetic model. This is 
motivated by our interest in allowing our system to be able to 
use many of the intuitions from previously published literature 
for matching a client's RSS to the signal model in the online 
phase [4, 6, 15, 19, 20]. This includes both deterministic and 
probabilistic matching techniques. We divide the site into small 
grids (e.g., grids of 3ft × 3ft cells). Using Akima splines [1, 2, 
3], we interpolate the smoothed values obtained from the GAM 
to estimate the RSS at each grid center. The Akima spline 
interpolation technique [1, 2] does a bivariate interpolation and 
is a local, triangle-based technique with many desirable 
properties including local containment of discontinuities. Our 
synthetic model for the specific sniffer is the generated RSS-
grid information with an estimated RSS for each grid point. 
Notice that the location of the sniffer is not needed to compute 
our model, only the coordinates of the SEs and the RSS from 
the SEs. 

We repeat the above technique for each of the n deployed 
sniffers. At the end of this process, we have a set of grids for 
the site, where each grid has an associated n-vector of 
estimated RSS. From the point of view of previous work, this 
n-vector corresponds to the profiled RSS from each AP as seen 
at each grid point, assuming the APs and sniffers are co-
located. 

When building the model, we use data from all SEs. In 
particular, if we do not see a signal from an SE, we peg that 
SE's reading at some small value (e.g., -92 dBm). Our 
modeling technique automatically uses and folds this pegged 
value into the synthetic model that is built. We believe and 
notice in our experiments that this confirmed absence of a 



signal is useful in location estimation since, intuitively, this 
absence does narrow down the search area by indicating that 
the point in question is far away from the sniffer.  

Prior experimental work has concentrated on situations 
when a client sees all APs involved in the experiment. Usually, 
this has meant that at least three sniffers can see every point, or, 
alternatively, every point can see at least three APs. While such 
a deployment helps, most sites may not be engineered this way. 
We note in this context that most network managers would be 
more comfortable deploying additional (mostly passive) 
sniffers to facilitate location estimation rather than deploy 
temporary APs or relocate APs and deal with channel overlap 
issues. From the viewpoint of a network administrator, a sniffer 
is just like a (slightly special) client, and hence, easier to 
manage. 

B. Re-building the Model in LEE  
Previous work and our measurements clearly verify that 

RSS at a point follows a log-normal distribution with a 
standard deviation σ that can be estimated for the site by the 
sniffers. We rebuild the model when at least one sniffer 
observes an RSS from any SE that consistently exhibits a 
statistically significant deviation. The deviation is measured 
during every measurement cycle. Note that, with this approach, 
a model will be rebuilt if an SE or sniffer is moved, or the 
environment changes significantly.  

C. Locating the Client in the Online Phase 
In our current approach, to locate a client in the online 

phase, we use the RSS for the client from all sniffers first to 
map the client to a floor at a site. We then match the RSS as 
seen by the sniffers on the mapped floor to the model for that 
floor to locate the client.  

1) Mapping the Client to a Floor at a Site 
Since a typical floor attenuates a signal significantly, it has 

been traditionally assumed [5] that determining the floor at 
which the client is located should be straight-forward. We 
employ the following simple majority logic-based heuristic for 
locating the floor where the client is located: Sniffers are 
grouped by floor. On being presented a vector of the RSS from 
the client at all sniffers, we sort the vector and use a modified 
majority logic. We find the smallest m such that the following 
holds: i) Majority Rule: A majority of the sniffers from which 
we see the m strongest signals are in the same floor F, and ii) 
Stability Rule: Adding f(m+1) dB (in our case, we use f(.) = 
5dB) to the m+1th signal does not change the decision. We 
declare the client to be in floor F. We refer to the quantity m as 
the decision depth.  

2) Matching  the Client RSS Vector to the Floor's Model 
We use two variations of the nearest-neighbor algorithms 

for matching the received client RSS vector to the model: the 
Full-NNS, and the Top(k)-NNS. Nearest neighbor techniques 
have been shown to work well in prior work [4, 15]. Note that 
our synthetic model generation approach was used to generate 
a model for which known techniques for model matching can 
be used more easily. 

Full-NNS. In this technique we match the entire RSS vector as 
seen from the client to the RSS vectors at each synthetic grid 
point to find the closest match. 

Top(k)-NNS. In this variation, we consider only the top k RSS 
from the client. Let these k RSS values correspond to sniffers 
n

1
,n

2
,…,n

k
. We match the client's RSS k-subvector with the 

corresponding k-subvector of only those grid points where the 
sniffers with the top k signal strengths are n

1
,n

2
,…,n

k
. The 

quantity k is typically small, e.g., 3. Clearly, Top(|N|)-NNS = 
Full-NNS, where N is the set of sniffers.  

Intuitively, if the absence of a signal is not very useful, or 
only the top 3 RSS at a location make a difference in location 
estimation, then Top(3)-NNS would perform comparably to (or 
better than) Full-NNS. We note that many other techniques 
proposed in prior work can be used or adapted to locate the 
client in the online phase in the LEASE system.  

D. Placing the SEs and Sniffers 
1) Determining the Number and Placement of SEs 

Having at least a certain number of SEs and where we place 
the SEs are important issues. Recall from Section III that 
sniffers can also double up as SEs.   

The SE placement and number of SEs needed are, 
intuitively, related to the technique used to build the model. 
Our model is built using a combination of smoothing and two-
dimensional Akima splines as described in Section IV.A. For a 
bi-cubic spline approximation, at least seven points are needed 
for reasonable smoothing. This implies that a sniffer should see 
at least seven SEs. (More than one sniffer may see a given SE.) 
In general nonparametric regression estimation, the best 
possible convergence rate is attained when the design points 
are equidistributed [21]. We use an engineering solution to the 
problem of SE placement in this paper. In our case, we divide 
the floor of the site into approximately equal area sub regions 
such that at least seven sub regions are in the range of a sniffer. 
We install an SE as closely as possible to the center of the sub-
region. In Section VI, we provide experimental results that 
shed some intuition on how the accuracy of estimation varies as 
a function of the number of SEs. 

If smoothing is done using GAM, it helps if the SEs present 
a large number of distinct x and y coordinates; something that 
can be achieved with simple subdivision and perturbation 
techniques, or line sweep methods. An interesting optimization 
problem in this context is to optimize the number of SEs while 
keeping them as far apart as possible and maximizing the 
number of x and y coordinates presented. Further discussion of 
this problem is beyond the scope of this paper.  

2) Placing the Sniffers 
From an engineering and deployment point of view, it 

makes most sense to first deploy the sniffers at locations in the 
site where there are access points. The AP locations are also 
typically ones that have both power and network connectivity. 
One or two additional sniffers, or sniffers not collocated with 
the APs might sometimes be needed to ensure that sniffers, for 
example, are not collinear. Note that if the APs are later moved 
for coverage reasons (or additional APs are added for QoS 
reasons), the sniffers do not have to be changed or moved. 



However, moving the sniffers or SEs will automatically create 
new models for the site.  

V. EXPERIMENTAL METHODOLOGY 
In this section, we present our initial observations in 

building a prototype of the components of the LEASE system, 
and the experimental methodology used to study the location 
estimation engine (LEE) in the LEASE system. 

A. Prototype and Initial Observations 
We built a prototype of a sniffer on an embedded platform 

[27] running Linux, using standard publicly available wireless 
extensions [31] with our own modifications. General 802.11-
based sniffers [26] for Linux are quite popular. While the 
sniffers can also be adapted for use as SEs, we propose that 
simpler devices based on other sensor-related platforms [11] 
can be adapted to serve as SEs in the LEASE system. 

We experimentally verified the reciprocity and visibility 
(see Section III.A for a definition of these terms) of signal 
strength. For visibility, we observed that the sniffers need to 
dwell on a channel for some amount of time (e.g., 350-500ms) 
to sense a reasonable number of terminals per channel. To 
measure the signal strength of a terminal/SE's transmission, a 
sniffer needs to receive one (or preferably more) packet(s) 
while dwelling on that channel. A reasonably chatty terminal 
will automatically satisfy this requirement. In particular, we 
noted that if the sniffer cycles through 11 channels, even four 
ping packets sent by the terminal spaced  one second apart 
were enough for recording the terminal's presence and its RSS. 
In practice, a sniffer may cycle through only the three non-
overlapping channels used in the enterprise. Our SEs would 
send several packets in a short space of time before sleeping 
until the next transmit cycle and will easily satisfy the visibility 
requirement. We expect that this activity would require 
relatively low duty cycle and hence will not be a drain on the 
SE's battery. More information related to the practical issues in 
designing and deploying  the sniffers is discussed in [8]. 

B. Experimental Study of the LEASE System's LEE 
An important aspect of the LEASE system is its location 

estimation engine. Our experimental studies are designed to 
evaluate the quality of location estimation of LEE and its 
dependence on the number of SEs used.  

For our experimental study, we use the intuition from 
Observation 2 in Section III.A to perform a client-based study 
that lower bounds the performance of the LEASE system's 
LEE. We note that the adaptability, self-configuration, and 
bootstrapping capabilities of the LEASE system are significant 
contributions; however, the data presented below in our 
experiments captures the raw location estimation capability to 
better allow us to compare the tradeoffs with existing literature. 
We will see from our experiments that we can achieve accurate 
estimations with very few SEs.  

1) Data Collection Methodology 
We collected RSS data from two floors at two sites, 

referred to in this paper as BR and CA. Both the BR and CA 
sites have deployed an 802.11b wireless network. We 

extensively profiled one floor from each site: a map of this 
floor for each of the two sites is shown in Figure 2. We also 
profiled in a limited way a second floor from each site. The 
profiled information was used in our (off-line) experiments to 
validate our methods and draw inferences. The main location 
estimation experiments reported here use the information from 
the floor of each site that was profiled extensively; we present 
more information about these floors below. The data from the 
second floor was used to test floor discrimination; the floor 
plan and dimensions for this other floor are similar to the 
corresponding extensively profiled floor shown in Figure 2. We 
note that the profiling we did is not required in the LEASE 
system, which enables an automated and adaptable approach to 
location estimation; we did the extensive profiling to collect 
data to experimentally study several questions of interest (e.g., 
the impact of the number of SEs on location estimation 
accuracy) and report our results in this paper.  

To make our RSS measurements, we used a Linux IPAQ 
with a modified driver updated to scan for APs. The IPAQ had 
a custom client and a standard Konqueror web browser. The 
user making RSS measurements clicked on their current 
location in an image of the floor as displayed on the browser. 
The posting of this information triggered an RSS measurement 
request at the client from the web server on a separate TCP 
channel. The web server then recorded the coordinate and RSS 
vector information at that location. We did not specifically 
orient the IPAQ in any way while taking measurements.  

The BR site has 5 APs and measures 225 ft × 144 ft. We 
made 259 RSS measurements along the corridors of this site, 
and 119 measurements inside the offices and labs. The 
measurements were made over different sessions spanning 
several days. 

The CA floor has 4 APs, three of which are collinear, and 
measures 250 ft × 175 ft, with a “slice” removed. Due to the 
collinearity of the three APs, we installed two temporary APs 
configured such that the clients could see the beacons from the 
temporary APs but not be able to associate with them. At CA, a 
colleague took 150 measurements along the corridors.  

2) Experimental Methodology 
We used the collected data in the following way. We 

classified the entire set of data points, P, into two subsets: 
corridor data, C, and office/lab data, O, where P = C ∪ O. In 
the case of the CA data set, O = φ. From the points, we chose a 
set M(k) of k points to build the model and checked the model 
on the other points to compute error. Most of our reported 
experiments were run using what we call in this paper as the 
typical case, where the k points in M(k) were chosen from C, 
and the model was tested against all points in P. The reason for 
this choice was based on where we thought the SEs are most 
likely to be deployed: the typical case assumes that the SEs are 
likely to be placed in corridors. The points in M(k) were chosen 
by dividing the site floor uniformly into k grids and selecting 
the points from C that were closest to the center of the grids. 
Our technique for building the model is described in Section 
IV.A. We implemented our model building technique in Splus 
[32].  

 



  

  

Figure 2. Floor plans for sites BR and CA showing the APs. 

For comparison purposes, we also ran experiments with 
three other combinations we call the average case, the worst 
case, and the disjoint typical case. In the average case, the k 
points in M(k) to build the model were chosen from P, and the 
model was tested on all points in P. In the worst case, M(k) was 
chosen from C and the model was tested with all points in O. In 
the disjoint typical case, M(k) was chosen from C, and the 
model was tested on all points in P−M(k). In the worst case and 
the disjoint typical case, the test set and the set used to build the 
model are disjoint. 

Notice that when interpreting our experiments in the 
context of the LEASE system, the k points will correspond to 
the locations where SEs will be placed and the sniffers are 
placed at the APs. In traditional client-based estimation 
techniques, the k points will correspond to the places where 
RSS values are measured to build the model. Since we are 
mostly interested in the situation when k is small, we should 
expect that the set used to build the model, even if it is in the 
set used to test, should hardly affect the results. 

VI. RESULTS OF THE EXPERIMENTAL STUDY 
We present the results from our experimental study under 

various categories. Recall that the number of points used to 
build the model is k and corresponds to the total number of 
SEs. We compute the 25-percentile, median, 75-percentile and 
mean error for various cases. While we are especially interested 
in the case when k is small in relation to the size of the site, for 
understanding the behavior with increasing k, we vary k up to 
≈100 in our results presented below. 

A. Metrics as a function of k for the Typical Case 
In Figure 3, we plot the error metrics as a function of k. We 

make a few interesting observations from this figure. First, the 
error metrics (mean, median and 75-percentile) shown in the 

figure are all small even with small k. The median error goes 
down significantly with increasing k. For example, with just 12 
SEs, we can achieve a median error of 15ft (4.5m) and with 
104 SEs, we get a median error of just 7ft. This implies that the 
LEASE system can provide very good location estimation with 
few SEs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Metrics as a function of k for the typical case 

B. Comparing the Various Cases: typical, average, disjoint-
typical and worst-case 
In Figure 4, we plot the median error for the typical, 

average, worst-case and the disjoint typical cases. (See Section 
V.B.2 for a definition of these cases.) We observe that the error 
variation with k is very similar for the typical and average 
cases. We expect that our method for choosing the k points 
from the data set to build the model in both cases resulted in 
virtually the same set of points getting chosen. We further 

(a) Floor plan of site BR (b) Floor plan of site CA 

k=12 

AP

Temporary AP



observe, as expected, that for small k (e.g., k ≤ 50), the typical 
and disjoint-typical cases are mostly identical. The worst case 
has a median error of a few feet more than the other cases. This 
is not surprising because the points used to build the model in 
this case are in the corridor, but all test points are inside offices 
(along the periphery) or in the labs. We expect that reducing 
the extrapolation in our technique by choosing points more 
along the edges to build the model might help in this case.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparing the various cases. 

C. Comparing across sites: BR vs. CA 
In Figure 5, we show how the median error for the typical 

case varies with k for our two sites. We notice that the general 
trend is similar. However, the CA site shows significantly 
lower median errors with increasing k. Intuitively, the model 
error is zero at the points used to build the model and increases 
as one moves farther away from them. Recall that all the data 
points collected in CA were from the corridors, so the model 
was built and tested on corridor points, which might account 
for the smaller errors. In the BR case, where the office points 
are farther away from the model points we see more error. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparing the two sites, BR and CA. 

D. Bias in Errors along the x and y directions 
We investigated if our estimates were biased. In Figure 6, 

we show the error distribution in the x and y directions for the 
case k=28. We observe no significant bias in either direction. 

 

Figure 6. Bias in errors along the x and y directions for k=28. 

E. Floor Discrimination 
We used our technique described in Section IV.C.1, in 

conjunction with the data collected from both floors of the two 
sites, to decide in which floor a given data point belonged. We 
observed that all data points were correctly classified. We also 
observed that the decision depth was never more than 3, and in 
most cases was 1, except for two points in CA. These points 
had a decision depth of 7 and were very close to an open 
stairway connecting the two floors. We believe that open 
stairways will present a challenge, especially in areas like 
hospitals, hotel lobbies, etc., and additional investigation in 
these environments could prove interesting. 

F. Other Observations 
In Section IV.C.2, we described two techniques for 

matching the client RSS vector against the model. All the 
experimental results reported in this paper used the Full-NNS 
technique for matching in the online phase. In our tests, we 
observed that Full-NNS was consistently better than Top(3)-
NNS in our experiments, and sometimes significantly better. 
We conjecture that the information presented by weak signals 
or the absence of signals at a location is also significant in 
location estimation. 

We observed in Section IV.A that we need to select a grid 
size when building the synthetic model. In all our experiments 
reported in this paper, the grid size used was 3ft × 3ft. We also 
experimented with a smaller grid size of 1ft ×1ft and did not 
observe any significant benefits from the reduced grid size. We 
believe that there are diminishing returns in reducing the grid 
size below a certain small value.  This could be due to the 
variation of received signal strength at any given location that 
is caused by shadowing [17], which causes an irreducible error 
in location estimation. 

We observed that the signal strength contours as generated 
by our technique clearly showed the anisotropy encountered in 
indoor radio propagation. In particular, as also seen in Figure 7, 
the waveguide-like effect of corridors was clearly visible.  

 

 



 

 

 

 

 

 

 

 

Figure 7. Signal strength contours for the access point at the center of site BR.  

The search for the terminal's RSS vector against the 
synthetic grid may be optimized using commonly known data 
structure techniques; we omit discussion of this aspect from 
this manuscript. 

VII. COMPARISON WITH OTHER TECHNIQUES 
From Section VI it is clear that the performance of the 

estimation engine in LEASE, despite using a small number of 
sample points to build its model, is still comparable to other 
published techniques (mentioned in Section II). The analysis in 
Section VI does not, however, take into account aspects of the 
LEASE system such as its adaptability and manageability.  

We note that comparing techniques based solely on 
reported median error metrics might be misleading. Due to vast 
differences in the environments used for experimentation, the 
parameters used by various researchers and metrics reported, it 
is hard to make a direct comparison between techniques. For 
example, the two largest sites we have seen used in prior work 
were [4, 25]; in [25], the area of the site is approximately 19000 
sq.ft., and in [4] it is about 11000 sq.ft. This compares to our 
site's area of about 32000 sq. ft. for BR and 34650 sq. ft. for 
CA. More importantly, all prior work we have seen has data 
points only in corridors. The open area of corridors is usually 
more “signal friendly” and no estimates have been provided for 
the extent of degradation of location estimation when clients 
were inside offices or labs. (For example, in Section VI.C, we 
observed that some benefits resulted by only considering 
corridor data.) The sites profiled in previous work were also 
“AP-dense” having anywhere from 3—5 APs serving the 
smaller area. Issues related to not seeing APs at data points 
were not encountered. Recall that none of the prior work 
studied the complexity of building and maintaining the model. 

In this scenario, we attempt to compare our algorithms with 
some other published work. It is imperative that we provide a 
metric for making such comparisons. In subsection A, we 
propose a metric, and use this metric to compare our approach 
with [4, 25] in subsection B. 

A. A New Metric To Evaluate Location Estimation 
A metric for determining the effectiveness of a profiling-

based location estimation technique must be able to model at 
least the following artifacts of the problem: i) the extent of 

work done in building the model, ii) the location estimation 
errors seen using the technique, iii) how dynamic the signal 
environment is at the site, and iv) the adaptability of the 
technique. We now motivate a metric we call the effective 
normalized error, ε, that takes some of these issues into 
account.  

Intuitively, ε must be directly proportional to some function 
f(m) of the raw estimation error m (where m can be the mean, 
median, or similar metric). Let A be the area of a site and let the 
technique profile the site using k points. Depending on the cost 
of profiling, the average work done in profiling could be 
modeled as g(k)/A, where g(k) is some function of k. We define 
the effective normalized error ε as f(m) ×  (g(k)/A) × h(r,a), 
where h(r,a) is some function of the dynamic nature r of the 
site, and the adaptability a of the technique. The functions f(.) 
and g(.) must clearly be monotonic non-decreasing. For 
simplicity, in the rest of this discussion, we assume h(r, a) = 1. 
However, we note that h(r,a) can take any form; e.g., for sites 
that have a relatively stable RF environment, h(r,a) could be 
1/(g(k)/A), thereby negating the impact of the profiling cost in 
the effective normalized error. Prior work can be considered as 
modeling ε = m. 

If a profiled point “represents” a circular area of radius r 
around it, such that all clients in that area are mapped to this 
point, the median error for a uniform distribution of clients 
within this area is O(r). In this case, k=1, and A = O(r2). This 
implies that f(m) should logically be Ω(r2). The function, g(k), 
can be any metric that suitably models the cost of profiling. 

In this paper, we use the following functional form for ε, 
namely,  

( ) ,,
A
mckji

ji

=ε                                      (1) 

where c is a constant, and  j > 2. Note that the smaller the ε, the 
better the technique. The parameters i and j allow us to tune the 
error metric to emphasize the cost of profiling or the raw error 
of estimation.  

1) Resolving Power 
Let α = A/k, be the average area per profiled point and let β 

be the error area (πm2), where m is the error in location 
estimation (e.g., the median error). An intuitive measure of 
how well the location determination works is the dimensionless 
ratio ρ = α/β, which we call the resolving power. The resolving 
power indicates how well a technique exploits the available 
information.  All other things being equal, we expect a better 
technique to have a larger ρ. Note that ε(1,3)=c′m/ρ, where c′  
= c/π. 

B. Comparison of various techniques using the effective 
normalized error, ε 
Our goal in this section is to compare various techniques 

with the LEASE estimation engine using the metric from 
Equation (1) above. We evaluate ε(1,3) and ε(2,3) for the 
various techniques, and use c=1, since we are interested in a 
comparison only and not the absolute value of ε. Using ε(1,3) 
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emphasizes reducing the raw error, and using ε(2,3) 
emphasizes reducing the number of profiled points (or number 
of SEs), k. For m, we use the median error that is reported by 
most prior work. 

For comparing with other techniques using the metric of 
effective normalized error, we chose [4], a deterministic 
technique, and [25], a probabilistic technique, since they have 
the information necessary to make the required computations. 
From [4, 25], we extract the required information as follows. 
For the area profiled, we use the total area of the corridors at 
the respective site, since their experimentation was only done 
in the corridors. (We assumed a corridor width of 5ft.) We 
determine the median error, and the number of profiled points 
from their paper. (We count possible multiple measurements at 
a profiled point only once.) The raw information we use for 
calculating ε is presented below in Table 1.  

 

Technique Area 
(corridor) 

#Training 
points 

Median 
error 

RADAR [4] ≈2920 sq.ft. 70 2.9m  (9.6 ft) 
Ref.  [25] ≈2750 sq.ft. 110 3.5 ft. 

Table 1. Comparison of the features of two previously studied approaches. 

 

For the LEASE system for the BR experiments, the area is 
32400 sq. ft. For k=12, 28 and 38, the median errors are 15ft, 
12ft and 10.4ft., respectively. The computed effective 
normalized error is shown below in Table 2, where LEASE(k) 
@ BR, represents the LEASE technique with k points used to 
build the model at site BR. Recall that the smaller the ε, the 
better the technique. 

Technique ε(1,3) (ft) ε(2,3) (ft) 
RADAR [4] 21.2 1484.0 

Ref. [25] 1.7 188.6 
LEASE(12) @BR 1.2 18.7 
LEASE(28) @BR 1.5 41.8 
LEASE(38) @BR 1.3 50.1 

Table 2. Comparison of effective normalized errors for various techniques. 

The lower effective normalized error of the LEASE system 
shows that it is a very promising approach. It also suggests that 
our non-parametric modeling technique does a good job of 
interpolating the signal strength.  

VIII. CONCLUSIONS 
In this paper, we have studied the problem of location 

estimation in indoor enterprise wireless networks from the new 
perspective of easier and automated deployment and 
maintenance. We have presented a system called LEASE that 
uses a few stationary emitters and sniffers in a novel way to 
solve this location estimation problem. Our estimation engine 
uses non-parametric modeling techniques that automatically 
capture the anisotropy of received signal strength encountered 
in indoor environments. Through extensive experiments at two 

multi-floor sites, we have shown that the location estimation 
engine in LEASE provides accurate estimates of the floor and 
location on the floor where the client is located. We have 
introduced and motivated a new metric called effective 
normalized error that captures many nuances of the location 
estimation problem and show that the LEASE system is very 
effective in terms of this metric when compared to other 
published techniques. 
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