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ABSTRACT OF THE DISSERTATION

Fundamental Network Behavior of

Mobile Ad Hoc Networks

by Wing Ho Andy Yuen

Dissertation Director: Professor Roy D. Yates

This thesis is a collection of research on the fundamental network behaviors that pertain

to the subject of mobile ad hoc networks. The first part of this thesis focuses on mobile

infostation networks, a new class of mobile ad hoc network that exploits node mobility

to improve network capacity. We address three important problems, namely the effect

of node noncooperation, transmit range and node mobility on network performance.

The issue of node noncooperation is examined in the context of a content distribution

application. When two nodes are in proximity, they negotiate for a file exchange in

accordance to a social contract. An exchange is warranted only when each node can

obtain something it wants from the exchange. Both common interest and dissimilar

interest models are examined. The performance of different user strategies are evaluated

through analysis and simulations.

The effect of transmit range on network capacity is then examined under a real-

istic interference model. Four transmission strategies are analysed and we show that

a stipulated transmit range improves the capacity compared to the Grossglauser-Tse

strategy. The optimal number of neighbors is determined, which is much smaller than

the magic number of 6 to 8 neighbors for multihop networks. In addition, the capacity

per unit area of the strategies is shown to increase linearly with node density.
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We have also examined the effect of node mobility on highway mobile infostation

networks via a novel highway model. Using arguments from renewal reward theory,

the long run data rate of an observer node can be derived. For node speed that is

uniformly distributed, we show that the data rate is independent of observer node

speed in reverse traffic. In forward traffic, we show that the data rate increases with

observer node mobility.

In the second part of the thesis, we focus on multihop ad hoc networks, in which

nodes communicate in multihop routing. We have investigated the effect of transmit

range on energy efficiency of packet transmissions, and determine a common range for all

nodes such that the average energy expenditure per received packet is minimized. Both

stationary and mobile networks are considered. The dependence of energy efficiency on

various system parameters is investigated.

We also examined the network behavior of a routing algorithm for multihop ad

hoc networks. By using an alternate graphical interpretation of simulation results,

inter-relationships between performance metrics and system parameters are revealed.

These observations often give us insights to the mechanisms that underlie the network

behavior.

In the final part of the thesis, we present an online Dutch auction application for

mobile cellular network. The price of an item decrements at regular intervals until

a buyer place the bid to terminate the auction at the current price. We present a

price decrement strategy that take into account of communication costs. This strategy

maximizes the expected revenue of the auction host. Significant gain can be obtained

compared with a uniform decrement strategy.
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Chapter 1

Introduction

1.1 Overview of Wireless Networks

In wireless networking, there are two main classes of communication paradigms, in-

frastructure networks and ad hoc networks. Infrastructure networks include cellular

networks, wireless LAN’s and infostation networks. The network operator deploys a

network infrastructure within the coverage area to provide wireless connectivity to the

vicinity. The infrastructure is known as base stations in cellular networks, access points

in wireless LAN’s and infostation in infostation networks, and are connected together

to a backbone network by wire. All communications on the wireless medium occurs in

one hop between the mobile nodes to the local base station/access point/infostation.

A mobile node acts as the source or the sink of a communication circuit. Ad hoc net-

works, on the other hand, preclude the use of a wired infrastructure. These networks

are applicable to locations in which a prior deployment of network infrastructure is

impossible. Current applications are mostly confined to military and rescue operations

for long range outdoor networks, or to indoor network setting such as a conference room

with a collection of laptop computers. Mobile nodes are connected together to form a

network on the fly. They also have routing capability and may act as the source, sink

or a forwarding node to relay packet for other nodes. Multihop networks and mobile

infostation networks fall into the category of ad hoc networks.

Cellular networks providing primarily voice service has witnessed the most successful

story in infrastructure networking for the last two decades. Typically the base stations

are deployed to provide ubiquitous coverage to all mobile nodes at all locations in

the network. This can be envisaged in Figure 1.1 when the base station are so close

to provide seamless coverage to all areas served by the network operator. Second
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Figure 1.1: Illustration of the infrastructure network model.

generation cellular networks provide voice service predominantly. Third generation

cellular networks are being deployed currently and offer heterogeneous voice and data

services.

More recently, wireless LAN products have captured the limelight in spite of the

doldrums of the telecommunications sector as one of the few market niches enjoying

rapid growth, thanks to the proliferation of inexpensive 802.11b products. In contrast

to cellular networks, wireless data is the predominant traffic type in a wireless LAN.

Data applications are usually bandwidth hungry compared with the traditional low bit

rate voice service. The current 802.11a/b/g standards for wireless LAN provides multi-

megabit throughput for wireless data. For example, 802.11b offers a nominal rate of

2 Mbps and a peak rate of 11 Mbps. It uses an unlicensed portion of the radio spectrum

at 2.4GHz. The availability of low cost hardware [9] contributes to the popularity of

the widely successful Wi-Fi products. 802.11a uses OFDM transmission technology,

operates at the 5GHz band, and offers a nominal rate of up to 54 Mbps. 802.11g is

similar to 802.11a and uses OFDM. It operates at the 2.4GHz band, and is backward
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Figure 1.2: Illustration of the infrastructure network model.

compatible to 802.11b. In general, the coverage area of a wireless LAN is very small.

As users roam in space they are intermittently connected to a local access point. This

corresponds to the scenario in Figure 1.2 when the access points are far apart and the

pockets of coverage areas are disjoint.

Infostation networks, pioneered by researchers at WINLAB [16,19,29,97], are a con-

ceptual departure from the ubiquitous (anytime/anywhere) assumption in conventional

cellular services. It is motivated by the fact that data services are often connectionless,

delay insensitive, and have no specific bit rate requirements [16]. By restricting the

transmit range of an infostation to the locality when the channel condition is excellent,

the capacity is optimized from an information theoretic perspective [11,18]. For nodes

with low mobility, the infostation network is akin to a wireless LAN as depicted in

Figure1.2 with high bit rate islands of coverage close to the infostations. However, a

wireless LAN typically does not support node mobility. To date, different access points

have different ownership and operates autonomously without coordination or coopera-

tion. The sharing of access points for roaming users is largely prohibited. Nevertheless,
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an infostation network calls for the explicit co-ordination of infostations as a user moves

around. A user may download parts of a large file from different infostations as it roams

around the network in due time.

The second paradigm in wireless networking is mobile ad hoc networks, which in-

cludes multihop ad hoc networks and mobile infostation networks. The concept of

multihop networks is not new. In the past two decades there were research in packet

radio networks [35,38–40,43,45,48,75,82,92] under the DARPA program, which is in fact

multihop networks with a fancy name. On the other hand, the idea of mobile infosta-

tion networks very recent, inspired by the infrastructure infostation networks. Although

there are no large scale commercial deployment of these two networking paradigms to

date, it is undeniable ad hoc networks are becoming one of the most active areas of

networking research in these few years. A casual search in the ad hoc network literature

reveals that there are very few papers in ad hoc network in the year 1997. Since then,

the subject of ad hoc networks has captured the attention of many researchers.

In this thesis, we focus on research issues in mobile ad hoc networks. For pedagogical

reasons we will outline multihop ad hoc networks and and then mobile infostation

networks in the following.

1.2 Multihop Ad Hoc Networks

As shown in Figure 1.3, a multihop ad hoc network consists of mobile nodes which

communicate with each other through multi-hop routes. Due to the dynamically

changing topology, network routing is an important issue. Recently the Internet En-

gineering Task Force (IETF) has established a Mobile Ad Hoc Network (MANET)

working group, which focuses on unicast and multicast routing protocols that are re-

active to dynamic topologies and scale well to large networks. The intense interest in

network routing is reflected by the voluminous amount of papers in the routing lit-

erature, [13, 22, 25, 30, 33, 47, 50, 54, 60, 62, 63, 73, 79, 84, 93, 94]. A taxonomy of unicast

routing protocols could also be found in [73,79]. A number of well known routing proto-

cols such as the destination-sequenced distance vector routing algorithm (DSDV) [62],
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Figure 1.3: Illustration of the multihop ad hoc network model.

dynamic source routing (DSR) protocol [33], the on demand distance vector (AODV)

routing protocol [63] and the zone routing protocol (ZRP) [25] are currently under

standardization within the MANET working group.

Although many routing algorithms have been proposed in the literature, the achiev-

able capacity in generic ad hoc networks is very low as demonstrated by simulation

studies [8, 12,32]. Recently, adaptive resource allocation techniques such as rate adap-

tation [27,69,99] and power control [6,14,49,72,84,100] have been introduced to ad hoc

networks as a means to improve network capacity. In the rate adaptation schemes, the

transmit power of each node is constant. When the channel information of the receiver

is available to the transmitter, the highest transmission rate could be used for a given

bit error rate requirement, which maximizes the spectral efficiency. This effectively

decreases the packet transmission time and the overall interference seen at each node,

which increases the network capacity. Similarly, the judicious use of power control also

reduces the cochannel interference of the network. This leads to more efficient frequency

reuse and impacts the capacity of the network favorably. These adaptive techniques

could be applied to the physical and MAC layer independent to the routing algorithm,
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thus preserving the modularity of the various layers in the protocol stack. More gener-

ally, network decisions could be made with some knowledge of the channel information

from the lower layers [99]. Because rate adaptation and power control schemes will

affect some parameters that are being monitored, these measurements are passed to

the network layer in the form of a routing metric, which affects route selection.

Power control for ad hoc networks have also been studied using analytical methods

in the 80’s for general packet radio networks. In [28,44,45,56,91], the objective is to find

the transmit power such that the distance advancement towards the destination in one

hop, also known as the forward progress, is maximized. More recent results are obtained

for wideband spread spectrum systems [86,87], more detailed channel models [107] and

some alternate optimization objectives other than the forward progress [90]. There

are yet some scattered works [23,61,64,65] that study the critical transmit range such

that an ad hoc network is connected. Whereas [64] and [65] conjectured the critical

range for networks of finite size, [23] addressed the asymptotic connectivity of ad hoc

networks when the number of nodes tends to infinity. Using results deriving from

percolation theory, [23] gave a proof for the asymptotic critical range. Using measure

theoretic arguments, [61] independently discovered a strong law for the longest edge of

the minimal spanning tree, which is also the critical range of a network. The strong law

holds for nodes that are distributed in a network with an arbitrary density function.

In [24], it is further shown that network throughput is near optimal when nodes operate

on critical power. Using network simulations, however, we show in [100] that the

critical range turns out to be suboptimal in throughput and energy efficiency. The

underlying reason of the discrepancy is that the uniform traffic assumption breaks

down when the network is critically connected, which is crucial in the proof of [24].

The above works consider only stationary network scenarios. The effect of mobility on

the optimum transmit power is neglected. In general, in high mobility scenarios the

optimum transmission power increases [78, 100] so that there are fewer link failures at

the expense of less efficient frequency reuse.

Although there is intense research activity going on to design more efficient network
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protocols, the study of the fundamental physical mechanisms that affect the perfor-

mance of ad hoc networks has largely been ignored. One goal of this thesis is to

investigate the physical and network mechanisms that affect the network performance

of multihop ad hoc networks. In chapter 5, we examine the effect of transmit range of

energy efficiency and throughput of the network. The optimum transmit range turns

out to be much larger than the critical transmit range, and is insensitive to node mo-

bility. In chapter 6, we examine the inter-relationships of various performance metrics

and system parameters. This also proves to be a rewarding exercise and we obtained

many observations that give us insights to the mechanisms that underlie the network

behavior.

1.3 Mobile Infostation Network

In a mobile infostation network, any two nodes communicate only when they are in

proximity and have a very good radio channel. Under this transmission constraint, any

pair of nodes is intermittently connected as mobility shuffles the node locations. The

network capacity of mobile infostation networks compares favorably to conventional

multihop ad hoc networks [20,24]. In [24] Gupta and Kumar showed that the per node

throughput of a multihop network drops to zero at a rate O(1/
√
n lnn) in the limit

of large number of nodes n. Thus multihop networks do not always scale with large

network size. On the other hand, Grossglauser and Tse showed in [20] that the per

node throughput of a mobile infostation networks is O(1), independent of the number

of nodes. This capacity is achieved through a two hop relay strategy.

Assume that each node in the network selects a random destination for unicast. We

focus on a source node i, which has packets to deliver to a destination node j, as shown

in Figure 1.4. As time evolves, node i moves along a random trajectory and eventually

runs into nodes 1 and 2. Although neither nodes 1 nor 2 are the destination of i, i

still relays the packets to them, with the expectation that when each of the relay nodes

reaches the destination j, it will complete the second relay on behalf of node i. In steady

state, each of the other n− 2 nodes contains packets generated by node i and destined

to node j. At any network snapshot, it is almost surely that the nearest neighbor
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Figure 1.4: Illustration of the mobile infostation network model.

of node j has packets addressed from node i and completes the second relay on the

behalf of i. That is, the long run per node throughput is constant and is independent

of the network size. This capacity improvement comes from the exploitation of node

mobility to physically carry the packets around the network, and is independent of the

underlying mobility model, as long as the mobility process is ergodic.

Nevertheless, the order of magnitude improvement in network capacity comes at a

cost. End-to-end transmissions incur a random delay that is at the same time scale

of the mobility process. Thus, a mobile infostation network is applicable to delay

tolerant applications with a heavy bandwidth requirement, say, in a content distribution

application where all nodes are subscribers to a movie or news content provider. In

this type of applications, a user is neither concerned nor aware of the movie download

schedules. The application typically runs in the background for a few hours or even a few

days as a user commutes to different places in his daily routine. This is consistent with

ubiquitous computing environments [96], where computing systems become invisible

and fade into the background and work for the users. In this case, we can draw a parallel

of ubiquitous networking environments since users are not aware of the background
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networking in the mobile infostation communication paradigm.

On the other hand, there is also a tradeoff between delay and storage in a mobile

infostation network. Since a node transmits the same packets to all the relay nodes,

there is heavy redundancy in packet transmissions and storage. This may not present a

big challenge to researchers, since hardware storage follows the Moore’s law quite well

and storage capacity is approximately doubled every year. Moreover, a simple time-to-

live (TTL) field can also be appended to each packet such that packets can be dropped

when the TTL field has expired. This alleviates the storage requirement in individual

nodes at the expense of more delay in packet delivery.

The seminal work [20] by Grossglauser and Tse has set the stage for further research

in this new network paradigm. Although research on power control and rate adapta-

tion techniques will push the capacity limit further, it is unlikely that the capacity

of multihop networks will increase several orders of magnitude using these techniques.

Motivated by the dramatic capacity improvement of mobile infostation networks, there

are a number of recent papers that explore the mobile infostation paradigm in different

contexts. Whereas [20] focused on unicast, most other papers in the literature focused

on multicast. The potential spectrum of applications ranges from biological informa-

tion acquisition systems used in the habitat monitoring of endangered wildlife species

such as whales [85] and zebras [34] on one hand, to mundane movie and news down-

loading in a content distribution network [103, 104] and location specific information

services [58,59] on the other hand. [58,59] addressed single hop multicast in mobile in-

fostation networks. Reference [85] describes a new paradigm called the Shared Wireless

Infostation Model (SWIM), in which nodes act as infostations and cooperate to forward

packets for each other. This is in fact a cooperative mobile infostation network. The

delay performance is evaluated via simple analysis and is verified by simulation results.

Multihop networks and mobile infostation networks are the two extreme instantia-

tions of the capacity-delay tradeoff over many possible networking paradigms. In order

to expedite data dissemination in a mobile infostation network, multihop forwarding

may also be used occasionally, as in [58, 59], if a node has not done so for other nodes

for some time. Similarly, node mobility can also be exploited in multihop networks
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to improve network performance. For instance, in [21] node mobility is exploited to

disseminate co-ordinates of all node locations without incurring any communication

overhead. The location information is useful for nodes to make local routing decisions

to the destination when geographic routing schemes [31] are used.

Most of the work so far [20,34,58,59,85] has focused on network scenarios in which

nodes cooperate. For some applications such as habitat monitoring of wildlife species,

sensor nodes are deployed from a single organization. The cooperation assumption

between nodes is valid. On the other hand, in commercial applications each node in

the network is autonomous and may act selfishly. A node is not incentivized to relay

other people’s packets since it is expending its own bandwidth and energy resources

in a transmission. We have studied the problem of noncooperation between nodes

in [103, 104] in the context of content distribution. The main results are reported in

chapter 2 of this thesis. Data of common interest such as a movie is split into small

files that are cached at the fixed infostations. Whenever a node comes close to an

infostation, files can be downloaded. More generally, when two nodes are in proximity,

they can negotiate for a file exchange for their own benefit. It turns out that a new

kind of diversity emerges in noncooperative networks, in which we coined data diversity.

Moreover, user strategies can exploit multiuser diversity to further improve the network

performance.

In the mobile infostation literature, the concept of physical proximity is not well

characterized. [20] assumed that a candidate transmit node always transmits to the clos-

est receive node. Although the transmit and receive node pair has the shortest distance,

this strategy may not perform well since this distance may be large in some pathologi-

cal topology realizations. In these links, the benefit of spatial transmission concurrency

may be more than offset by a simultaneous increase in total interference power in the

network. It may be worthwhile to suppress the transmissions when the channel is less

excellent, even though the receive node is the node closest in distance. The resultant

decrease in total interference power due to the suppression of transmissions in the less

excellent channels may be beneficial to the sum rate of the remaining connections. To

ensure that only excellent channels are used, we have imposed an artificial transmit
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range for all nodes in [101,102,106]. A candidate transmit node will schedule a trans-

mission only if it sees some receive nodes in its transmit range. The effect of transmit

range on the capacity is studied in chapter 3 under a realistic interference model.

In chapter 4, we examine the effect of mobility on highway mobile infostation net-

works. In [20], mobility provides a mechanism such that numerous instances of excellent

channels between different nodes can be exploited. The realization of large network ca-

pacity comes from the translation of maximal spatial transmission concurrency in each

network snapshot to the long run end-to-end network capacity. The physical implication

of mobility in node encounters has been glossed over. In reality, the total connection

time of a node over a specific interval depends on the node encounter rate and the

connection time in each encounter, both of which depend on the relative mobility of

nodes. Although a high node speed results in more node encounters, the connection

time in each node encounter also decreases. It is not apparent whether high or low

speed results in a larger connection time, and thus, data rate. The simple Markovian

mobility model in [103,104] proves to be inadequate for this study. We have proposed a

general mobility model for highway networks in [105,106]. The highway scenario proves

to be interesting despite its mathematical simplicity. First, forward traffic connection

time is much larger than that of backward traffic, but the node encounter rate is also

much smaller. It is not apparent which traffic type maximizes the fraction of connection

time. Second, the connection time in an encounter depends on the transmit range of

the nodes. For both forward and backward traffic, an optimal transmit range exists

such that the long run data rate of a node is maximized.

1.4 Organization of the Thesis

The first half of the thesis is devoted to mobile infostation networks. Chapter 2 studies

the network behavior of a mobile infostation network when nodes are noncooperative.

A simple interference model and mobility model is used to facilitate tractable analysis.

Chapter 3 examines the effect of transmit range on capacity of a mobile infostation net-

work. A realistic network interference model is used in the study. Chapter 4 examines

the physical implications of mobility on highway mobile infostation networks. A new



12

highway mobility model is proposed and used in the analysis. The second half of the

thesis is devoted to the study of multihop ad hoc networks via network simulations on

ns-2. Chapter 5 studies the effect of transmit range on energy efficiency and through-

put of multihop ad hoc networks. The optimal transmit range turns out to be much

larger than the critical transmit range, and is insensitive to node mobility. Chapter

6 examines the inter-relationships of performance metrics and system parameters in a

multihop network. The final part of the thesis is a stand alone chapter and describes a

novel wireless application for mobile cellular networks. A Dutch auctioning strategy is

proposed that takes into account of the communication costs of an online Dutch auction

application. The revenue of the auction host is maximized. Finally, Chapter 8 provides

a summary of the main contributions of this thesis. We then look into a futuristic

networking paradigm and show that our foundation work on the exploitation of node

mobility in ad hoc communications may have important implications to this paradigm.
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Chapter 2

Non-cooperative Content Distribution for Mobile

Infostation Networks

2.1 Introduction

In this chapter we address the issue of noncooperation in the context of a mobile

infostation network for movie downloading. All nodes are subscribers to a movie content

distribution network. A movie is divided into K files which are then cached in a network

of fixed infostations, access points providing pockets of high-speed short-range coverage

[17]. When a node comes close to an infostation, files can be downloaded. In an entirely

noncooperative network, this would be the only mechanism for file dissemination. It

only uses the high-speed channel between an infostation and a node near it, while

wasting all the equally excellent channels between closely located nodes. A more efficient

system would have any two nodes in proximity to act as mobile infostations to exchange

copies of their files. When there are many nodes, a node obtains most of the files from

node-to-node file exchanges. Data dissemination is thus distributed to all nodes and all

locations in the network.

It is possible to allow file exchanges among mobile nodes while keeping the network

essentially noncooperative by stipulating the following social contract for all nodes in

the network. When two nodes meet, they inspect the file contents of each other. If each

node identifies a file that it wants, a bilateral file exchange takes place. Conversely, if

either of the nodes cannot find a file it wants, no file exchange takes place since that

node has no immediate incentive to transmit a file to the other.

We have shown by analysis and simulations that the networking performance of

this file exchange mechanism depends on node mobility and density. More importantly,

we find that both fairness and throughput of the network improve as the number of
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files in the network increases. We identify this phenomenon as a new form of diversity.

Traditional communication diversity techniques exploit the variations of signal strength

over temporal, spatial and frequency domains. Data diversity, on the other hand, arises

due to the enlargement of individuals’ preferences of data, and is a consequence of the

assumption of noncooperation among the nodes. We conjecture that data diversity

has important ramifications in the performance of other networking contexts such as

multihop ad hoc networks.

We have also extended the common interest model to the case where each node has

dissimilar interest. This is applicable to the contexts in which multiple movies or TV

shows are cached in the infostations. When nodes have mutually exclusive or partially

overlapping interests, network performance degrades drastically. We have identified two

user strategies for the dissimilar interest model. Our simulation results show that net-

work capacity can be significantly improved by exploiting multiuser diversity inherent

in mobile infostation networks.

The rest of the chapter is organized as follows. In section 2.2, we describe the system

model. Section 2.3 is devoted to performance analysis, and the results are verified by

simulations in section 2.4. We describe a new form of diversity - data diversity in

section 2.5. In section 2.6, we extend our common interest model to the case where

nodes have partially overlapping interests. Simulation results of two user strategies are

discussed. The results are interpreted further as a form of multiuser diversity in section

2.7. Finally, conclusions are drawn in section 2.8.

2.2 System Model

This work is largely motivated by [20] which employed a signal to interference ratio

(SIR) based link quality model to demonstrate the that N nodes in a region could

maintain O(N) simultaneous transmissions with acceptable SIR. However, in this work,

we look to employ a simpler communication model in order to demonstrate the effect

of the social contract on content distribution. As shown in Figure 2.1, the geography

consists of L discrete locations in a square grid with an infostation at the center of the
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Infostation
L discrete mobile locations

Figure 2.1: Illustration of the network model.

grid. The infostation cache holds the K files of a movie. We assume the geography

wraps around at each boundary, effectively creating a toroidal grid. We refer to this

L node wraparound grid with one infostation and L − 1 regular locations as a block.

A block is intended to mimic a typical multi-infostation network in which an infinite

grid of infostations populate an infinite plane. The number of locations L relative to

the single infostation serves to characterize the density of fixed infostations over the

terrain.

The L location grid is populated with N nodes with independent mobility processes.

In our simulation experiments, we assume that time is discretized such that at each unit

of time, each node randomly and independently moves in one of the four directions with

equal probability q = 0.25. When two or more nodes are at the same location at the

same time, we say those nodes are neighbors.

In our communication model, each node either downloads files from an infostation

or exchanges files with a neighbor. At the infostation, only file downloading is allowed.

At any other locations, file exchanges between mobile nodes are permitted. Given

a particular radio bandwidth, the size of a file is chosen such that the time a node
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occupies a location allows for either a bilateral file exchange between neighbors at a

regular location or for two files to be downloaded from the infostation.

There are two factors that impact data dissemination. First there is a transmission

concurrency constraint at each location. If there is more than one node at the infosta-

tion, contention is resolved by randomly picking one node for downloading. Similarly,

when there are more than two neighbors at a location, two of the neighbors are ran-

domly picked to perform a file exchange. Second, the probability of exchange is dictated

by the user strategy which also consists of two parts. The user strategy must determine

first whether to exchange files according to a social contract. Specifically, a node may

want to exchange for a file because it is genuinely interested in that file. Alternatively,

a node may want to exchange for a popular file, which is then used to facilitate future

file exchanges. Thus even if a node cannot obtain a file of genuine interest, it may

exchange for a file that it does not have. The user strategy then must specify which

file should be picked from the other node. In the first part of this chapter, however,

there is no distinction between the above models. Since all nodes have common interest

in downloading the files of a popular movie, each node is genuinely interested in every

file it does not have. In section 2.6, we extend the common interest model to the case

where nodes have dissimilar interests that are partially overlapping. In that case, the

network performance is dependent on the choice of the above models.

After two neighbors agree to exchange files, each downloads one file from the other.

In an encounter in which there are multiple files of interest, a node must decide which

file to download. Two strategies are examined in this chapter. For the random strategy,

a node randomly selects a file it does not have from the neighbor node. Similarly, a node

randomly selects two files that he does not have for downloading at an infostation. For

comparison, we also consider a greedy strategy which assumes that each node has full

knowledge of the circulation of each file within the network. For an infostation download

or a neighbor exchange, a node picks the file that is the least circulated among all files

it does not have. This strategy is greedy since it maximizes the probability of exchange

PE between two arbitrary nodes in a static snapshot.

We note that the selection of two arbitrary nodes for file exchange is suboptimal.
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Under the social contract the two selected nodes may not perform file exchange. A

practical node selection protocol should avoid this by scheduling transmissions only to

the node pair with an exchange agreement. The random selection of nodes is used

to facilitate performance analysis and provide a lower performance bound to an ideal

node selection scheme. On the other hand, the social contract implicitly assumes there

are no misbehaved nodes. Each node makes no false claim on the files it possesses

and ensures the integrity of all its disseminated files. The social contract provides a

framework for studying non-cooperation between nodes. In a practical file exchange

protocol, additional security mechanisms must be added to ensure the integrity of the

files being exchanged.

The proposed content distribution network admits a number of performance metrics

to describe how quickly files are disseminated. We define T1 as the time when 80% of

the nodes get all of the files. A network operator is interested in this quantity, which is

related to the networking efficiency and the revenue generated from the network. We

define T2 as the time when all nodes get 80% of the files. A network subscriber, on

the other hand, will be interested in T2, which is related to fairness and perhaps will

influence his willingness to pay. We also define T3 as the time for all nodes to get all

the files. Finally T4 is defined as the time for an arbitrary node to obtain all files. An

analytical expression for E[T4] is obtained in the next section.

We also evaluate the network performance in terms of throughput Ci, which char-

acterizes the average rate of file downloading per node. This is defined in terms of the

networking time Ti and is given by Ci � K/E[Ti], for i = 1, 2, 3, 4. The units of Ci

are files per node per unit time. Note that we can view the distribution to a particular

node of movies over time as a renewal process in which the renewal period equals T4,

the time required for the node to obtain one movie. Since the node obtains a reward

of K files in each renewal period, renewal-reward theory assures that the expected rate

at which the node obtains files is precisely C4 [76].
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2.3 Performance Analysis

When two or more mobile nodes are at the same location, a two-step process determines

whether a file exchange occurs. First, the nodes at that location follow a radio access

protocol to determine which pair of nodes will attempt a file exchange. We use the term

access to refer to the event that a node gets to be one of a pair of nodes that examines

the files carried by the other. Under some simplifying assumptions, we will see that at

a regular location the access probability is given by a constant β, that depends on the

number of nodes N and locations L in the block. For a pair of nodes chosen in the

access phase, the exchange probability PE denotes the probability that the two nodes

can exchange files under the terms of the social contract. The exchange probability will

depend on the file contents in each node, which in turn depends on the user strategy.

In this section we provide a simple approximate analysis of β and PE . We then

develop a simple Markov chain model to obtain the expected networking time E[T4]

and the corresponding throughput C4 for each node. We make the following key as-

sumptions:

• Memoryless Uniform Mobility In each time unit, each node is randomly and

independently at any of the L locations with probability p = 1/L.

• Independent Uniform Content Distribution Given that node i has obtained

li files, all combinations of li out of K files are equiprobable, independent of the

files held by all other nodes.

It is not hard to see that these assumptions are inconsistent with the system model

of section 2.2. In particular, when the number of locations is small and mobility is

limited, nodes are likely to be neighbors frequently and have highly correlated content.

Nevertheless, our simulation results agrees closely with the analytical results, indicating

that these assumptions work well in systems with moderately large number of files

K = 500 and reasonable mobility q = 0.25.

Due to the transmission concurrency constraint, the maximum number of simulta-

neous transmissions in the block equals L, the number of locations. For a given number
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of locations, it should be apparent that there is an optimum number of nodes N such

that the access probability is maximized. If the number of nodes in the network is

small, the spatial transmission concurrency is not fully utilized. Similarly, if there are

too many nodes in the block, only a fraction of nodes could schedule transmissions in

the L possible locations.

Given a particular node at a given location, memoryless mobility implies that the

number of other neighbors at that location is a random variable J with the binomial

distribution

P [J = j] =
(
N − 1
j

)
pj(1 − p)N−1−j j = 0, . . . , N − 1 (2.1)

When a given mobile is at the infostation with J = j neighbors, the probability β′ that

the given node is chosen for the infostation download is 1/(j + 1). Averaged over all J ,

the probability the given node is chosen for the download is

β′ =
N−1∑
j=0

1
j + 1

P [J = j] =
1 − (1 − p)N

Np
(2.2)

Similarly, when a node is at a regular location with J = j ≥ 1 other neighbors present,

2 out of j + 1 nodes are randomly chosen. The conditional access probability that a

given node is one of the two chosen nodes is 2/(j + 1). Thus,

β =
N−1∑
j=1

2
j + 1

P [J = j] (2.3)

=
2[1 − (1 − p)N −Np(1 − p)N−1]

Np
(2.4)

Based on (2.4), the optimal N is around 2L. Below, in equation (2.12), a more careful

optimization of β(N) in the limit of large N,L with fixed density ρ � N/L, reveals that

ρopt � 1.8. One can use this result to determine the optimal spatial density of fixed

infostations based on the anticipated spatial density of mobile subscribers.

When nodes i and j have the opportunity to exchange files, the probability of

exchange PE depends on the files each node is holding. Suppose nodes i and j have li

and lj files in their caches. An exchange between the nodes will occur unless one node

has a collection of files that is subset of the other’s collection. Assuming, without loss
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of generality, that li ≤ lj, an exchange failure occurs if node i chooses its subset of li

files out of the lj files of node j. Since there are
(
K
li

)
total ways for node i to choose its

files, the probability of exchange is

PE(li, lj) = 1 −

(
lj
li

)
(
K

li

) 0 ≤ li ≤ lj ≤ K (2.5)

From (2.5), we can derive a tight upper bound for the probability PEc � 1 − PE of

no file exchange between neighbor nodes with li and lj files such that aK ≤ li ≤ lj ≤
(1 − a)K and 0 < a < 1/2. When K is large such that aK, (1 − a)K, and (1 − 2a)K

are all much greater than 1, an asymptotic upper bound P̃Ec for PEc coincides with the

Stirling’s approximation for PEc and is given by

ln P̃Ec =
[
2 (1 − a) ln(1 − a) − (1 − 2a) ln(1 − 2a)

]
K (2.6)

As the multiplier of K is negative for 0 < a < 1/2, we deduce that when 0 < a < 1/2,

lim
K→∞

PE(li, lj) = 1, aK ≤ li ≤ lj ≤ (1 − a)K (2.7)

That is, if each node has a non-vanishing fraction of all K files, a file exchange almost

certainly will occur when the number of files in the system is large.

To find an upper bound for PEc that is valid for most values of li and lj, we observe

that the small x approximation ln(1 + x) � x implies

ln P̃Ec � −2a2K, (2.8)

implying that PEc can be made arbitrarily close to zero by choosing a > O
(
1/
√
K
)
.

When the number of files in the system is large, file exchange almost always happens

among neighbors during most of the file dissemination process. In practice, we can

regard PE = 1 when K ≥ 1000. We will come back to this point when we discuss our

simulation results in Figure 2.3.

In the following, we derive the expected networking time E[T4] for a node to obtain

all files and the associated throughput C4. We assume that K is large such that (2.7)

holds and we model the dynamics of movie downloading by the discrete time Markov
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Figure 2.2: Illustration of the Markov chain model. The shown values denote the state
transition rates. Note that the depiction of self transitions is omitted.

chain illustrated in Figure 2.2. Denote the state as the number of files remaining to

be downloaded to a node. Initially a node is at state K. Since the first two files

must be obtained from an infostation, the next state is K − 2. Subsequently, in states

k ∈ {1, . . . ,K − 2}, each unit of time allows the following possibilities:

• With probability p, the node encounters the infostation and then with probability

β′ downloads two files. The state goes from k to k − 2 with probability µ = pβ′.

• With probability 1−p, the node is at a regular location and then with probability

β participates in a file exchange. The state goes from k to k− 1 with probability

λ = (1 − p)β.

• With probability 1−λ−µ, no new files are obtained and the state stays the same.

Denote the expected first passage time from state i to state 0 as gi, where (2 ≤ i ≤
K − 2). Conditioning on the next state transition and rearranging yields the difference

equation,

gi =
1

λ+ µ
+

λ

λ+ µ
gi−1 +

µ

λ+ µ
gi−2 (2.9)

where the boundary conditions are given by g0 = 0 and g1 = 1/(λ + µ). Using z-

transforms, we solve (2.9) to obtain

gi =
i(λ+ 2µ) +

(
1 −

(
−µ
λ+µ

)i)
µ

(λ+ 2µ)2
(2.10)

It is obvious that E[T4] = 1/µ+gK−2, where 1/µ is the expected time until a node first

encounters the infostation and obtains the first two files.



22

For a network with a single infostation supporting N nodes over L locations, we

consider the large-system and many-files regime in which N,L,K � 1 while the spatial

density of nodes ρ � N/L is held constant. In this regime, (2.2) and (2.4) imply that

the infostation download probability and the conditional access probability converge to

β′(ρ) ∼ 1 − e−ρ

ρ
(2.11)

β(ρ) ∼ 2
ρ

(
1 − (ρ+ 1)e−ρ

)
(2.12)

Furthermore, λ ∼ β (ρ) and µ ∼ β′ (ρ) /L and the asymptote of the expected time for

an arbitrary node to collect all K files is

E[T4] ∼ K

β(ρ)
+

L

β′(ρ)
(2.13)

Here, the second term is equal to 1/µ to account for the time for a node to fetch the

first two files in an infostation encounter. The first term is an approximation to gK−2

by assuming all remaining files are obtained from node to node file exchanges when

infostation density is low, i.e. L � 1. If we further allow K to grow large relative to

both N and L, the corresponding throughput C4 of a node is

C4 =
K

E[T4]
∼ β(ρ),

K

N
,
K

L
→ ∞ (2.14)

We observe that the node density ρ that maximizes β also minimizes the expected

networking time E[T4] and maximizes the throughput C4.

To appreciate the extent to which social contract improves the rate of file dissem-

ination of a completely noncooperative network, in which the only mechanism for file

distribution is direct downloading from fixed infostations, we consider the Markov chain

model for the latter. The corresponding difference equation for the first passage time

from state i to 0 is gi = 1/µ+ gi−2 for i ≤ K − 2, yielding E[T4] = gK = KL/2β′ and

C4 =
2β′(ρ)
L

(2.15)

Hence, the social contract provides an O(L), or equivalently O(N) since L and N are of

the same order, improvement to the individual file collection rate. The key ingredient

in this improvement is the increase from O(1) file deliveries per unit time made by
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an infostation to O(N) peer-to-peer file exchanges per unit time. With more complex

models for radio communication and user mobility, in particular those employed in [20],

the ability to support O(N) communication links in a population of N mobile nodes

should yield similar improvements.

The social contract also leads to a similar improvement to the dissemination rate

considered in our simulations, defined as the rate at which files are collected by nodes

through either downloading from fixed infostations or file exchanges. Since the indi-

vidual file collection rate C4 is β, file dissemination rate with social contract is Nβ

during most of the dissemination process. On the other hand, the file downloading rate

at an infostation is 2 if a node is present there, thus file dissemination rate without

social contract is slightly less than 2. Therefore, the improvement offered by the social

contract is of the order N .

2.4 Simulation Results

In this section, we examine the impact of the number of nodes N and number of

files K in the system on the network performance, evaluated in terms of the expected

networking time E[Ti] and throughput Ci. In our simulations, the network size is kept

constant at L = 25 nodes. A node moves to one of the neighbor locations w.p. q = 0.25

at each unit time. The performance metrics are obtained from ensemble averaging over

100 simulations.

For performance evaluation, we define the dissemination rate as the total number

of files obtained, either by download from the infostation or by file exchange, per unit

time over all mobile nodes. Figure 2.3 shows the dissemination rate averaged over 100

simulations runs. The number of nodes is held constant at N = 50 and the number of

files is varied (K = 50, 100, 500, 1000). In all cases, the differences between the random

and the greedy strategies were found to be very small. Thus, the random strategy is a

good alternative to the greedy strategy for practical implementation.

From Figure 2.3, the y-intercept is slightly less than 2. Since the node density is

high, it is probable to find at least a node at an infostation location and download 2 files
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at t = 0. The file dissemination process has three distinct phases. In the first phase,

the infostation seeds the mobile nodes with files and the dissemination rate increases

rapidly as nodes obtain the ability to exchange files. Once most nodes have visited the

infostation, PE � 1 and the dissemination rate remains steady at a peak rate that is a

function of the access probability β(ρ). In particular, each node will exchange one file

with probability PEβ(ρ) � β(ρ). Over all N nodes, the dissemination rate is Nβ(ρ).

Once a node has acquired all K files, the social contract dictates that the node refrain

from file exchanges. As the number of nodes with all K files becomes significant, we

enter the third phase in which the dissemination rate declines to zero as time evolves.

The remaining nodes must download their files directly from an infostation, prolonging

the time to download the entire movie. For all values of K, our simulations exhibit a

significant tail associated with this final phase of dissemination.

As mentioned in the last section, in the absence of node to node file exchanges, the

rate of file downloading shown in Figure 2.3 would have been constantly the y-intercept

value of about 2, as opposed to Nβ(ρ) most of the time. The simulation results are

consistent with the analysis in the last section. As PE � 1 for large K, in each unit

of time, each node will obtain one file with probability β(ρ). With N nodes in total,

the average dissemination rate in the middle phase is Nβ(ρ). In Figure 2.3, N = 50,

L = 25, yields ρ = N/L = 2 and the middle phase dissemination rate is very close

to Nβ(2) � 30 files per unit time. The ratio of this rate to that of the completely

noncooperative network is about 15—a dramatic improvement. Incidentally, we can

interpret Figure 2.3 as a scaled version of PE as a function of t. When t → 0, most

nodes have nothing in their caches, thus PE(t) � 0. Similarly, PE(t) � 0 when t is large

since most of the nodes have finished downloading everything.

Lastly, for a finite population of nodes, we can mark the boundaries of the middle

phase by the times about which all nodes have O(
√
K) and O(K−√

K) files, based on

the discussion of the upper bound of PEc after (2.8). We hence observe that the first

and third phases require O(L
√
K) time, roughly on the order of the time required for

each node to acquire
√
K file solely by visiting the infostation. On the other hand, in

the middle phase, the system must deliver O(NK) files in total at a dissemination rate
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of Nβ(ρ) files per unit time, and this requires O(K) time. As K increases (with N,L

fixed although not small), this middle phase comes to dominate the total dissemination

time. Hence, for large K, the average dissemination rate is effectively the same as

the peak dissemination rate of the middle phase. In short, as K → ∞, the curve of

Figure 2.3 converges to a rectangle with a constant file dissemination rate of Nβ(ρ) files

per unit time for a duration of K/β(ρ) time units. This conclusion is consistent with

the observation that the peak dissemination rate Nβ(ρ) is simply N times the average

per node capacity C4. We note that as K → ∞, the transmission of each channel

is only limited by contention, indicating the noncooperation strategy achieves almost

optimum resource utilization.

In Figure 2.4, the networking time Ti, i = 1, 2, 3 are plotted against the number of

nodes N . The number of files is kept constant at K = 200. From (2.2), it is easily

verified that β(ρ) is maximized at β = 1.7933 users/location, or Nopt = 45 users over

L = 25 locations. This agrees with our observation in Figure 2.4(a), confirming that

N � 45 also minimizes E[T1]. When N increases past Nopt, E[T1] increases due to

the increased contention at each location; however, the increase is partially offset by

the increased opportunity for exchanges; hence, E[T1] is fairly insensitive to N when

N ≥ Nopt. When N < Nopt, E[T1] increases quickly for decreasing N . When N is small

and node density is low, the system performance is hampered by the limited availability

of file exchanges. In this case, E[T1] is very sensitive to N since a small increase in N

significantly increases the rate of file exchange.

In Figure 2.4(b),(c), the optimum number of nodes that minimizes the networking

time T2 and T3 are respectively Nopt = 20 and Nopt = 10 nodes, rather than N = 45

nodes. This disparity arises from the observation in Figure 2.3(a),(b) that when K

is not large, the total download time depends strongly on the duration of phase three

which has a long tail. The tail length depends largely on the rate at which mobile nodes

can download from the infostation. The tail decreases as N decreases because fewer

nodes results in each node having better access to the infostation. On the other hand,

T1 is unaffected by the long tail. A plausible reason is that networking is unfair; 80%

of the nodes finish downloading all files well before hitting the long tail regime.
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With reference to Figure 2.5, the networking time is plotted against the number of

files K cached in an infostation. It is obvious that the networking time Ti, i = 1, 2, 3

could be fitted to an asymptote as K → ∞. The variance for E[T1] is small, indicating

that the networking effect due to node mobility is deterministic. The slope of the

asymptote is found to be around 1.63, which is equal to 1/β(N). E[T2] and E[T3], on

the other hand, exhibit larger variances. The slope of the asymptotes for E[T2] and

E[T3] are 1.1 and 1.6. When K ≤ 500, we observe that E[T2] is larger than E[T1].

Beyond K = 500, E[T2] is smaller than E[T1]. This demonstrates that as K increases,

the networking between the nodes is more fair. That is, all nodes have approximately

the same file downloading time. A plausible reason is that PE → 1 as K increases.

The downloading rate is no longer influenced by individual file content, but depends

primarily on mobility and contention. For large K ≥ 500, the downloading time is

long compared with the time scale of mobility ergodicity. Each node therefore has a

downloading time that is almost the same, such that E[T1] > E[T2].

2.5 Data Diversity

In Figure 2.5, we showed that the networking time E[Ti], i = 1, 2, 3 can be fitted

nicely to an asymptote as K increases. The corresponding throughputs are plotted in

Figure 2.6 versus K. We observe that the throughput is an increasing function of K.

It is instructive to find the asymptotic value of throughput C∞
i as K → ∞. To do this,

we use the intuition captured in (2.13) and approximate the asymptote of Ti by

T∞
i = miK + ci (2.16)

where mi is the slope and ci is the vertical intercept. Since the asymptote T∞
i ap-

proaches E[Ti] arbitrarily close when K → ∞, we compute the asymptotic capacity

as

C∞
i = lim

k→∞
K

Ti
= lim

k→∞
K

T∞
i

=
1
mi

(2.17)

Recall that m3 = 1.63 as read from Figure 2.5(c). Thus C3 = 0.613 files per node

per unit time, or 30.65 files per unit time in our network where N = 50. This agrees
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with our result in Figure 2.3(d). When PE � 1, the rate for data dissemination is

around 30 files per unit time. Incidentally, we observe that

lim
K→∞

C3 = lim
K→∞

C4 (2.18)

When K → ∞, networking is fair and each node has the same throughput asymptoti-

cally. Thus, our simulation results are consistent with our simplified analysis.

The apparent increase in throughput can be understood using the concept of data

diversity. In wireless communications diversity refers to the exploitation of variations

in signal strength due to multipath fading. Since multipath fading exhibits signal

variations over spatial, time and frequency domains, diversity techniques can be applied

to select the strongest signal component over the respective domains. Diversity can

also be exploited in a more general sense. In multiuser diversity, for instance, a receiver

exploits the variability of received signal strength over different mobile nodes, and

selects the node with the best channel for transmission.

Whereas the above techniques belong to the category of communication diversity, we

argue that a new form of diversity, coined data diversity, is exhibited in noncooperative

content distribution. When nodes are not cooperating, each node effectively has a

preference list of files that evolves with time. If the number of disseminated files is

large, there are more selections from a node’s perspective. (2.5) and (2.7) dictate

that file dissemination under the social contract is more efficient when there are more

selections available for each node. There are, however, some differences between receiver

diversity and data diversity. We note that receiver diversity is the result of a passive

environment and we can exert no influence to the outcome. Data diversity, on the other

hand, is the consequence of our social contract, over which we have complete control.

Nevertheless, the social contract provides a general framework to study non-cooperation

content distribution in mobile infostation networks. We have shown that data diversity

is relevant to noncooperative data dissemination, which is gaining more attention in

the networking community. Data diversity may also have implications to other peer to

peer networks other than mobile infostation networks such as content distribution on

the wired Internet.
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Consider the possibility that several content providers use the mobile infostation in-

frastructure to disseminate their content (that are not highly overlapping) to a common

group of subscribers. If a subscriber has files from content provider A and he encounters

another subscriber with files from content provider B, these files generally would not be

inter-exchangeable since they originated from different content providers. However, our

results point out that content distribution for each provider would be more efficient,

in terms of both throughput and fairness, if there were mutual agreements between

content providers such that all files are inter-exchangeable, effectively increasing the

content size K.

On the other hand, even if the content providers do not collude in data dissemina-

tion, data diversity can still be useful, say, in the dissemination of a single movie of a

movie distribution network. Consider the scenario when a DVD quality movie is dis-

seminated in a highway infostation network populated with fast vehicular subscribers.

A typical drive-through infostation has a coverage radius of 20m [16]. A vehicle at a

speed 20m/s therefore has a connection time of 2 seconds when it is in the coverage

area of an infostation. Similarly, for two vehicles moving in opposite direction, the con-

nection time is only 1 second. Suppose the infostation radios operate at a modest data

rate of 160Mbit/s (which still substantially outperform the state of the art 54Mbit/s

802.11a access points available today). In order to facilitate the file exchange of two

data files in the worst case of a head-on mobile to mobile encounter, the file size should

be no more than 10MByte. On the other hand, the typical size of a DVD quality movie

is roughly 5GByte. Thus, a movie should be split into K = 500 files and cached in

fixed infostations for dissemination. Our simulation results in Figure 2.6(c) have shown

that with a modest content size of K = 500 files, the achievable per node capacity C3 is

80% of the theoretical per node capacity limK→∞C4 for asymptotically large K. Thus,

without even relying on the collusion between the content providers, we can enjoy the

benefits of data diversity in the dissemination of a single movie.
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2.6 Dissimilar Interests

In our basic model, we assume all nodes have a common interest in K files. In this

section, we extend the common interest model to the case where each node has interest

in only a subset of the K files cached in the infostation. Depending on the type of

content, the interests of the nodes can be mutually exclusive or partially overlapping.

For instance, suppose multiple movies, say 1/α movies are cached in the infostations,

where 0 < α ≤ 1. Each movie has the same length and is divided into αK files. If each

node is interested in one movie only, then any two nodes will have interests that are

either exactly the same or mutually exclusive. More generally, the interests of all nodes

are partially overlapping. Consider the case where multiple TV shows are cached in

the infostations. Without loss of generality we assume each TV show is stored as one

file. Each node is interested in αK TV shows or files that is randomly selected from all

K cached files.

Recall in section 2.2 that a user strategy consists of two parts. Suppose two nodes

seize the local channel successfully. First the two nodes must determine whether to

exchange files. Second, upon an agreement of performing a file exchange, each node

determines what to exchange as specified by the random or greedy strategy. In the

common interest model, each node is interested in every file cached in the infostations.

A node therefore is genuinely interested in every file that it does not have. In the

dissimilar interest model, however, the above assumption is no longer valid. We can

differentiate two user strategies in which neighbor nodes determine whether to exchange

files. In user strategy I, neighbor nodes A and B perform a file exchange only if both

nodes discover a file of genuine interest on inspection of each other’s caches. In user

strategy II, nodes A and B are obliged to exchange files if each node has a file that

the other node does not have, whether or not those files are of genuine interest.

Once the nodes agree on a file exchange, either the random or greedy download-

ing strategy can be used in both user strategies. Nevertheless, we have demonstrated

through analysis and simulations in earlier sections that the random and greedy down-

loading algorithms have almost identical performance. Hereafter, we consider only the



30

random downloading strategy when we compare the performance of user strategy I and

II in the simulation studies.

We have performed simulations to study the network performance for the multiple

movies model, where node interests are either exactly the same or mutually exclusive.

The network performance is evaluated in terms of α, which characterizes the extent of

overlapping interest with other nodes. When α is very small, each node is interested

in a small fraction of all files. The interests of any two nodes are likely to be mutually

exclusive. As α increases, more nodes are interested in the same files. It is therefore

more probable for a node to run into another node that has the same interest. When

α = 1, all nodes are interested in all K files and our model reduces to the common

interest model.

In our simulations, we assume the number of nodes in each infostation block is N =

40 and the total number of files is K = 1000. We consider the multiple movies model in

which 1/α = 1, 2, 4, 5, 10, 20, 40 movies are distributed at the infostations. Each movie is

split into αK files, and the corresponding values of α are 1, 0.5, 0.25, 0.2, 0.1, 0.05, 0.025.

In the case of 40 movies, each node is interested in different movies and have mutually

exclusive interest. The number of nodes having the same interest increases with α.

When α = 1, all nodes have a common interest for the same movie. Denote E[Tα,j
i ], i =

1, 2, 3 as the expected networking time of user strategy j, where j = 1, 2. We are

interested in finding the expected networking time for both user strategies.

Referring to Figure 2.7, the networking time of both user strategies is plotted versus

α. We observe that even when α is very small, the downloading time of user strategy I

is quite large. In particular, when α = 0.025, the number of files wanted by each

node is only αK = 25. The corresponding expected networking time E[Tα
i ], i = 1, 2, 3

for both user strategies is approximately 700, 750, and 850 units. At α = 0.025,

each file is desired by one node. This is easily seen since by symmetry, each file is

desired by αN = (0.025)(40) = 1 node. Suppose all nodes observe user strategy I. It

is obvious there is no file exchange between nodes since each node keeps only files that

is wanted by that particular node only. On the other hand, when user strategy II is

used, file exchanges between nodes are allowed. Nevertheless, a node never fetches a
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file and benefits from a file exchange since all nodes have mutually exclusive interest.

For both user strategies, each node has to download every desired file directly from

an infostation. The absence of concurrent file exchanges in conjunction to infostation

downloading explains the long and identical networking time.

Referring to Figure 2.7 again, it is obvious that E[Tα,1
i ] and E[Tα,2

i ] are increasing

with α for i = 1, 3. This is plausible since in general, more time is needed for a fraction of

nodes to finish file downloading as the number of desired files increases. An interesting

(although not statistically significant) exception is observed for E[Tα,1
2 ], and might be

explained by the following. When the number of files αK to be downloaded is small,

a node usually runs into other nodes that have mutually exclusive interests. The node

therefore has to download most of the files directly from the infostations, unable to

enjoy the benefit of spatially concurrent file exchanges. As a result, these nodes have a

large networking time. As α increases further, most, if not all, of the nodes participate

in beneficial file exchanges due to the presence of nodes with the same interests. Since

E[Tα,1
2 ] is dominated by the nodes without file exchanges when α is small, this explains

the peak at α = 0.2.

In order to explain the increasing trend of networking time with α, and to charac-

terize the performance difference for both user strategies, we examine the mechanism of

the data dissemination in the following. As α increases from α = 0.025, there is more

nodes with the same interests. Each file is desired by αN users on average. Consider

user strategy I. Approximately αN nodes are willing to act as the networking agents

for each file and possibly carry the file in their cache as these nodes roams around the

network. When α gets larger, the number of networking agents for each file increases.

Since the circulation of a particular file is constrained by the number of networking

agents for that file, increasing α effectively promotes the circulation of each file. This

impacts the number of node-to-node file exchanges favorably, allowing more simultane-

ous file exchanges to take place. Consequently, the networking time E[Tα,1
1 ] and E[Tα,1

3 ]

flatten quickly as α is increased.

For user strategy II, the networking time is consistently smaller than that of user

strategy I as α increases from 0.025. Although nodes have little overlap of common
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interests when α is small, user strategy II dictates that a file exchange ensues whenever

each node can retrieve a file that it does not have on inspection of the cache of the other

node. Thus, all N nodes are willing to act as the networking agents for all files. The

circulation of each file is not constrained by the particular interests of each node. Since

nodes are more admissable and willing to carry files in user strategy II, the networking

time is consistently smaller.

In the case α = 1, our dissimilar interest model reduces back to the common interest

model. Both user strategies I and II have identical networking time E[Tα
i ], i = 1, 2, 3,

that agrees to the corresponding values E[Ti], i = 1, 2, 3 for the common interest network

model. When K is reasonably large (in our case K = 1000), data diversity dictates that

PE → 1 and the networking time is then only constrained by the contention probability

β given by (2.13).

2.7 Multiuser Diversity

In Figure 2.7, we showed that the networking time E[Tα
i ], i = 1, 2, 3 for user strategy II

is always less than that of user strategy I. The corresponding network capacity is plotted

versus α in Figure 2.8. Again, x-axis denotes the fraction α of files that each node is

interested in, where α takes the values of 0.025, 0.05, 0.1, 0.2, 0.25, 0.5,1. We observe

that for both user strategies, the network capacity Cα
i , i = 1, 2, 3 is strictly increasing

with α. The capacity of user strategy II is consistently larger than that of user strategy I

when nodes have dissimilar interests ( 1
N < α < 1). The capacity of both strategies

coincide when α ≤ 1
N and α = 1. When α ≤ 1

N , all nodes have mutually exclusive

interests. Even though user strategy II allows node-to-node file exchanges, there is no

corresponding gain in network capacity. Similarly, when α = 1, our model reduces back

to the common interest model. Thus both user strategies I and II have almost identical

capacities.

The increasing trend of network capacity with α can be understood using the con-

cept of multiuser diversity inherent to mobile infostation networks. The efficiency of

dissemination of this file is dependent on the willingness of the mobile nodes to carry it
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across the network. If a node is willing to carry a particular file, then the node is effec-

tively acting as a networking agent for that file. For user strategy I, each file is wanted

by approximately αN nodes, who are willing to act as the networking agents for the

file. For strategy II, each node is obliged to carry every file even if the file is not wanted

by the node. The number of networking agents is then equal to the number of nodes

N irrespective of α. We argue that the performance improvement of user strategy II

is an exploitation of multiuser diversity, where the number of nodes willing to act as

networking agents for each file is increased. Since the circulation of a particular file is

equal or less than the number of networking agents for that file, the actual circulation

of each file improves as the number of networking agents increases. As a consequence

of improved file circulation, the efficiency of file exchanges improves as stipulated by

data diversity, allowing multiple spatially concurrent file exchanges to take place.

From the above argument, we expect the two user strategies have the greatest

performance disparity when α is small. Figure 2.8, however, shows that the percentage

performance disparity is maximum when α is about 0.5. We note that the increase of

the number of networking agents indeed leads to a proportional increase in the number

of files in circulation. However, when α is small, each file is of genuine interest to

only a few nodes and most file exchanges involve files that are of no interest to either

node. Thus even if the circulation of all files is increased significantly, the corresponding

increase in the number of file exchanges is not beneficial.

There are two opposing factors that impact the performance of user strategy II. For

small α, the number of networking agents for user strategy II is increased dramatically

by a factor of 1/α. However, most of the file exchanges are not beneficial since node

interests are largely non-overlapping. For large α, there is only a nominal increase in the

number of networking agents. However, since most nodes have very similar interests,

each node gets many desired files and benefits from file exchanges. Our simulation

results show that for α = 0.5, we achieve an attractive, and perhaps optimum, tradeoff

in terms of capacity gain. The corresponding capacity Cα,2
i , i = 1, 2, 3 improvement of

user strategy II over user strategy I is above 66% for all three cases.
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Consider a movie distribution network in which 20 movies are cached in the infosta-

tions, making a total of K = 1000 cached files. Suppose each node is interested in only

one movie of 50 files. This is equivalent to our multiple movies model with α = 0.05. If

all nodes observe user strategy I, the networking time E[Tα,1
i ] is respectively 1100, 1200

and 1300 units. On the other hand, if all nodes observe user strategy II, the networking

time E[Tα,2
i ] is 825, 825 and 1000 units, roughly 70% of the original time. In content

distribution, usually each node wants to minimize the networking time for files of gen-

uine interest. Our simulation results point out that if a node acts as a networking

agent for files he is not interested in, it actually expedites the file downloading process,

reducing the networking time while enjoying a network capacity gain as warranted by

multiuser diversity. This is an interesting result because it implies each node has an

incentive to act as a networking agent and assist in data dissemination without having

an explicit node cooperation model.

Although the exploitation of multiuser diversity in user strategy II yields better

network capacity, it comes at a cost of increased energy consumption due to more

frequent file exchanges. Thus there is a tradeoff between energy consumption and

network capacity. If the network nodes have plentiful energy reserves, say infostations

on vehicles, they should adopt user strategy II to tradeoff energy consumption for better

throughput capacity. On the other hand, for nodes having scanty energy supply, they

can cut down the energy consumption by sacrificing some throughput. Moreover, nodes

do not need to adopt the same user strategy in a network. Each node can independently

decide what user strategy to adopt based on its current level of residual energy.

We note that in user strategy II, there is implicit cooperation between nodes. Each

node is obliged to act as the networking agent for files that it is not interested in, That

is, each node caches and disseminates personally uninteresting files for other nodes as

it roams the network. The performance gain of user strategy II over strategy I agrees

with the intuition that more cooperation usually leads to better system performance.

Although user strategy II requires implicit cooperation between nodes, there is no cor-

responding control overhead due to user cooperation. We do not assume the exchange
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of files of genuine interest to neighbor nodes takes priority over other types of file ex-

changes. In our implementation, when there are multiple neighbor nodes at the same

location, the first two nodes that broadcast control messages to request a file exchange

seize the channel. This rule is equivalent to randomly picking two nodes from all neigh-

bor nodes with no signaling overhead and is completely determined by contention. Note

that giving priority to exchanges of files of genuine interest may improve overall system

performance if one can develop an efficient protocol between multiple neighbor nodes

to determine the optimal node pair to exchange files.

2.8 Conclusion and Further Work

We have addressed the issue of noncooperation among nodes in the context of content

distribution in mobile infostation networks. In the first part, we assume all nodes have a

common interest of K files cached in the infostations. We have shown that it is possible

to drastically increase the rate of file dissemination of a completely noncooperative

network by requiring the absolute minimal cooperation among users in the form of

a social contract. A random and a greedy file downloading algorithms are examined

and shown to have similar performance. We show that there exists some optimal node

density in these networks such that the access probability of a node is maximized and the

networking time is minimized. More importantly, we show that the total number of files

cached in the infostations impacts the networking fairness and throughput. We identify

this phenomenon as data diversity that is distinct from conventional communication

diversity. When nodes are noncooperative and have individual preference on data,

the network exhibits data diversity and the throughput of each node increases with

increasing content variety. In the second part, we extend the common interest model

to the case where nodes have partially overlapping but dissimilar interests. Two user

strategies are considered for this model. We show in our simulations that a file exchange

strategy that takes advantage of the multiuser diversity inherent in mobile infostations

results in enhanced network performance. We conclude that both data diversity and

multiuser diversity can be exploited in the mobile infostation architecture even if nodes

are noncooperative.
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In the present work, simple mobility and interference models are used to facilitate

analysis. This approach has been fruitful, leading to the observations of two diversity

phenomena in noncooperative content distribution. Nevertheless, a thorough exami-

nation of the implications of mobility and interference to the network performance of

mobile infostations is called for. As a first step, the issue of interference modeling is

addressed in a recent paper [100]. The effect of transmit range on network capacity is

examined. We found out a stipulated transmit range improves the capacity of a mobile

infostation network further. An optimal number of neighbors exists for mobile infos-

tation networks that is distinct from the well known 6-8 magic number [28, 44, 91] for

multihop ad hoc networks. Moreover, the network capacity is linearly increasing with

node density. Thus mobile infostation is an attractive alternative to multihop network-

ing in future pervasive computing environments, where high node density dooms the

throughput of multihop networks. On the other hand, the effect of mobility on mobile

infostations is currently being studied. The connection time in each node to node en-

counter obviously depends on node mobility and needs to be quantified. To this end

we have proposed a sophisticated mobility model for highway mobile infostation net-

works that allows for performance analyses based on renewal and queuing theories. We

conjecture that the performance of mobile infostation networks are robust to mobility.
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Figure 2.3: Average number of files obtained at each unit time over 100 simulations.
(a) K=50, (b) K=100, (c) K=500, (d) K=1000.
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Figure 2.4: Average networking time vs. the number of nodes N . (a) E[T1] when 80%
of all nodes obtain all files, (b) E[T2] when all nodes obtain 80% of all files, (c) E[T3]
when all nodes obtain all files.
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Figure 2.5: Average networking time vs. the number of cached files K. (a) E[T1] when
80% of all nodes obtain all files, (b) E[T2] when all nodes obtain 80% of all files, (c)
E[T3] when all nodes obtain all files. The dashed lines denote the 1 standard deviation
upper and lower bounds from the mean value.
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Figure 2.6: Throughput capacity vs. the number of cached files K. (a) C1 when 80%
of all nodes obtain all files, (b) C2 when all nodes obtain 80% of all files, (c) C3 when
all nodes obtain all files. The dashed lines denote the 1 standard deviation upper and
lower bounds from the mean value.
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Figure 2.7: Average networking time vs. the fraction of interested files α. (a) E[T1]
when 80% of all nodes obtain all files, (b) E[T2] when all nodes obtain 80% of all
files, (c) E[T3] when all nodes obtain all files. The dashed lines denote the 1 standard
deviation upper and lower bounds from the mean value.
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Figure 2.8: Throughput capacity vs. the fraction of interested files α. (a) C1 when 80%
of all nodes obtain all files, (b) C2 when all nodes obtain 80% of all files, (c) C3 when
all nodes obtain all files. The dashed lines denote the 1 standard deviation upper and
lower bounds from the mean value.
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Chapter 3

Optimum Transmit Range and Capacity of Mobile

Infostation Networks

3.1 Introduction

In the mobile infostation literature, the concept of physical proximity is not well char-

acterized. In [103], it assumed that the planar network consists of discrete locations, in

which any two collocated nodes can participate a file exchange. Physical proximity is

defined in terms of a hypothetical grid of discrete points, leading to an overly simplified

mobility and interference model. On the other hand, [20] assumed that a candidate

transmit node always transmits to the closest receive node. Although the transmit and

receive node pair has the shortest distance, this strategy may not perform well since

this distance may be large in some pathological topology realizations. In these links,

the benefit of spatial transmission concurrency may be more than offset by a simul-

taneous increase in total interference power in the network. It may be worthwhile to

suppress the transmissions when the channel is less excellent, even though the receive

node is the node closest in distance. The resultant decrease in total interference power

due to the suppression of transmissions in the less excellent channels may be beneficial

to the sum rate of the remaining connections. To ensure that only excellent channels

are used, a natural strategy will be imposing an artificial transmit range for all nodes.

A candidate transmit node will schedule a transmission only if it sees some receive

nodes in its transmit range. We note that this definition of transmit range is differ-

ent from the meaning in the usual sense. In cellular networks, a transmit range of r0

usually refers to the fact that the SIR γ at the transmit range boundary marginally

meet an outage requirement. That is, the transmit range is a constraint imposed by

the physical environment and a myriad of communication technologies. In our context
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of mobile infostations, a transmit node may well see many receive nodes beyond the

transmit range due to the physical proximity of nodes. However, we impose this arti-

ficial transmit range and block all these potential transmissions, though the channels

are perfectly fine. Here we explicitly trade spatial transmission concurrency for greater

spectral efficiency of the remaining connections in the network. As far as the transmit

node is concerned, all nodes within the transmit range are its neighbors. It is desirable

to see if the stipulation of an artificial transmit range will further improve the network

capacity.

The rest of the chapter is organized as follows. In section 3.2, we describe the

system model, the four strategies and the performance metric. In section 3.4.1, four

transmission strategies are compared on the basis of capacity maximization. We identify

the scaling invariance property of the network in section 3.4.2 and compare the optimal

parameters of the four transmission strategies in section 3.4.3. Finally, we discuss the

implications of our results and wrap up in section 3.6.

3.2 System Model

We assume nodes populate a planar region according to a homogeneous spatial Poisson

process with constant intensity λ, otherwise known as the node density. Time is divided

into slots. In each slot, a fraction θ of all mobile nodes are randomly selected as

candidate transmit nodes. This ensures that the point processes for the candidate

transmit nodes and receive nodes are Poisson, with average node density λθ and λ(1−θ)
respectively [42]. The Poisson assumption of the transmit nodes is needed to facilitate

the computation of interference statistics.

We consider a sender-centric transmission model for the nodes. A candidate trans-

mit node transmits when there are receive nodes within a ring of radius r0. Referring

to the example of Figure 3.1, three candidate transmit nodes (T1 to T3) have receive

nodes in their transmit range and therefore proceed with transmission. The remaining

candidate transmit nodes (T4 to T7) cannot find any receive node and remain silent in

the time slot. If there are more than one receive node in range, say T3, it may select
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Figure 3.1: A network populated with candidate transmit nodes and receive nodes.
A candidate transmit node attempts a transmission if there are receive nodes in its
transmit range.

a receive node randomly, or the closest receive node in range R3, and initiate data

transmission. It may happen two transmit nodes select the same receive node simulta-

neously, which is not a problem for receivers that can capture more than one packet.

However, in a receiver-centric model two receive nodes may select the same transmit

node to initiate data transmission. A conflict resolution mechanism is needed that pre-

clude performance analysis. It was shown in [20] that a receiver-centric transmission

model yields a slightly higher SIR stochastically. For the sake of tractable analysis

however, we employ the sender-centric transmission model.

We assume all nodes transmit at the same power. The network is interference limited

and background noise at a receive node is neglected. In the absence of noise, the SIR

at a receive node is independent of the transmit power. In our subsequent analysis, we

will therefore assume without loss of generality that each node has a normalized power

of 1. The path gain g(r) of a signal is solely determined by the distance r between

a transmitter and receiver. Second order effects such as shadowing and multipath

fading [89] are ignored. We assume that interference are non-coherently combined at

the receive node and treat the total interference power as the sum of the interference

power of a Poisson field of interferers. Denote the distance of node i to its intended

receive node j as ri. The SIR at the receive node j is thus

γj =
g(ri)
Y

=
g(ri)∑

k �=i g(rk)
, (3.1)
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where Y is the summation of interference power contributions from all interference

transmitters. Moreover, each point in the plane sees the same interference statistics

due to the spatial invariance of homogeneous Poisson process. Hence we drop the index

j in the SIR γ in subsequent analysis to emphasize that the receive SIR at any arbitrary

receive node is the same.

We have looked into four transmission strategies and compare them in the metric

of expected capacity per unit area per unit bandwidth E[C], in the unit bit/s/Hz/m2.

Here the notion of capacity is defined in a loose sense. The theoretical capacity of

the strategies are computed under the assumption of single-user receiver decoding.

The capacity represents an upper bound performance of a particular transmission and

reception strategy and should not be confused with the maximum network capacity over

all possible networking and decoding strategies. The capacity of a particular strategy

can be contrasted to the packet success rate of practical systems, which is discussed in

section 3.5.

Prior work [20,24] assumed that the network area is fixed while the number of nodes

is varied. The network capacity is well defined. However, here we assume an infinite

size network scattered with a Poisson field of nodes. It is therefore more appropriate to

discuss the capacity per unit area instead. On the other hand, the effect of bandwidth

scaling is not investigated in this chapter. Without loss of generality we assume our

system operates on unit bandwidth. Our performance metric then becomes expected

capacity per unit area, or expected spectral efficiency per unit area, which is used inter-

changeably in this work. Mathematically, the capacity per unit area is written as

E[C] = E[λt log2(1 +
g(R)
Y

)], (3.2)

where λt is the node density of the transmit nodes, and log2(1+ g(R)
Y ) is the capacity of

a link with SIR g(R)/Y at unit bandwidth. Note that the expectation is taken over the

random variables R the distance of the communication node pair and total interference

power Y . Our aim is to determine the optimum transmit range r0 and the fraction of

candidate transmit nodes θ based on the objective E[C].

We investigate four transmission strategies in this chapter: a non-adaptive strategy,
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a random node in range strategy, a closest node in range strategy and the closest node

strategy. In the non-adaptive strategy, the transmission rate is determined by the SIR

at the transmit range boundary, i.e.

γ(r0) =
g(r0)
Y

. (3.3)

Even if the SIR is higher when two nodes are closer than distance r0, the additional

link capacity warranted by the higher SIR is not exploited. We denote the performance

metric of the non-adaptive strategy as E[C] to allude that this strategy provides a lower

performance bound to the four strategies.

Both the random node in range and the closest node in range strategies operate

on the assumption of adaptive transmission. While the transmit power of all nodes is

kept constant, the transmission rate is varied so that the link capacity is fully utilized.

As the name implies, in the random node in range strategy a candidate transmit node

randomly selects a receive node for transmission when multiple receive nodes are within

its range. In the closest node in range strategy, the best channel is exploited and

the closest node in range is selected. In the case there are no receive nodes in the

range of a candidate transmit node, as are all the transparent nodes in Figure 3.1, no

transmission is scheduled. It is obvious the latter strategy has superior performance

since the candidate transmit node always selects the receive node with the best SIR and

link capacity. We denote the performance metric as E[C] to emphasize that this strategy

provides an upper performance bound of all the four strategies. The corresponding

metric for the random node in range strategy is denoted as E[Crand].

We also examine a reference strategy with an unconstrained transmit range, i.e.

r0 → ∞. A candidate transmit node always transmit to the closest receive node even

though it may be far away in some pathological topology realizations. This strategy is

similar to the strategy in [20], though there is no consideration of rate adaptation in

that paper. For the sake of fair comparison, however, we assume the reference strategy

is rate adaptive in this chapter. Hereafter, we refer to this strategy as the Grossglauser-

Tse (GT) strategy. The corresponding capacity per unit area is denoted as E[CGT ].

Since there is no transmit range for this strategy, we optimize E[CGT ] over θ.
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3.3 Interference Modeling

In order to compute E[C] we need to derive the PDF of the interference power Y and

connection distance R of the node pair. We assume that interference is non-coherently

combined at the receiver, and treat the interference of each node as white noise. The

interference power of all transmit nodes adds up to a total interference power Y . Instead

of working with Y directly we consider Ya the interference power at an arbitrary receive

node from the transmit nodes within a radius a. Ya is the total interference power of

a random number of interferers N(a) with random interference g(Rk). Mathematically

we write

Ya =
N(a)∑
k=1

g(Rk). (3.4)

A standard approach to deal with a random sum of random variables involves manipula-

tions in the transform domain using moment generating or characteristic functions [15].

Since it is possible that the total interference power of an infinite number of nodes to

be unbounded when a goes to infinity, characteristic function must be used to avoid

the problem of divergence. This technique was used by [87] to determine the PDF of

the interference power in a Poisson field of interferers.

Our derivation of the interference statistics closely parallels that in [87], with node

density λ replaced by the transmit node density λt to denote the point process of the

transmit nodes. Suppose the transmit range of all nodes is r0. A candidate transmit

node transmits if the number of receive nodes in its range N(r0) is non zero. Thus, the

transmit node density λt is

λt = λθPr[N(r0) > 0] (3.5)

= λθ(1 − e−λ(1−θ)πr2
0 ). (3.6)

Assume that the transmit nodes are Poisson, the number of nodes in the area N(a)

is also Poisson with node density λ. Ya is then evaluated by conditioning on N(a),

the Poisson number of interferers in the area in the transform domain. After some

integrations and algebraic manipulations, the total interference power in the Poisson

field of interferers is obtained by taking the limit a→ ∞.
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In this work, we only consider the two ray ground reflection model. The path gain

is given by g(r) = r−4. The exact derivation of random sum in (3.4) is outlined in [87]

and is not repeated here. The PDF is only dependent on the transmit node density,

given by

fY (y) =
π

2
λty

−3/2e−
π3λ2

t
4y . (3.7)

The corresponding CDF is

FY (y) = erfc
(π3/2λt

2
√
y

)
, (3.8)

where erfc(x) is the complementary error function commonly used in probability of

error calculations in digital communications systems [68], given by

erfc(x) = 1 − 2√
π

∫ x

0
e−t2dt. (3.9)

Although both candidate transmit nodes and receive nodes are Poisson distributed,

the transmit nodes are not Poisson distributed in general. Suppose two candidate

transmit nodes i and j are close to each other at points dAi and dAj . If i is a transmit

node, it implies there is at least one receive node, say k is in its range. Since node j is

close to i, it is likely that j also finds the same receive node k in its range. Therefore,

the event that j is a transmit node is not independent of the event that i is a transmit

node. This violates the independent increment property of Poisson process since the

two points dAi and dAj are not overlapping. Nevertheless, for small r0 and θ, the

mean distance between two closest candidate transmit nodes is larger than 2r0. This

reduces the instances of overlapping coverage area between candidate transmit nodes.

We have run simple experiments to confirm that the Poisson assumption of transmit

nodes applies to the values of r0 and θ of our interest. We will therefore assume that

the transmit nodes are Poisson such that (3.7) applies.

Note that the interference power Y is a random variable with infinite mean and

variance. The PDF is solely dependent on the system parameter λt, which in turn

depends on r0 and θ. As r0 increases, the probability that a node transmits increases.

In the limit r0 → ∞ when there is no constraint on the transmit range, every candidate
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transmit node transmits. Thus the total interference power Y of the system strictly

increases with r0. On the other hand, no transmissions are possible when θ = 0 or

θ = 1 due to the absence of either transmit or receive nodes. An optimal θ exists such

that the density of the transmit nodes is maximized. This can be readily seen by twice

differentiating λt w.r.t. θ.

The transmit node density describes only one dimension of the optimization prob-

lem. It is not always desirable for a network to be operated at maximum spatial

concurrency to allow every candidate transmit node to transmit. By confining all

transmissions to node pairs that have a communication distance less than a stipulated

transmit range, the reduction of spatial transmission concurrency can be traded off for

more spectral efficiency in individual links. We are now confronting the problem of

jointly optimizing r0 and θ for the maximization of the expected capacity per unit area

E[C].

3.4 Performance Analysis

3.4.1 Capacity Maximization

In the non-adaptive strategy, the SIR γ is a function of random interference power only.

The expected capacity per unit area is therefore obtained by conditioning on the total

interference power Y .

E[C] = E[λt log2(1 + γ)] (3.10)

=
λt

ln 2

∫ ∞

0
ln
(
1 +

g(r0)
y

)
fY (y)dy. (3.11)

Evaluating the integral (3.11) yields

E[C] = − λt

ln 2

(
π3λ2

t r
4
0

2 2F2

(
1, 1;

3
2
, 2;

π3r40λ
2
t

4

)

+ b− π erfi
(π3/2r20λt

2

)
+ ln(π3r40λ

2
t )

)
, (3.12)

where

b = lim
n→∞(

n∑
k=1

1
k
− lnn) ≈ 0.5772 (3.13)
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is the Euler’s constant and erfi(x) is the imaginary error function given by

erfi(x) =
2√
π

∫ x

0
et

2
dt. (3.14)

pFq(a1, ..., ap; b1, ..., bq ;x) is the generalized Hypergeometric function, a series of the

form

pFq(a1, ..., ap; b1, ..., bq ;x) =
∞∑

k=0

ckx
k (3.15)

for which the ratio of successive terms can be written

ck+1

ck
=

(k + a1)(k + a2)...(k + ap)
(k + b1)(k + b2)...(k + bq)(k + 1)

(3.16)

and c0 = 1. We observe that both the generalized Hypergeometric function and the

imaginary error function diverge as x increases. However, the difference of these two

functions is always finite.

The capacity formula E[C] involves special functions that does not yield tractable

analytical expressions on differentiation w.r.t. the optimization variables r0 and θ. As

shown in Figure 3.2, E[C] is plotted at the node densities λ = 1, 5, 10, 20 nodes/m2.

Although E[C] is not convex, it is fortunate that simple gradient algorithms can still

be used to determine the optimal transmit range r0 and fraction of candidate transmit

nodes θ for each value of node density λ. As shown in Figure 3.4, the optimal transmit

range, fraction of candidate transmit nodes, the expected number of nodes within the

transmit range and the expected capacity per m2 are plotted versus node density.

When the transmission strategy is rate adaptive, the SIR γ is dependent on both

the interference power Y and the distance of the receive node from the candidate

transmitter R. The expected capacity per unit area is obtained by conditioning on

both the interference power Y and communication distance R. Given there exists a

non-zero number of nodes N(r0) in the coverage radius, we define R as the distance

to the receive node to which we communicate. We denote the PDF of the connection

distance R as fR(r|n). It is implicitly understood that the number of receive nodes in

the transmit range N(r0) is non zero when a transmission is attempted. On the other

hand, the PDF may be dependent on the number of receive node n in the transmit

range.
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(a) (b)

(c) (d)

Figure 3.2: E[C] vs. transmit range r0 and fraction of candidate transmit nodes θ. (a)
λ = 1/m2, (b) λ = 5/m2, (c) λ = 10/m2, (d) λ = 20/m2.

Since the receive nodes are Poisson distributed with intensity

λr = λ(1 − θ), (3.17)

each receive node within the range is uniformly located in the area πr20. In the random

node in range strategy, the distance between the random receive node and the transmit

node therefore has a PDF

fR(r) =

⎧⎨
⎩ 2r/r20 0 ≤ r ≤ r0

0 o.w.
(3.18)

independent of n. For the closest node in range strategy, the distance is the minimum

of among the receive node distances. It is straightforward to deduce

fR|N(r0)=n(r|n) =
2nr
r20

(
1 −

( r
r0

)2
)n−1

. (3.19)

The PDF of the distance to the closest receive node is then computed by conditioning
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on n the number of receive nodes in range

fR(r) =
∞∑

n=1

fR|N(r0)=n(r|n)Pr[N(r0) = n] (3.20)

=
2λrπre

−λrπr2

1 − e−πλrr2
0

0 ≤ r ≤ r0. (3.21)

In the GT strategy, a candidate transmit node always transmits. Taking the limit

r0 → ∞ to (3.21), the PDF of the connection distance fR(r) with an unconstrained

transmit range is

fR(r) = 2πrλre
−λrπr2

0 ≤ r <∞. (3.22)

For the above adaptive strategies, the expected sum rate per unit area E[C] is then

computed as

E[E[λt log2(1 + γ(R,Y ))]] (3.23)

=
λt

ln 2

∫ r0

0

∫ ∞

0
ln
(
1 +

g(r)
y

)
fY (y)dyfR(r)dr (3.24)

=
∫ r0

0
− λt

2 ln 2

(
(π3λ2

t r
4) 2F2

(
1, 1;

3
2
, 2;

π3r4λ2
t

4

)

+2
(
b− π erfi

(π3/2r2λt

2

)
+ ln(π3r4λ2

t )
))

fR(r)dr,

(3.25)

where fR(r) assumes the form of (3.18), (3.21), (3.22) for the three adaptive strategies.

In the random node in range strategy, E[C] can be evaluated as

E[C] =
1

2r20 ln 2

[
2πr20λterfi

(π3/2r20λ
2
t

2

)

−π
3r60λ

3
t

3 2F2

(
1, 1; 2,

5
2
;
π3r40λ

2
t

4

)
− 2
π

(
− 2(1 − e

π3r4
0λ2

t
4 + πr20λ(b− 2)

+λtπr
2
0 ln(π3r40λ

2
t )
)]
. (3.26)

With reference to Figure 3.3, although E[Crand] is not generally convex w.r.t. r0

and θ, it is straightforward to use simple gradient algorithms to optimize the system

parameters. For the closest node within range and the GT strategy, (3.25) cannot

be evaluated analytically and numerical integration must be used. Nevertheless, the
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(a) (b)

(c) (d)

Figure 3.3: E[Crand] vs. transmit range r0 and fraction of candidate transmit nodes θ.
(a) λ = 1/m2, (b) λ = 5/m2, (c) λ = 10/m2, (d) λ = 20/m2.

optimum system parameters that maximize E[C] and E[CGT ] can be determined by

gradient algorithms.

3.4.2 Optimum Transmit Range and Scaling Invariance

The existence of an optimal range for capacity maximization is intuitively obvious.

When the transmit range is too large, a transmit node may connect to a receive node

that is not close. Although there are more simultaneous transmissions over an area, the

increase in the mutual interference reduces the achievable rate for each transmit receive

node pair considerably. On the other hand, when the transmit range is too small, only

node pairs in close proximity transmits. High spectral efficiency of individual links

can be obtained due to the reduction of interference power. Few candidate transmit

nodes actually transmits, however, since very few receive nodes are very close to the

candidate transmit nodes. Thus, the potential spatial transmission concurrency is not
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(a) (b)

(c) (d)

Figure 3.4: Optimized non-adaptive strategy at different node density λ. (a) transmit
range r0 vs. node density λ, (b) expected number of nodes in range N vs. node density
λ, (c) fraction of candidate transmit nodes θ vs. node density λ, (d) expected capacity
per unit area vs. node density λ.

fully utilized, leading to a poor capacity per unit area usage.

A couple of interesting observations can be made in Figure 3.4. First, the optimal

range r0 shrinks as node density increases. As node density increases, it is more likely

for a transmit node to find receive nodes at a smaller range. A decrease in the transmit

range does not adversely affect the number of simultaneous transmissions in the net-

work. Moreover, the optimal range r0 shrinks in a way such that the expected number

of neighbors of a candidate transmit node N is constant, as shown in Figure 3.4(b).

Similarly, Figure 3.4(c) shows that the optimal fraction of transmit nodes θ is also

invariant to node density. Finally, the expected capacity per unit area is linearly in-

creasing with node density. These observations are inter-related and can be explained

using the rescaling argument drawn from continuum percolation theory [51].

A percolation model is characterized by a point process and a connectivity function.
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(a) (b)

(c) (d)

Figure 3.5: Optimized Random Node in Range Strategy at different node density λ.
(a) transmit range r0 vs. node density λ, (b) expected number of nodes in range N
vs. node density λ, (c) fraction of candidate transmit nodes θ vs. node density λ, (d)
expected capacity per unit area vs. node density λ.

In our context of a homogeneous spatial Poisson process, the point process is completely

characterized by the node density λ. A connectivity function, on the other hand,

specifies the probability that a link exists between two nodes as a function of distance

r between them. Here we are using the on-off random connection model, in which two

nodes are connected w.p. 1 when their distance is less than r, which is the same as our

artificial transmit range r0. We denote our percolation model as Π(λ, r). Any network

topology with node density λ and transmit range r is therefore a realization of the

percolation model Π(λ, r).

With reference to Figure 3.8, realizations of two percolation models Π(λ1(θ1), r1)

and Π(λ2(θ2), r2) are drawn. The two realizations are coupled in the sense that the

second realization is exactly identical to the first except for the distance scaling in the
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(a) (b)

(c) (d)

Figure 3.6: Optimized Closest Node in Range Strategy at different node density λ.
(a) transmit range r0 vs. node density λ, (b) expected number of nodes in range N
vs. node density λ, (c) fraction of candidate transmit nodes θ vs. node density λ, (d)
expected capacity per unit area vs. node density λ.

2-dimensional space. Accordingly, the following rules must be satisfied.

θ1 = θ2 (3.27)

λ1A1 = λ2A2 (3.28)

λ1r
2
1 = λ2r

2
2 (3.29)

Equation (3.27),(3.28) and (3.29) express the conservation of the fraction of transmit

nodes, number of nodes in the network area, and number of neighbors of an arbitrary

node N . These rules must be observed if the two realizations are really scaled version of

each other. Note that the two topology realizations have exactly the same connectivity

structure. The SIR of an arbitrary link in realization 1, and the associated link capacity,

must be identical to that of the corresponding link in realization 2. Since the capacity

of a link depends only on the SIR at the receive node, the equivalence of link SIR in

two coupled realizations implies that both realizations have same sum capacity.
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(a) (b)

(c) (d)

Figure 3.7: E[CGT ] vs. the fraction of transmit nodes θ. (a) λ = 1/m2, (b) λ = 5/m2,
(c) λ = 10/m2, (d) λ = 20/m2.

Denote c(Ai), i = 1, 2 as the sum capacity of realization 1 and 2, where Ai is the

network size of realization i. Using the technique of coupling, for each realization of

one percolation model Π(λ1, r1), we can always find an equivalent realization in the

other percolation model Π(λ2, r2) that is a rescaled version of the first. Taking the

expectation over all realizations, we deduce that

E[c(A1)] = E[c(A2)] (3.30)

Suppose θ1 and r1 jointly maximize E[c(A1)]. From rescaling we know that the optimal

θ2 and r2 maximizes E[c(A2)] must satisfy θ1 = θ2 and λ1r
2
1 = λ2r

2
2. That is, the

number of neighbors of a node N , and the fraction of transmit nodes θ are constant.

We just observe that the expected sum capacity over all realizations of two scaled

percolation models is the same. It is instructive to determine analytically if the expected

SIR of an arbitrary link of length r0 is also invariant to node density, with expectation

taken over all realizations of the Poisson field of interferers. The expected SIR at a
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Figure 3.8: Illustration of rescaling of two coupled percolation models.

receive node at the transmit range boundary is

E[γ(r0)] =
∫ ∞

0

g(r0)
y

fY (y)dy (3.31)

=
2

π3r40λ
2
t

(3.32)

=
2

(1 − e−N(1−θ))2N2πθ2
, (3.33)

where N = λπr20 is the average number of neighbors of a node.

More generally, if the receive node is at a distance αr0, 0 < α < 1 from the transmit

node, the expected SIR is

E[γ(αr0)] =
∫ ∞

0

g(αr0)
y

fY (y)dy (3.34)

=
2

(1 − e−N(1−θ))2N2πα4θ2
. (3.35)

Thus, if the distance r of any transmit and receive node pair relative to the transmit

range r0 is constant, i.e. r/r0 = α, it follows from (3.35) that the expected SIR of of

the connection is invariant to node density.

The linear increase in expected capacity per unit area is a direct consequence of

rescaling in percolation models. The corresponding capacity per unit area for percola-

tion model 1 and 2 are c(A1)/A1 and c(A2)/A2. Taking expectations over all coupled

realizations, we have

E[C2] = E[C1]
A1

A2
= E[C1]

λ2

λ1
. (3.36)

Let λ1 = 1, we obtain

E[C2] = λ2E[C1]. (3.37)
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(a) (b)

Figure 3.9: The expected sum rate per unit area for theoretical and practical systems as
a function of node density λ. (a) Theoretical capacity per unit area for four strategies.
(b) Packet success rate per unit area for practical systems with different SIR threshold
γ0.

That is, the expected capacity per unit area is linearly increasing with node density.

The slope corresponds to the expected capacity per unit area when node density is 1.

For the adaptive strategies, similar observations to the non-adaptive strategies can

be made. With reference to Figure 3.5 and Figure 3.6, the optimal range shrinks for

both the random node and closest node in range strategies. The expected number

of nodes in range, fraction of candidate transmit nodes are also invariant with node

density. Similarly, in the GT strategy, the optimal fraction of candidate transmit nodes

seems to be invariant to node density as shown in Figure 3.7. Moreover, these capacity

curves agree with those obtained in [20]. The optimal value occurs around θ = 0.36.

The rescaling argument applies to all the adaptive strategies as well. Thus, θ and N

are invariant with node density whereas the expected capacity per unit area is linear

with with node density.

In Figure 3.9(a), we compare the capacity of the four strategies. The non-adaptive

strategy has the worst performance as expected, with E[C]/E[C ] = 1.68. The closest

node within range strategy outperforms the random node within range strategy by a
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small margin (E[C]/E[Crand] = 1.04). At the optimal range, the average number of

nodes within the transmit range is between 0.6 to 1.2 for the four strategies. Thus, most

of the time a random node is exactly the same as the closest node. This explains the

close performance of the two strategies. The GT strategy, however, has a capacity that

is almost halfway between the closest neighbor in range strategy and the non-adaptive

strategies, with E[C]/E[CGT ] = 1.25. Although the GT strategy is rate adaptive,

an unconstrained transmit range allows connection to a distant receive node in some

pathological cases. By stipulating a transmit range that excludes transmissions to

distant nodes, only good channels are exploited and network interference is reduced.

3.4.3 Optimum Point of Network Operation

It is also instructive to compare the optimal values of the fraction of transmit nodes

θ, number of neighbors N of a node and the probability of a node transmission for all

the strategies. A node is selected as a candidate transmitter with probability θ. For

the GT strategy, a candidate node always transmits to the closest neighbor. Thus the

probability that an arbitrary node transmits is θ. For the random and closest node in

range strategies, the candidate node transmits with probability (1−e−(1−θ)N ) when the

transmitter sees some receive nodes is in range. Thus an arbitrary node transmits with

probability θ(1− e−(1−θ)N ) The values for the four strategies are summarized in Table

3.1. We observe that the optimal value of θ is close to 0.5 in all strategies. A connection

Capacity E[C] E[Crand] E[C] E[CGT ]
θ 0.533 0.555 0.531 0.364
N 0.558 0.964 1.17 n/a
θ(1 − e−(1−θ)N ) 0.1223 0.1936 0.2243 θ = 0.364

Table 3.1: Optimized parameters for the four strategies.

is made up by a transmit and receive node pair. If either kind of nodes are dominant

in the network, the scarcity of the other kind of nodes adversely affect the number of

transmit and receive node pairs in proximity. A fraction θ close to 0.5 conforms to our

intuition and enables a nice mix of transmit and receive nodes over space for creating
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numerous excellent channels. The observation that θ is slightly larger than 0.5 for all

strategies indicates that the transmit nodes has a slightly more influential role in the

creation of connections as hinted by the sender-centric approach.

The optimal number of neighbors N increases from 0.56 to 1.17 as we move from the

non-adaptive to the closest node in range strategy. The non-adaptive strategy should

be operated at a small range, since the link capacity at any point inside the transmit

range boundary is not fully utilized. For the adaptive strategies, the random node in

range strategy should be operated at a smaller range, to minimize the opportunity cost

in case the random node is not the closest receive node. The closest node strategy is

not penalized for having a larger transmit range compared to the other two strategies.

The shortest link to a receive node is always chosen for connection.

The probability of transmission θ(1−e−(1−θ)N ) also increases from 0.1123 to 0.2243

as we move from the non-adaptive to the closest node in range strategy. Since θ is similar

in the strategies, the probability of transmission is dictated by N . The non-adaptive

strategy is penalized severely for having a large transmit range. A transmission is

attempted when a receive node is close by, at a transmission probability of 0.1223. Thus

a sacrifice of spatial transmission concurrency is traded off for more spectral efficiency

of individual links. On the other hand, the GT strategy has a large transmission

probability, more than 50% larger than the closest node in range strategy. Since all

candidate transmit nodes transmit in the GT strategy, maximum spatial concurrency

is attained at the expense of increased network interference and decreased spectral

efficiency in individual links. The comparison of the four strategies in Figure 3.9(a)

shows that both the non-adaptive and the GT strategy have inferior performance versus

the adaptive strategies with a stipulated transmit range. This suggests that an optimal

tradeoff exists between spectral efficiency and spatial concurrency such that the overall

capacity per unit area is maximized.
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3.5 Packet Success Rate Maximization

The capacity per unit area provides an upper bound on the number of bits per second

per unit area for the transmission strategies. Nevertheless practical modulation and

error correction schemes do not yield performance that matches the capacity limit.

In this section, we investigate the optimal transmit range and fraction of candidate

transmitters in practical systems and contrast the results with the performance upper

bound.

In practical systems, different multilevel modulation schemes are used in conjunction

with error correction codes. Assuming the total interference power at a receiver is

constant in a time slot. Each symbol sees the same amount of interference and thus

have equal symbol error rate PM (γ) that is a function of the SIR γ. The symbol may be

mapped to binary codewords through simple mapping, such as Gray coding in square

constellation MQAM systems [89], where adjacent symbols in the signal space differs by

only one bit in the binary codeword. Interleavers may also be used so that the output

bits have decorrelated bit error in adjacent bits. Moreover, a t-error correcting block

code of length may be used. Under these assumptions, the packet success probability

s(γ) can be computed and is a smooth curve with a slope in the transition region that

depends on the error correction capability of the code. For long and good error codes,

the packet success probability can be approximated by a unit step function w.r.t. the

SIR γ [68], with the transition denoted as the SIR threshold γ0. This simple abstraction

allow for a closed form computation of expected packet success probability for practical

systems. Thus, in this chapter we assume the packet success probability s(γ) is given

by

s(γ) = s(g(r)/y) =

⎧⎨
⎩ 1 0 ≤ y ≤ g(r)/γ0

0 o.w.
. (3.38)

We denote our performance metric as Rp, the expected number of packets delivered per

time slot per unit area, or simply expected packet success rate per unit area. This is

given by

Rp = λtE[s(γ)]. (3.39)
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where E[s(γ)] is the expected packet success probability per node per time slot and λt

is the node density of the transmit nodes.

The determination of Rp for the four strategies is straightforward. For the non-

adaptive strategy,

Rp = λt

∫ g(r0)
γ0

0
fY (y)dy (3.40)

= λterfc
(π3/2r20

√
γ0λt

2

)
. (3.41)

For the adaptive strategies, Rp can be evaluated by conditioning on both the interference

power Y and distance of the receive node from the transmit node R.

Rp = λt

∫ r0

0

∫ g(r)
γ0

0
fY (y)dyfR(r)dr. (3.42)

Recall that in the random node in range strategy, fR(r) is uniformly distributed in the

coverage area and is given by (3.18). Substitute (3.18) to (3.42), we have

Rp,rand =
2(1 − e−

π3r4
0γ0λ2

t
4 )√

γ0π2r20
+ λterfc

(π3/2r20
√
γ0λt

2

)
. (3.43)

It is obvious that the adaptive random node strategy outperforms the non-adaptive

strategy by comparing (3.43) and (3.41). The performance disparity increases as r0

increases. In the closest node in range strategy, fR(r) is given by (3.21). Substitute

(3.21) to (3.42), Rp is evaluated as

λt

1 − e−πr2
0λr

[
1 − e−πr2

0λrerfc
(π3/2r20

√
γ0λt

2

)
+ e

1
πγ0

(λr
λt

)2

(
erfc

( 1√
πγ0

(
λr

λt

)
+
π3/2r20

√
γ0λt

2

)
− erfc

( 1√
πγ0

(
λr

λt

)))]
.

(3.44)

In the GT strategy, fR(r) is given by (3.22). Thus,

Rp,GT =λt

(
1 − e

1
πγ0

(
λr
λt

)
erfc

( 1√
πγ0

(
λr

λt

)))
. (3.45)

As one would expect, the closest and random node strategies outperforms the GT

strategy and the non-adaptive strategies by a margin. Instead of plotting the curves

of all strategies here, here we consider the random node in range strategy only. Our
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(a) (b)

(c) (d)

Figure 3.10: Optimized random node within range strategy at different node density λ
in a practical system with SIR threshold γ0. (a) transmit range r0 vs. γ0, (b) expected
number of nodes in range N vs. γ0, (c) fraction of candidate transmit nodes θ vs. γ0,
(d) expected packet success rate per unit area vs. γ0.

focus is on the sensitivity of these parameters to the SIR threshold γ0 determined

by the modulation and error control scheme. As shown in Figure 3.10, the optimal

range, fraction of candidate transmit nodes, number of neighbors and the packet success

rate per unit area are plotted as a function of the SIR threshold γ0 for node density

λ = 1, 5, 10, 20 nodes/m2. The invariance of the number of neighborsN and the fraction

of candidate transmit nodes θ to node density also applies to a practical system, readily

seen as the curves for different node densities overlap in Figure 3.10(b) and (c). We

also vary the SIR threshold γ0 from 0 to 30dB, which is a factor of 1000 in linear

scale. We observe that the optimal fraction of candidate transmit nodes is insensitive

to the variation of γ0, hovering between 0.5 and 0.6 and decreases gradually as the

SIR threshold is raised. As discussed in the previous section, a value of θ close to 0.5

ensures a nice mix of transmit and receive nodes that give rise to numerous excellent
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channels. The slight decrease of θ at high SIR threshold indicates an optimally operated

system, nodes are more conservative and show less willingness to transmit. This ensures

the packet success rate is not adversely affected at the expense of some loss of spatial

concurrency.

Similarly, the optimal transmit range also shrinks when the SIR target is raised

to ensure that only the good channels capable of meeting the SIR target are used.

The decrease in spatial concurrency is inconsequential, since the signal strength of any

connection outside the transmit range may be too weak to meet the SIR target and

any received packet from a node outside the range may be discarded in any case. The

optimal number of neighbors N is weakly dependent on the SIR threshold, ranging from

N ≈ 2 at low SIR threshold γ0 = 0dB and N ≈ 0.5 when the SIR threshold is raised to

30dB. This should be contrasted to the optimal number of neighbors of around 1 in a

theoretical system. Although there is a tradeoff of spatial concurrency for more spectral

efficiency at high SIR threshold, the deviation of optimal N in practical systems with

very different SIR requirements is small.

In Figure 3.10(d), the packet success rate per unit area is also decreasing as the SIR

threshold increases. However, this comparison is far from fair. When the SIR threshold

is high, it usually alludes that the modulation scheme has a very high spectral efficiency.

If modulations of high order constellation size are used, multiple bits can be received per

symbol, which in turns raise the bit rate. A more general metric must be considered to

allow for a more meaningful comparison of modulation schemes with different spectral

efficiency. On the other hand, it is also interesting to know if the packet success rate per

unit area Rp is linearly increasing with node density. To see this we plot Rp versus node

density in Figure 3.9(b). It is obvious that the linear dependence of Rp to node density

also applies to practical schemes for all values of γ0. This is expected since our rescaling

argument from percolation theory is only dependent on the topology. The underlying

communication model is irrelevant to the application of the rescaling argument.
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3.6 Discussion

We have examined four transmission strategies in this chapter, and showed that adap-

tive strategies with a stipulated transmit range perform substantially better than the

GT strategy with an unconstrained transmit range. Our results imply there is a tradeoff

between the spatial transmission concurrency and the spectral efficiency of each trans-

mission. In order to maximize the capacity per unit area, it is necessary to limit the

number of simultaneous transmissions to reduce the network interference power such

that the SIR and the spectral efficiency of other connections are improved. Moreover,

the random node within range strategy has a performance that is close to the closest

node in range strategy. Thus a designer of multiple access protocols only needs to focus

on contention of local channel when several receive nodes are in proximity. There is

no need of a scheduling algorithm for prioritized transmissions based on distance or

received power.

The results shown in Table 3.1 show that the optimum range of our strategies

is between 0.6 to 1.2 neighbors independent of node density. These results can be

contrasted to the results in [28,44,91], which suggested that a magic number of 6 to 8

neighbors or a scaled version of it to account for the processing gain in spread spectrum

systems [87] and second order effects of the channel [107] is optimum. In these works,

a hypothetical line is drawn from a source to the destination node. The transmit range

is chosen such that the the expected distance advance in one transmission projected

to this line is maximized. This performance metric is called the forward progress in

the literature. The concept of forward progress is predicated on the assumption that

mobile nodes communicate using multihop routing. What we have shown in this chapter

suggests that capacity per unit area of one network snapshot can be fully utilized only if

each transmit node sees one neighbor node on the average. Our results demonstrate that

the mobile infostation network is a paradigm that fits into this optimization criterion.

To appreciate the potential improvement in link capacity over the multihop paradigm,

we plot the expected SIR γ(N) at the transmit range boundary as a function of number

of neighbors (3.33) of a node in Figure 3.11. It is interesting to note that as the number
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Figure 3.11: Illustration of SIR γ as a function of number of neighbors N .

of neighbors N increase from 1 to 8, the SIR at the range boundary drops from 15dB

to -15dB, a factor of 1000. Substitute the value of the SIR to the capacity equation,

we see that the link capacity of a mobile infostation connection is 111.93 times over a

multihop forwarding connection. The dramatic improvement in link capacity, together

with [20] which explicitly show that the sum capacity in each network snapshot is sus-

tainable in the long run, convince us that a much larger end-to-end throughput capacity

is realizable for mobile infostation networks.

Recall that [20] showed the mobile infostation paradigm allows a network throughput

that is scalable to the number of nodes. We have obtained exact capacity per unit area

expressions as a function of transmit range, the fraction of candidate transmit nodes

and node density. It turns out that the mobile infostation paradigm not only improves

the spectral efficiency of a link over the multihop paradigm. It is somewhat surprising

to find out that the spectral efficiency per unit area is linearly increasing with node

density in mobile infostation networks. This is counter-intuitive since an increase in the

node density is often accompanied by a corresponding increase of network interference.

However, a mobile infostation also shrinks the transmit range such that the number

of nodes within the transmit range remains constant. Thus, a mobile infostation also

exploits the increase in physical proximity of the receive nodes as node density increases.

The contrasting effects of increasing signal strength and increasing interference power at
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high node density work together that brings to the independence of link SIR’s to node

density. At high node density, the same sum capacity can be achieved at a smaller area,

leading to an increase in capacity per unit area. This result has far reaching implications

for the feasibility of future pervasive computing environments. The proliferation of

mobile devices makes the deployment of dense node networks in the future almost a

certainty. Unfortunately multihop networks suffers from the curse of node density.

The excessive need of multihop forwarding in high node density environments drives

the achievable per-node throughput to zero. In contrast, node density is a blessing in

mobile infostation networks. The increase in interference power due to increased node

density is counter-balanced by the improved channel due to the proximity of receive

nodes at high node density. Since nodes are packed closer in high node density scenarios,

better spatial concurrency is achieved, leading to an increase in capacity per unit area.

Our results show that the capacity per unit area for mobile infostations actually goes

to infinity as node density increases.

We have also examined the optimal transmit range and fraction of candidate trans-

mit nodes in practical systems where the modulation scheme and error correction

scheme is prespecified. A simple abstraction was made for practical systems using

the notion of SIR threshold γ0. When good long error correction codes are used, the

packet success probability as a function of SIR γ is well approximated by a unit step

function at the transition γ0. It is interesting to note that when the SIR threshold γ0

is high, the probability of packet success decreases. However, a high γ0 also implies

that spectrally efficient modulation schemes can be used. A tradeoff therefore exists

between spectral efficiency and packet success rate. A low SIR threshold raises the

packet success rate at the expense of lower spectral efficiency and vice versa. Suppose a

particular modulation scheme is use in a practical system. An optimal constellation size

therefore exists that optimally tradeoff the spectral efficiency and packet success rate to

maximize the bit rate of a link. In general, spectral efficiency, spatial concurrency and

packet success rate are inter-related. It will be interesting to determine a constellation

size and the transmit range such that the throughput capacity per unit area is opti-

mized. However, due to the size limit of this chapter, the issue of optimal constellation
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size for different modulation and error correcting schemes are not included.

In retrospect, we have looked into the optimal transmit range and the theoretical

and practical achievable rate per unit area of mobile infostation networks. The concept

of transmit range is novel in the paradigm of mobile infostations. Capacity equations

are derived for four strategies and we show that a stipulated transmit range improves

capacity. Though it is not obvious in the problem formulation, the optimal number of

neighbors of a node, and the fraction of nodes as candidate transmit nodes is invariant

to node density. Comparisons have been made to the well known magic number of 6 to

8 neighbors, reflecting the contrasting optimization criteria for the multihop networking

and mobile infostations paradigm. Another finding is that the capacity per unit area

is linearly increasing with node density. This can be explained by a rescaling argument

drawn from percolation theory. This has implications in the design of ad hoc networks

in future pervasive networking environments with high node density. We also extend

our results to practical systems characterized by a SIR threshold. The invariance of N

and θ to node density continues to hold and the packet success rate per unit area is

linearly increasing with node density. When a system has high SIR requirements, N

and θ decreases slightly. In particular, when the SIR requirement increases by a factor

of 1000 from 0 to 30dB, the optimal number of neighbors slightly decreases from 2 to

0.5 only.
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Chapter 4

Effect of Node Mobility on Highway Mobile Infostation

Networks

4.1 Introduction

In this chapter, we examine the effect of node mobility in mobile infostation networks. In

[20], mobility provides a mechanism such that numerous instances of excellent channels

between different nodes can be exploited. The realization of large network capacity

comes from the translation of maximal spatial transmission concurrency in each network

snapshot to the long run end-to-end network capacity. The physical implication of

mobility in node encounters has been glossed over. In reality, the total connection

time of a node over a specific interval depends on the node encounter rate and the

connection time in each encounter, both of which depend on the relative mobility of

nodes. Although a high node speed results in more node encounters, the connection

time in each node encounter also decreases. It is not apparent whether high or low speed

results in a larger connection time, and thus, data rate. To this end we propose a new

mobility model for highway networks. The highway scenario proves to be interesting

despite its mathematical simplicity. Consider the forward traffic scenario, that is traffic

travelling at the same direction as the user of interest, or the observer node. The

connection time in one node encounter is much larger than that of reverse direction

traffic, but the node encounter rate is also much smaller. In the reverse traffic scenario,

on the other hand, the connection time in a node encounter is typically small, since

nodes are travelling in opposite directions. Nevertheless, node encounter rate is also

much higher in the reverse traffic scenario. It is not immediately apparent which traffic

type offers the greater fraction of connection time, or number of connections in queueing

terminology. Second, the connection time in an encounter depends on the transmit
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Figure 4.1: Illustration of the highway mobile infostation network model.

range of the nodes. For both forward and reverse traffic, an optimal transmit range

exists such that the long run data rate of a node is maximized.

The rest of the chapter is organized as follows. In section 4.2, we describe the system

model. Section 4.3 is devoted to performance analysis for arbitrary speed distribution.

The special case of uniform speed distribution is considered in section 4.4 and numerical

results are obtained in section 4.5. Finally, we discuss the implications of our results in

section 4.6.

4.2 System Model

We consider a highway network in which fixed infostations are placed regularly at a dis-

tance d from each other. We assume that all nodes are subscribers of a content provider,

say a movie distribution network. Movies are split into many files and are cached in

the infostations at various locations. Besides downloading directly from an infostation,

a node participates in data exchanges whenever there is another node in proximity. We

assume data exchanges between two proximate nodes always take place without further

negotiation. The amount of data exchanged is proportional to the connection time in
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an encounter and the data transmission rate. It was shown in [104] that in a large

network, peer-to-peer node exchanges account for most of the data transmissions. As

the network size increases, the importance of fixed infostations in data dissemination

dwindles. Thus, in this chapter we focus on peer-to-peer connections between proxi-

mate mobile nodes in node encounters only. Connections to fixed infostations on the

highway are ignored.

In our analysis, we focus on an arbitrary highway segment between infostations A

and B, as shown in Figure 4.1. On each highway segment, a node moves at a speed

V , an iid random variable drawn from a known but arbitrary distribution G. Since

nodes have different speeds, a node may overtake other nodes or be overtaken as it

traverses the highway segment. We make all our observations at a specific node, called

the observer node. Two types of traffic are considered here. For forward traffic, nodes

are injected into the highway segment at a Poisson rate λ from infostation A. The

Poisson arrival assumption of mobile nodes is valid if the speed of individual nodes is

independent and does not interact. That is, we assume there is no delay incurred in a

node encounter, in which a platoon of nodes forms behind a node that moves slowly.

This is plausible in a wide highway with multiple lanes and moderate traffic, where

nodes overtake others at different lanes. The injected nodes move at the same direction

as the observer node. This is called the wide motorway model in [42]. Similarly, for

reverse traffic nodes are injected into the highway segment at a Poisson rate λ from

infostation B. The injected nodes move in the opposite direction of the observer node.

More generally, a node changes speed as time evolves. We assume each node still moves

at a constant speed in a highway segment. Whenever a node traverses a new highway

segment, we stipulate that each node selects a new speed from the distribution G,

independent of the previous speed.

Suppose the observer node moves at a speed V = v0 on a highway segment from

infostation A to B. We denote the time for the node to traverse a highway segment

as the cycle duration, given by T = d/V , with a corresponding distribution F . F

and G are obviously related, given by F (t) = G(d/t), where F (t) = 1 − F (t) denotes

the complementary distribution function. In this chapter, we describe mobility of the
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observer node in terms of cycle duration rather than node speed for convenience, since

the performance metrics are closely related to t0.

Given the observer node cycle duration t0 = d/v0 in a highway segment, we denote

N1(t0) and N2(t0) as the number of node encounters in forward traffic and reverse traffic

scenarios, where a node encounter occurs when two nodes are approaching to within a

transmit range r from each other, and the subscripts 1 and 2 denotes a connection with

forward and reverse traffic respectively. The connection time in each node encounter

is defined as the duration when both nodes are within the transmit range r from each

other. Obviously, the connection times in forward traffic Y i
1 (t0) and reverse traffic Y i

2 (t0)

at the i-th node encounter are random variables dependent on the relative speed of the

nodes and the common transmit range of all nodes r. For many speed distributions,

two nodes having a similar speed may have a connection time with unbounded mean.

However, each node only has a finite amount of data for dissemination to another

node. To model this we specify a connection time limit parameter c to limit the actual

connection time in a node encounter, given by Bi
1(t0) = min(Y i

1 (t0), c) and Bi
2(t0) =

min(Y i
2 (t0), c). We also denote the total connection time of the observer node in a

highway segment as Z1(t0) and Z2(t0). Obviously,

Z1(t0) =
N1(t0)∑

i=1

Bi
1(t0) (4.1)

Z2(t0) =
N2(t0)∑

i=1

Bi
2(t0) (4.2)

When speed changes are incorporated to our mobility model, the long run average

fraction of connection time and data rate are the appropriate metrics. It turns out that

a simple characterization of these metrics is possible by drawing results from renewal

reward theory [77]. Let M(t), t ≥ 0 be a counting process to denote the number of

highway segments traversed by the observer node. At the nth highway segment, the

observer node selects an iid random speed Vn independent of the speed Vn−1 at the

previous highway segment n− 1. The corresponding cycle durations Tn are iid random

variables. Since M(t) is a counting process with iid interarrival times, M(t) is a renewal

process. Moreover, we denote Rn as the reward earned in the nth cycle, or renewal



75

period. If we let

R(t) =
M(t)∑
n=1

Rn, (4.3)

then R(t) is the total reward earned by time t. Let E[R] = E[Rn] and E[T ] = E[Tn],

the renewal reward theorem [77] states that if E[R] < ∞ and E[T ] < ∞, then with

probability 1,

lim
t→∞

R(t)
t

=
E[R]
E[T ]

(4.4)

That is, the rate of earning reward in the long run is just the ratio of the expected

reward in a cycle and the expected cycle duration.

Accordingly, if we define a reward of 1 unit is earned every time the observer node

encounters another node, the reward accrued in highway segment n is Rn = N1(Tn) for

forward traffic and Rn = N2(Tn) for reverse traffic. The long run node encounter rate

of the observer node is simply

N1 = lim
t→∞

R(t)
t

=
E[N1(T )]
E[T ]

. (4.5)

in forward traffic scenario and

N2 = lim
t→∞

R(t)
t

=
E[N2(T )]
E[T ]

. (4.6)

in reverse traffic scenario. Similarly, suppose a reward equivalent to the connection

time B1(t0) is earned each time the observer node encounters another node. Let the

observer node mobility at the n-th highway segment be Tn = t0. The accrued reward

Rn is the sum of the connection times of all node encounters in the highway segment,

i.e.

Rn = Z1(t0) =
N1(t0)∑

i=1

Bi
1(t0). (4.7)

in forward traffic scenarios. In this case, the long run rate of earning reward is given

by

Z1 = lim
t→∞

R(t)
t

=
E[Z1(T )]
E[T ]

. (4.8)

Similarly in reverse traffic scenarios we have

Rn = Z2(t0) =
N2(t0)∑

i=1

Bi
2(t0) (4.9)
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and

Z2 = lim
t→∞

R(t)
t

=
E[Z2(T )]
E[T ]

. (4.10)

Finally, suppose a reward equivalent to the amount of data sent and received is earned

each time the observer node encounters another node. Assuming non-adaptive radios

are used, the data rate is the Shannon rate at the transmit range boundary r, given by

C(r) = ln(1 + 1/r4), (4.11)

where we have assumed a path gain exponent of 4 and ignored the effect of mutual

interference. Let the cycle duration of the observer node at the n-th highway segment

be Tn = t0. The accrued reward Rn is the total amount of data transmitted or received

by the observer node in the highway segment, denoted as W1(t0). The average rate of

earning reward in the long run should be interpreted as the long run data rate, given

by

W1 =
E[W1(T, r)]

E[T ]
= C(r)

E[Z1(T, r)]
E[T ]

= C(r)Z1 (4.12)

in forward traffic scenarios and

W2 =
E[W2(T, r)]

E[T ]
= C(r)

E[Z2(T, r)]
E[T ]

= C(r)Z2, (4.13)

in reverse traffic scenarios. We emphasize both connection time Z and the amount of

delivered data W are dependent on the transmit range r. It is intuitive that W1 = 0

and W2 = 0 when the transmit range is either zero or very large. An optimal transmit

range r exists for both traffic types such that W1 and W2 are maximized respectively.

In this chapter, we consider the special case when each node selects an arbitrary

speed upon entrance to the highway. However, each node moves with the same speed

in different highway segments. Since the cycle duration Tn is still iid, the renewal

arguments continues to apply in the constant speed case. Moreover, the long run

fraction of connection time Z1 and Z2 simplifies to

Z1 = η1(t0) =
E[Z1(t0)]

t0
(4.14)

and

Z2 = η2(t0) =
E[Z2(t0)]

t0
, (4.15)
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which can be interpreted as the expected fraction of connection time η1(t0) and η2(t0)

as a function of observer node mobility t0. In general, since a node can simultaneously

maintain more than one connection, η1(t0) and η2(t0) can be larger than 1. In queueing

terminology, the observer node is a server and the connection time in a node encounter

corresponds to the service time. Although an optimum transmit range exists in both

forward and reverse traffic scenarios, we will not pursue this idea further in this chap-

ter. Bear in mind that when the transmit range is conditionally given, the fraction of

connection time Z is linearly proportional to the long run data rate W.

4.3 Performance Analysis

Consider the forward traffic scenario. Suppose the observer node enters the highway

segment at time s and departs at time s + t0. We denote an event occurs at time

t ∈ [0,∞) if a node enters the highway segment at infostation A. Since the node travels

with random speed V = d/T , this node leaves the highway segment at time t+ T . We

define p1(t) as the probability that a forward entrant at time t has an encounter to the

observer node at the highway segment. It is straightforward to show that for t < s,

an encounter occurs if t+ T > s + t0 when the observer node overtakes the encounter

node. That is,

p1(t) = P [T + t > s+ t0] = F (s+ t0 − t). (4.16)

Similarly, for s < t < s + t0, an encounter occurs if t + T < s + t0 when the observer

node is overtaken by the encounter node. This occurs with probability

p1(t) = P [T + t < s+ t0] = F (s+ t0 − t). (4.17)

Finally, for t > s + t0, a node encounter will not occur in the highway segment, i.e.

p1(t) = 0. Combining the three cases together, we have

p1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F (s+ t0 − t) t < s

F (s+ t0 − t) s < t < s+ t0

0 t > s+ t0

. (4.18)

Assuming the network has been operated for a long time s→ ∞ before we observe the

observer node enters the highway segment. The total number of node encounters is also
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a Poisson process and in steady state s→ ∞, it is given by

lim
s→∞E[N1(t0)] = lim

s→∞λ

∫ ∞

0
p1(t)dt (4.19)

= λ

(∫ t0

0
F (t)dt +

∫ ∞

t0

F (t)dt
)
. (4.20)

It can be shown E[N1(t0)] attains a global minimum when the observer node cycle

duration t0 is the median of the distribution F By twice differentiating (4.20) [77].

This agrees with our intuition that there are few node encounters if the observer node

moves at a speed that goes along with the majority.

For reverse traffic, we define an event occurs at time t if a node enters the highway

segment from infostation B. For an event at time t, it is marked with probability

p2(t) if there is a node encounter with the observer node at the highway segment. For

t > s+ t0, the reverse entrant node enter the highway segment after the observer node

has left, the encounter probability is therefore p2(t) = 0. For s < t < s+ t0, the reverse

entrant node enters the highway segment after observer node, but before the observer

node has left. Thus the encounter probability is p2(t) = 1. Finally, when t < s, a node

encounter occurs if the reverse entrant node leave after the observer node arrives at the

highway segment. This happens with probability

p2(t) = P [T + t > s] = F (s− t). (4.21)

Combining the three cases, we have

p2(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t > s+ t0

1 s < t < s+ t0

F (s− t) t < s

. (4.22)

The total number of node encounters in steady state is

lim
s→∞E[N2(t0)] = lim

s→∞λ

∫ ∞

0
p2(t)dt (4.23)

= λ(t0 + E[T ]), (4.24)

where E[T ] is the expected cycle duration given by

E[T ] =
∫ ∞

0
F (t)dt. (4.25)
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The long run node encounter rate for both traffic types can be obtained by averaging

over the speed distribution. Thus we have

E[N1(T )] =
∫ ∞

0
E[N1(t0)] dF (t0) (4.26)

= λ

∫ ∞

0

∫ t0

0
F (t)dt dF (t0) (4.27)

+ λ

∫ ∞

0

∫ ∞

t0

F (t)dt dF (t0), (4.28)

which yields

E[N1(T )] = 2λ
∫ ∞

0
F (t)F (t)dt (4.29)

upon simplification using integration by parts. Similarly, we have

E[N2(T )] =
∫ ∞

0
E[N2(t0)] dF (t0) (4.30)

= 2λE[T ]. (4.31)

(4.29) and (4.31) suggest that the expected node encounter rate for reverse traffic is

always larger than that for forward traffic, which is obviously true. Moreover, (4.31)

shows that the expected node encounter rate is completely characterized by the traffic

intensity λ and the first moment of distribution F .

To compute the expected connection time in one encounter for forward traffic

E[B1(t0)], we note that

E[B1(t0)] =
∫ c

0
P [Y1(t0) > t]dt (4.32)

=
∫ c

0
P

[
2r

|v0 − V | > t

]
dt (4.33)

=
∫ c

0
G

(
2r
t

+
d

t0

)
−G

(
d

t0
− 2r

t

)
dt. (4.34)

Similarly, in reverse traffic we have

E[B2(t0)] =
∫ c

0
P [Y2(t0) > t]dt (4.35)

=
∫ c

0
G

(
2r
t

− d

t0

)
dt. (4.36)

Refer to Figure 4.1 again, the total connection time for forward traffic is obtained

by summing all individual connection time Bi
1(t0), i ∈ [1, N1(t0)] over the cycle. In
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the event that the connection time of the encounter N1(t0) overshoots the end of the

cycle, the observer node undergoes a renewal and selects a new speed. This in turn

modifies the connection time BN1(t0)
1 . Nevertheless, the boundary effect of an overshoot

connection time is minimal when either N1(t0) is large, or when B1(t0) ≤ c� t0 = d/v0.

The former assumption is valid when the traffic intensity λ is moderate, such that

N1(t0) � 1. The latter assumption is valid when the distance between fixed infostations

d is large, which is likely in an initial deployment of a fixed infostation network. Ignoring

the boundary effect of BN1(t0)
1 (t0), we have

Z1(t0) =
N1(t0)∑

i=1

Bi
1(t0). (4.37)

It can be shown that Bi
1(t0) are iid random variables and N(t0) is Poisson. However,

N1(t0) and Bi
1(t0) are in general not independent. In fact, when node mobility is

high, N1(t0) is large and the corresponding B1(t0) is small. Thus Z1(t0) is not a

compound Poisson process. Nevertheless, we note that N1(t0) is a stopping time w.r.t.

the sequence Bi
1(t0) since the stopping rule {N1(t0) = n} is completely determined by

the information up to time n, and is unrelated to Bn+1
1 (t0), Bn+2

1 (t0) and so on. Thus,

Wald’s equality [15] can be applied to (4.37) to yield

E[Z1(t0)] = E[N1(t0)]E[B1(t0)]. (4.38)

Similarly, in reverse traffic we have

E[Z2(t0)] = E[N2(t0)]E[B2(t0)]. (4.39)

The long run fraction of connection time, or number of connections of the observer node

for both traffic types can be obtained by conditioning on distribution F , given by,

Z1 =
E[Z1(T )]
E[T ]

=

∫∞
0 E[Z1(t0)]dF (t0)

E[T ]
(4.40)

and

Z2 =
E[Z2(T )]
E[T ]

=

∫∞
0 E[Z2(t0)]dF (t0)

E[T ]
. (4.41)

Given the transmit range r, Z1 and Z2 are linearly related to the long run average data

rate W1 and W2. Since we do not focus on finding an optimal transmit range that
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maximizes the long run average data rate in this chapter, we do not discuss W1 and

W2 further.

4.4 Uniform Speed Distribution

We consider the case when node speed is uniformly distributed according to (4.42),

given by

G(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 ≤ v ≤ va

v−va
vb−va

va ≤ v ≤ vb.

1 v ≥ vb

(4.42)

The corresponding distribution of the cycle duration T = d/V is

F (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 ≤ t ≤ d/vb

vb−d/t
vb−va

d/vb ≤ t ≤ d/va.

1 t ≥ d/va

(4.43)

Our objective here is twofold. First, we consider the case when each node selects its

speed from distribution F and then moves at constant speed at all highway segments.

We will examine the effect of observer node mobility t0 on its fraction of connection

time, or expected number of connections for both forward and reverse traffic scenarios.

Second, we incorporate the extended mobility model, where a node selects a new speed

at each highway segment. We will examine the long run average number of connections

and data rate of a random node in both forward and reverse traffic scenarios.

Substituting (4.43) into (4.20), (4.29), (4.34), E[N1(t0)], E[N1(T )] and E[B1(t0)]

can be readily computed as

E[N1(t0)] =
λ

vb − va

(
(va + vb)t0 + d ln

d2

t20e
2vavb

)
(4.44)

E[N1(T )] =
2dλ

(vb − va)2

(
(va + vb) ln

vb

va
− 2(vb − va)

)
, (4.45)
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Figure 4.2: In forward traffic, connection time is truncated when the difference of
encounter node speed V and observer node speed v0 is less than 2r/c, i.e. |V − v0| ≤
2r/c. The shaded area shows the range of encounter node speed when connection time
truncation occurs.

and E[B1(t0)] =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c( d
t0

−va)+2r ln[(vb− d
t0

)( ce
2r )]

vb−va
t0 ≥ max( d

va+ 2r
c

, d
vb− 2r

c

)
c(vb− d

t0
)+2r ln[( d

t0
−va)( ce

2r )]
vb−va

t0 ≤ min( d
va+ 2r

c

, d
vb− 2r

c

)

2r ln[( ce
2r )

2
(vb− d

t0
)( d

t0
−va)]

vb−va

d
vb− 2r

c

≤ t0 ≤ d
va+ 2r

c

c d
va+ 2r

c

≤ t0 ≤ d
vb− 2r

c

. (4.46)

The derivation of the expected connection time in one node encounter E[B1(t0)] is

included in Appendix 4.6. For forward traffic, given the speed of the observer node v0

and encounter node V , the connection time is truncated if

2r
|V − v0| ≥ c, (4.47)

or |V −v0| ≤ 2r/c. That is, the connection time of forward traffic scenarios is truncated

when the relative speed of the encounter node and observer node speed is less than 2r/c.

When the encounter node speed V falls into the shaded area as illustrated in Figure 4.2,

the connection time is truncated. The four cases on the figure correspond to the four
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cases in (4.46). Cases 1 and 2 correspond to boundary truncation. When the observer

node has a speed v0 ≤ va + 2r/c and v0 ≥ vb − 2r/c respectively, connection time is

truncated when the encounter node speed is at the boundary. Case 3 corresponds to

partial truncation. Connection time truncation occurs if the difference of encounter

node and observer node speed is less than 2r/c. For large r/c, the shaded area is wide

and spans over the interval [va, vb]. A connection time truncation occurs irrespective of

the encounter node speed. This corresponds to case 4 of full truncation. The occurrence

of each case is dependent on the ratio r/c and the span of the speed distribution vb−va.

When vb − va is much larger than r/c such that vb − va ≥ 4r/c, a observer node

may experience left boundary, right boundary and partial connection time truncations

depending on its mobility t0. This is usually the case in highway traffic scenarios, where

vehicle speed at the fast lane is much larger than that at the slow lane. When r/c is

larger, connections are more prone to truncations. In the case 4r/c ≥ vb − va ≥ 2r/c,

a observer node may experience left boundary, right boundary and full truncation

depending on its mobility t0. That is, there exists some observer node mobility t0 such

that connection time is always truncated for all encounter node speed. In a typical

mobile infostation network, the transmit range is small such that the ratio r/c is much

smaller compared with vb − va. This case may be applicable when highway traffic is

slow due to congestion. When 2r/c ≥ vb−va, the transmit range is so large such that a

truncation always occurs regardless of the speeds of the encounter and observer node.

The three regimes are summarized in Table 4.1 which shows the range of observer node

mobility such that a particular case applies. The connection times for the limiting cases

at maximum and minimum observer node speed are also included.

Recall that E[N1(t0)] is minimized when t0 is the median of F , i.e. F (t0) = 1/2.

For uniform distribution, the median is equal to the arithmetic mean. It can be easily

verified that E[N1(t0)] is convex with a minimum at t0 = 2d/(va + vb), i.e., when the

observer node is at mean speed v0 = (va + vb)/2. Similarly the node encounter rate

E[N1(t0)]/t0 is also convex with a minimum at t0 = d/
√
vavb ≥ 2d/(va + vb), where

the inequality follows from the fact that arithmetic mean is greater than or equal to

the geometric mean. On the other hand, E[B1(t0)] is concave with a maximum at
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Regime E[B1(t0)] Target Node Mobility t0 E[B1(d/va)] E[B1(d/vb)]

vb − va ≥ 4r/c case 1 d/va ≥ t0 ≥ d/(va + 2r/c) 2r
vb−va

ln (vb−va)ce
2r

2r
vb−va

ln (vb−va)ce
2r

case 2 d/vb ≤ t0 ≤ d/(vb − 2r/c)
case 3 d

(vb−2r/c) ≤ t0 ≤ d
(va+2r/c)

4r/c ≥ vb − va ≥ 2r/c case 1 d/va ≥ t0 ≥ d/(vb − 2r/c) 2r
vb−va

ln (vb−va)ce
2r

2r
vb−va

ln (vb−va)ce
2r

case 2 d/vb ≤ t0 ≤ d/(va + 2r/c)
case 4 d

(va+2r/c) ≤ t0 ≤ d
(vb−2r/c)

2r/c ≥ vb − va case 4 d/vb ≤ t0 ≤ d/va c c

Table 4.1: Existence of three regimes for forward traffic scenario.

t0 = 2d/(va + vb). Moreover, the expected connection time as a function of speed is

symmetric about the mean speed. That is, the expected connection time is the same

when the observer node has a speed of v0 or vb + va − v0. This also explains why the

connection times at maximum and minimum observer node speed are equal in Table 4.1.

In the reverse traffic scenario, we substitute (4.43) into (4.24), (4.31), (4.36) to

obtain

E[N2(t0)] = λ
(
t0 +

d

vb − va
ln
vb

va

)
(4.48)

E[N2(T )] =
2λd

vb − va
ln
vb

va
(4.49)

and E[B2(t0)] =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2r ln
(

vb+d/t0
va+d/t0

)
vb−va

t0 ≤ d
max(va,2r/c−va)

2r ln
(

d/t0+vb
2r

ce
)
−c(d/t0+va)

vb−va

d
min(vb,2r/c−va) ≤ t0

≤ d
max(va,2r/c−vb)

c t0 ≥ d
max(vb,2r/c−vb)

. (4.50)

The derivation of the expected time in one node encounter E[B2(t0)] is included in

Appendix 4.6. Let V and v0 be the speed of the encounter node and observer node

respectively. A connection is truncated if

2r
V + v0

≥ c, or V ≤ 2r
c

− v0. (4.51)

That is, given the observer node speed v0, a connection time truncation occurs if the

encounter node speed V is too low. As illustrated in Figure 4.3, if the encounter
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Figure 4.3: In reverse traffic, connection time is truncated when the encounter node
speed is smaller than 2r/c − v0. The shaded area shows the range of encounter node
speed when connection time truncation occurs.

Regime E[B2(t0)] Target Node Mobility t0 E[B2(d/va)] E[B1(d/vb)]
r/c ≤ va case 1 d/vb ≤ t0 ≤ d/va

2r
vb−va

ln va+vb
2va

2r
vb−va

ln 2vb
va+vb

va ≤ r/c case 1 d/vb ≤ t0 ≤ d/(2r/c − va)
2r ln

(va+vb)ce

2r
−2cva

vb−va

2r
vb−va

ln 2vb
va+vb

va + vb ≥ 2r/c case 2 d/(2r/c − va) ≤ t0 ≤ d/va

va ≤ r/c case 2 d/vb ≤ t0 ≤ d/(2r/c − vb) c 2r ln
vbce

r
−c(va+vb)

vb−va

va + vb ≤ 2r/c case 3 d/(2r/c − vb) ≤ t0 ≤ d/va

vb ≤ r/c case 3 d/vb ≤ t0 ≤ d/va c c

Table 4.2: Existence of four regimes for reverse traffic scenario.

node speed falls into the shaded area, the connection time is truncated. The three

depicted cases correspond to a connection with no truncation, partial truncation and

full truncation. The expected connection time in one node encounter of the three

cases is shown in (4.50). In case 1, the shaded area is below va. Thus there is no

connection truncation at all encounter node speed. In case 2, there is partial truncation.

Connection time is truncated if the encounter node speed is smaller than 2r/c− v0 and

vice versa. In case 3, a connection time truncation occurs irrespective of the encounter

node speed. This is denoted as full truncation. The occurrence of the three cases

depends on speed va and vb. Four regimes can be identified and are summarized in

Table 4.2.
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In the first regime, the minimum speed va is large such that va ≥ r/c. Suppose

the encounter node moves at speed V and the observer node moves at speed v0, the

corresponding connection time is

2r
V + v0

≤ 2r
2va

≤ c. (4.52)

Thus, there is no connection time truncation at all observer and encounter node speeds.

In a highway environment, the minimum node speed va is typically much larger than

r/c. Thus we expect there is no connection time truncation in reverse traffic scenarios.

In the second regime, va ≤ r/c and va + vb ≥ 2r/c. When there is traffic congestion

on the highway, it is possible that the minimum speed is small and satisfies va ≤ r/c.

On the other hand, congestion may be local and occurs only in one or two lanes. The

fast lanes may experience no congestion such that va + vb ≥ 2r/c is satisfied. In this

scenario, a observer node undergoes no connection time truncation if it has high mobility

such that d/vb ≤ t0 ≤ d/(2r/c − va). On the other hand, if the observer node has low

mobility such that d/(2r/c−va) ≤ t0 ≤ d/va, a connection time truncation occurs when

the encounter node speed is smaller than 2r/c− v0. In the third regime, va ≤ r/c and

va +vb ≤ 2r/c. When the maximum speed vb is also small, a observer node will undergo

partial connection time truncation at high mobility when d/vb ≤ t0 ≤ d/(2r/c − vb).

Again, connection time truncation occurs when the encounter node speed is smaller than

2r/c−v0. When the observer node has low mobility such that d/(2r/c−vb) ≤ t0 ≤ d/va,

full truncation always occurs irrespective of the encounter node speed. In the fourth

regime, the maximum speed vb is small such that vb ≤ r/c. Even if both the observer

node and the encounter node move at maximum speed, the corresponding connection

time is 2r/2vb ≥ c. In practice, a mobile infostation network has a small transmit range

r and a moderate large connection time limit c. It is unlikely that the last two regimes

are of importance in reverse traffic scenarios. In the usual highway traffic scenarios, it

is reasonable to assume that the first regime holds most of the time. We will therefore

perform our numerical experiments for the first regime only.

Although both node encounter rates E[N1(t0)]/t0, E[N2(t0)]/t0 and connection

times E[B1(t0)], E[B2(t0)] are known analytically, the critical points for η1(t0) =



87

E[Z1(t0)]/t0 and η2(t0) = E[Z2(t0)]/t0 cannot be determined analytically as both in-

volves the products of logarithmic functions in t0. Thus it is impossible to examine

the variations of η1(t0) and η2(t0) as as function of observer node mobility without em-

ploying numerical studies, as we do in the next section. Nevertheless, it is instructive

to compare the values of η1(t0) and η2(t0) at limiting cases of maximum and mini-

mum observer node speed. Specifically, we compute the ratios η1(d/vb)/η1(d/va) and

η2(d/vb)/η2(d/va).

Consider the forward traffic scenario. Recall in Table 4.2 that the connection time

at minimum and maximum speed is the same at all regimes by symmetry. The ratio

η1(d/vb)/η1(d/va) therefore depends on node encounter rate only. Thus for all the three

regimes in the forward traffic scenario, this ratio is given by

η1(d/vb)
η1(d/va)

=
vbE[N1(d/vb)]
vaE[N2(d/va)]

=

(
vb
va

)
ln
(

vb
va

)
−
(

vb
va

)
+ 1(

vb
va

)
− 1 − ln

(
vb
va

) . (4.53)

It is noteworthy that (4.53) is completely determined by the ratio vb/va and is in-

dependent of the transmit range r and connection time limit c. With reference to

Figure 4.4(a), we observe that the ratio η1(d/vb)/η1(d/va) is always larger than 1 for all

choices of va and vb. In particular, when the difference vb − va is large, say va = 2 and

vb = 30, the ratio is as large as 2.25. That is, the fraction of connection time, or the

average number of connections of the observer node is more than double when observer

node mobility is high.

In reverse traffic scenarios, we consider the first two regimes, namely va ≥ r/c and

{va ≤ r/c, va + vb ≥ 2r/c}, since these regimes are most likely to happen in realistic

scenarios. Here, the node encounter rate is increasing with node speed and connection

time is decreasing with node speed. For va ≥ r/c, we have

η2(d/vb)
η2(d/va)

=

[(
vb
va

)
+
(

vb
va

)
ln
(

vb
va

)
− 1
]
ln
(

2
1+

vb
va

)
[(

vb
va

)
− 1 + ln

(
vb
va

)]
ln
(

1+
vb
va

2

) . (4.54)

Although the connection time at t0 = d/va and t0 = d/vb is different, it turns out

that the ratio η2(d/vb)/η1(d/va) is also independent of transmit range r and dependent

on the ratio vb/va only. In this regime, no connections are truncated. The expected
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(a) (b)

(c)

Figure 4.4: (a) Ratio of the average number of connections at maximum speed and
minimum speed for forward traffic. (b) Ratio of the average number of connections
at maximum speed and minimum speed for reverse traffic (va ≥ r/c). (c) Ratio of
the average number of connections at maximum speed and minimum speed for reverse
traffic (va ≤ r/c and va + vb ≥ 2r/c).

connection times E[Z1(t0)] and E[Z2(t0)] are linear to the transmit range r. Thus r is

cancelled out in (4.54). As illustrated in Figure 4.4(b), the ratio η2(d/vb)/η2(d/va) is

plotted. It is noteworthy that η2(d/vb)/η2(d/va) ≈ 1 for a large range of va and vb. It

naturally leads to a hypothesis that η2(t0) is independent of node mobility t0, which we

have confirmed in our numerical study by plotting out η2(t0) vs. t0 in the next section.

In the second regime, we have 0 ≤ va ≤ r/c and va + vb ≥ 2r/c. Since a connection

undergoes partial truncation when the observer node speed is low, the expected con-

nection time at low observer node mobility is no longer linear to the transmit range r.
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(a) (b)

Figure 4.5: (a) Ratio of average number of connections of forward traffic to reverse
traffic vs. r/c when observer node speed is va. (va = 2, vb = 10, d = 1000). (b) Ratio of
average number of connections of forward traffic to reverse traffic vs. r/c when observer
node speed is vb. (va = 2, vb = 10, d = 1000).

In this case, we have

η1(d/vb)
η1(d/va)

=

(
1 + vb

vb−va
ln vb

va

)
ln 2vb

va+vb(
1 + va

vb−va
ln vb

va

)(
ln ce(va+vb)

2r − cva
r

) , (4.55)

which depends on the ratio r/c. As illustrated in Figure 4.4(c), the expected fraction

of connection time or the number of connections is almost equal for both observer node

speed, though it is larger when observer node speed is minimum.

It is also instructive to examine the effect of transmit range to connection time

limit ratio r/c on η1(t0)/η2(t0). We consider the cases where t0 = d/va and t0 = d/vb.

As reference to Figure 4.5(a),(b), we observe that η1(t0)/η2(t0) decreases with r/c in

both cases. At high speed, η1/η2 > 1 for all values of r/c, indicating that forward

traffic connections are superior in terms of the fraction of connection time. At low

speed, however, forward traffic connections are inferior to reverse traffic connections for

large r/c. In general, forward traffic connections are more prone to connection time

truncation than reverse traffic connections. A large transmit range is not helpful since

connection time is truncated in many cases.

4.5 Numerical Study

Here, we plot our results numerically to compare the performance of forward and reverse

traffic connections at different observer node speed. The parameters va = 2, vb = 10,
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(a) (b)

(c) (d)

Figure 4.6: Expected number of connections η(t0) versus node mobility t0 = d/v0 for
different transmit range r and connection time limit c. (a) r = 1, c = 1 (b) r = 2, c = 1
(c) r = 0.5, c = 1 (d) r = 1, c = 10.

d = 1000 are adopted. We do not perform simulations, however. Our derivations are

exact except for the boundary effect of an overshoot connection time, which is negligible

since c << min(t0) = d/max(v0) = 100 by two orders of magnitude. With reference to

Figure 4.6, the expected fraction of connection time, or expected number of connections

η1(t0) and η2(t0) are plotted together versus t0 in the range d/vb = 100 to d/va = 500.

At mean speed v0 = 6, the corresponding t0 is 166.67 unit. Consider scenario 1 for

r = 1, c = 1. For forward traffic, η1(t0) attains a global maximum of 0.6 when t0

is minimum. η1(t0) decreases steadily as t0 increases and hits the minimum of 0.3 at

t0 = 267.73. Beyond that, there is a slight increase of η1(t0) when t0 is increased further.

Similar trends are observed for other scenarios in Figure 4.6(b),(c),(d). Nevertheless, a
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slight dip of η1(t0) occurs at low mobility (t0 ≈ 500) for Figure 4.6(d). Although there

are slightly more encounters at low mobility, there is a steeper decrease in connection

time. Thus η1(t0) is not convex in general. In the particular case of v0 = va = 0,

the observer node is stationary. The expected fraction of connection time for forward

and reverse traffic should be arbitrarily close. That is, the two curves should coincide

when t0 is arbitrarily large. In our example, the observer node moves slowly when

v0 = va = 2. The dip in Figure 4.6(d) is consistent to our intuition that the fraction

of connection time for forward and reverse traffic are close when the observer node has

low mobility.

In contrast to forward traffic, the expected fraction of connection time, or expected

number of connections η2(t0) is almost constant at all observer node speed in reverse

traffic scenarios. The relative value of η1(t0) and η2(t0) depends on the ratio of transmit

range to connection time limit r/c. When r/c is large (Figure 4.6(b)), it is likely that the

connection time for forward traffic is truncated. Thus η1(t0) is consistently smaller than

η2(t0) except for very high observer node speed. When r/c is small (Figure 4.6(c),(d)),

the connection time of each node encounter is large. In fact, if there is no connection

time limit, the expected connection time for forward traffic is unbounded. The large

connection time at large c stipulates that η1(t0) > η2(t0) at all node speed. Incidentally,

when r/c = 1 (Figure 4.6(a)), η1(t0) and η2(t0) intersects at t0 = 162.7, which is close

to the cycle duration at mean speed d/E[V ] = 166.67. Thus, if a observer node moves

at a constant speed v0 less than the mean speed E[V ], reverse traffic connections are

more preferable. Similarly, forward traffic connections are more preferable if a node

moves at a constant speed v0 ≥ E[V ] in this particular example.

Our results show that the data rate of forward traffic connections and reverse traffic

connections is dependent on c. The value of c, in turn, is closely related to the correla-

tion of the contents between two nodes. If nodes have highly correlated contents, any

two arbitrary nodes may want to exchange only a few files with each other, effectively

modeled by a small c. It is more efficient to maintain reverse traffic connections and

exchange files with more nodes, as in the case (r = 2, c = 1) shown in Figure 4.6(b). In

a content distribution application, this is an appropriate strategy when most nodes get
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most of the files already. Similarly, when new content is disseminated, nodes have few

files in common and can be modeled by a large c. In this case, a node should maintain

forward traffic connections to exploit the long expected connection time as warranted

by the uniform speed distribution, as in the case (r = 1, c = 10) shown in Figure 4.6(d).

4.6 Discussions

In [20], it was shown that mobility increases the capacity of a mobile infostation net-

work. Capacity gain arises from the realization of the maximal spatial transmission

concurrency in each network snapshot. Mobility comes into the picture by shuffling

node locations, creating numerous instances when excellent channels between different

nodes can be exploited (multiuser diversity). As a result of mobility, the sum capacity

of each network snapshot translates to the long run end-to-end network throughput. It

is noteworthy that in this networking paradigm, end-to-end capacity does not depend

on node mobility per se. Node mobility, however, do impact the delay performance.

The delay of a transiting packet is directly related to the time scale of the mobility

process.

In this chapter we have focused on the physical implications of mobility. The fraction

of connection time, or number of connections of a observer node over an interval, is

determined by the rate of node encounters and the connection time of each encounter,

both of which are obviously related to node mobility. It turns out that in reverse traffic

scenarios, the expected number of connections is really independent of node mobility.

In forward traffic scenarios, however, the expected number of connections (and thus the

data rate) increases as mobility increases. Numerical results show that the expected

fraction of connection time, or expected number of connections at high node mobility

can be much greater than that at low mobility. In particular, in the case when node

speed is uniformly distributed between 2 to 30 units, the fraction of connection time is

improved by more than a factor of 2 when the observer node increases its speed from

minimum to the maximum. Thus, mobility not only provides a mechanism for the

exploitation of multiuser diversity. The increase of the fraction of connection time and

data rate is a physical consequence of node mobility. Incidentally, this also provides an
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incentive for network nodes to be mobile. If a particular mobile user wants to enjoy a

higher throughput, or minimizes the downloading time of the files he is interested in, he

is motivated to become more mobile and roam around the network. This mobile user

in turn helps the network to disseminate data more efficiently, such that the end-to-end

delay performance of other users are improved.

It is well known that mobility degrades network performance in many wireless

paradigms such as cellular networks and multihop networks. In multihop networks,

for instance, extraneous overhead is needed for route maintenance to cope with link

failures in node mobility. On the other hand, the fraction of connection time in a fixed

infostation model [16] is constant regardless of node mobility. We have shown in this

chapter that the fraction of connection time, and data rate increases with node mobil-

ity in a mobile infostation network. Thus the mobile infostation network paradigm is

superior to multihop networks and fixed infostation networks in its robustness to node

mobility.

Appendix I: Derivation of Expected Connection Time in

Forward Traffic

E[B1(t0)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c( d
t0

−va)+2r ln[(vb− d
t0

)( ce
2r )]

vb−va

d
va

≥ t0 ≥ max( d
va+ 2r

c

, d
vb− 2r

c

)
c(vb− d

t0
)+2r ln[( d

t0
−va)( ce

2r )]
vb−va

d
vb

≤ t0 ≤ min( d
va+ 2r

c

, d
vb− 2r

c

)

2r ln[( ce
2r )

2
(vb− d

t0
)( d

t0
−va)]

vb−va

d
vb− 2r

c

≤ t0 ≤ d
va+ 2r

c

c d
va+ 2r

c

≤ t0 ≤ d
vb− 2r

c

(4.56)

In forward traffic, the connection time is truncated if two nodes move at similar speed.

Suppose the observer node speed is v0. Connection time truncation occurs if the en-

counter node has a speed fall into the shaded area as in Figure 4.2. The four depicted

cases corresponds to the connection time given as (4.56).

Proof:

Instead of computing over the time variable t, we compute the connection time w.r.t.
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the speed random variable. With reference to Figure 4.2, for case 1 we have⎧⎨
⎩ v0 − 2r/c ≤ va v0 ≤ va + 2r/c

v0 + 2r/c ≤ vb v0 ≤ vb − 2r/c

Combining the two cases, we have

t0 ≥ max(
d

va + 2r/c
,

d

vb − 2r/c
).

Also, va ≤ v0 ≤ vb−2r/c. Thus this case applies when vb−va ≥ 2r/c. The corresponding

expected connection time in one node encounter is

E[B1(t0)] =
∫ v0+2r/c

va

c dG(v) (4.57)

+
∫ vb

v0+2r/c

2r
v − v0

dG(v) (4.58)

=
c( d

t0
− va) + 2r ln[(vb − d

t0
)
(

ce
2r

)
]

vb − va
. (4.59)

For case 2, ⎧⎨
⎩ v0 − 2r/c ≥ va v0 ≥ va + 2r/c

v0 + 2r/c ≥ vb v0 ≥ vb − 2r/c

Combining the two cases, we have

t0 ≤ min(
d

va + 2r/c
,

d

vb − 2r/c
).

Also, vb ≥ v0 ≥ va+2r/c. Thus this case applies when vb−va ≥ 2r/c. The corresponding

expected connection time in one node encounter is

E[B1(t0)] =
∫ v0−2r/c

va

2r
v0 − v

dG(v) (4.60)

+
∫ vb

v0−2r/c
c dG(v) (4.61)

=
c(vb − d

t0
) + 2r ln[( d

t0
− va)

(
ce
2r

)
]

vb − va
. (4.62)

For case 3, ⎧⎨
⎩ v0 − 2r/c ≥ va v0 ≥ va + 2r/c

v0 + 2r/c ≤ vb v0 ≤ vb − 2r/c

Combining the two cases, we have

d

vb − 2r/c
≤ t0 ≤ d

va + 2r/c
.
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Also, since

va + 2r/c ≤ v0 ≤ vb − 2r/c,

this case applies when vb − va ≥ 4r/c. The corresponding expected connection time in

one node encounter is

E[B1(t0)] =
∫ v0−2r/c

va

2r
v0 − v

dG(v) (4.63)

+
∫ v0+2r/c

v0−2r/c
c dG(v) (4.64)

+
∫ vb

v0+2r/c

2r
v − v0

dG(v) (4.65)

=
2r ln[

(
ce
2r

)2 (vb − d
t0

)( d
t0

− va)]

vb − va
. (4.66)

For case 4, ⎧⎨
⎩ v0 − 2r/c ≤ va v0 ≤ va + 2r/c

v0 + 2r/c ≥ vb v0 ≥ vb − 2r/c

Combining the two cases, we have

d

va + 2r/c
≤ t0 ≤ d

vb − 2r/c
.

Also, since

vb − 2r/c ≤ v0 ≤ va + 2r/c,

this case applies when vb − va ≤ 4r/c. The corresponding expected connection time in

one node encounter is

E[B1(t0)] =
∫ vb

va

c dG(v) = c Q.E.D. (4.67)

Appendix II: Derivation of Expected Connection Time

in Reverse Traffic

E[B2(t0)] =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2r ln
(

vb+d/t0
va+d/t0

)
vb−va

d
vb

≤ t0 ≤ d
max(va,2r/c−va)

2r ln
(

d/t0+vb
2r

ce
)
−c(d/t0+va)

vb−va

d
max(2r/c−va,va) ≤ t0

≤ d
max(va,2r/c−vb)

c d
max(va,2r/c−vb)

≤ t0 ≤ d
va

(4.68)
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Proof:

Instead of computing over the time variable t, we compute the connection time w.r.t.

the speed random variable. For no truncation,

2r
V + v0

≤ c,

or

V ≥ 2r
c

− v0.

With reference to Figure 4.3. In case 1, there is no truncation at all observer node

speed v0. That is,
2r
c

− v0 ≤ va,

or

v0 ≥ 2r/c− va.

As r → 0, v0 is bounded below by va. Therefore,

v0 ≥ max(2r/c − va, va),

or

t0 ≤ d

max(2r/c− va, va)
.

The corresponding expected connection time in one node encounter is

E[B2(t0)] =
∫ vb

va

2r
v + v0

dG(v) (4.69)

=
2r ln

(
vb+d/t0
va+d/t0

)
vb − va

. (4.70)

In case 2, there is partial truncation when the observer node speed satisfies

va ≤ 2r/c− v0 ≤ vb.

That is, ⎧⎨
⎩ v0 ≤ 2r/c− va

v0 ≥ 2r/c− vb
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Since v0 is bounded below by va as r → 0, we have⎧⎨
⎩ v0 ≤ max(2r/c− va, va)

v0 ≥ max(2r/c− vb, va)

Combining the two cases, we have

max(2r/c − vb, va) ≤ v0 ≤ max(2r/c− va, va),

or
d

max(2r/c− vb, va)
≥ t0 ≥ d

min(2r/c− va, va)
.

The corresponding expected connection time in one node encounter is

E[B2(t0)] =
∫ 2r/c−v0

va

c dG(v) (4.71)

+
∫ vb

2r/c−v0

2r
v + v0

dG(v) (4.72)

=
2r ln

(
d/t0+vb

2r ce
)
− c(d/t0 + va)

vb − va
. (4.73)

For case 3, there is truncation at all observer node speed.

vb ≤ 2r/c− v0,

or

v0 ≤ 2r/c− vb.

When r → 0, v0 is bounded below by va. Thus,

v0 ≤ max(2r/c− vb, va),

or

t0 ≥ d

max(2r/c − vb, va)
.

E[B2(t0)] = c Q.E.D.



98

Chapter 5

On Network Connectivity and Energy Efficiency of

Multihop Networks

5.1 Introduction

A mobile ad hoc network consists of mobile nodes that communicate with each other

through multihop routing. The achievable capacity in these networks, however, is

low as demonstrated by simulation studies [8, 12] and supported by analytical work

[24]. Recently, power control [72,78] and rate adaptation [26,99] techniques have been

proposed and shown demonstrative improvements on network capacity.

There are two basic paradigms in power control for mobile ad hoc networks. In

the first paradigm, all nodes have a common transmit range that is predetermined.

In the second paradigm, each node adaptively adjusts its transmit power [14, 49, 72]

based on some heuristics and local channel measurements. Since nodes can adjust

and transmit just enough power to the intended destination as time evolves, these

algorithms are potentially superior due to the reduced interference, increased frequency

reuse and improved energy efficiency. However, the bi-directionality of a link is no

longer guaranteed. Since 802.11 is routinely used in ad hoc networks, all wireless links

must be bi-directional such that the MAC layer functions properly. In this aspect, the

first class of power control algorithms is more preferable. No extraneous signaling is

needed to ensure links are bi-directional.

In this chapter, we restrict our scope to the first power control paradigm. The

literature for this paradigm can be traced back to the seminal work of Kleinrock [44].

The transmit range is expressed as the mean number of neighbors of a node. Since then,

there are a steady flow of followup work [28, 56, 87, 90, 91, 107] that address the same

problem under different network models. The transmit range is optimized such that
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the expected forward progress, or a related metric is maximized, where forward progress

denotes the distance advancement of a packet in the direction of the destination node per

transmission. The above literature, however, completely ignores the issue of network

connectivity. [23] revisited the transmit range problem from a network connectivity

perspective and determine the critical transmit range of a random network such that

it is asymptotically connected with probability 1 when the number of nodes tends

to infinity. In [24], it is further shown that under ideal network assumptions, a near

optimal network capacity is attainable if all nodes operate at the critical transmit range.

Nevertheless, analytical approaches are pursued in all these work, and the results are

applicable to stationary networks only. Recently, [78] examined the effect of mobility

on ad hoc networks by simulations and showed that optimal transmit range exists for

mobile networks such that network throughput is maximized. The optimal transmit

range is found to be increasing with node mobility.

Our literature review reveals that the optimal transmit range problem was ap-

proached with the objective of maximizing throughput and forward progress (which is

also related to throughput), or ensuring network connectivity. The effect of transmit

range on energy efficiency of packet transmissions, however, has never been studied

before. We note that in practice, it is often more important to optimize for energy

efficiency than throughput in a mobile ad hoc network. Since all mobile nodes are op-

erated on stand-alone batteries, it is imperative to ensure all packet transmissions are

energy efficient. Due to the relevance of energy efficiency in ad hoc networking, in this

chapter we investigate the effect of transmit range control on the energy efficiency of

packet transmissions. We quantify energy efficiency by defining the energy per packet

Ep metric. This represents the ratio of the total dissipated energy of all nodes to the

total number of successfully received packets at the destinations. Our objective is to

determine a common transmit range for all nodes such that energy per packet Ep is

minimized.

We performed ns-2 simulations to study the effect of transmit range control on en-

ergy efficiency. In the first part of the chapter, we consider stationary network only. We

focus on three system parameters that affect energy efficiency of packet transmissions,
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namely: energy dissipation model, offered load and path loss exponent of the channel.

In our energy dissipation models, a node may expend no power or the same power as

transmitting a packet during packet reception. If packet reception consumes significant

energy, it is more energy efficient for nodes transmitting at a larger range and using

routes that have fewer number of hops. Energy efficiency is also very sensitive to the

transmit range at heavy offered load. When the network offered load is very heavy, it is

highly energy inefficient for nodes to transmit at the critical range. When the path loss

exponent of the channel is small, there exists an optimum transmit range that maxi-

mizes energy efficiency. Moreover, the optimum range is much larger than the critical

transmit range. It turns out that energy efficiency is closely related to congestion and

network connectivity. Three network connectivity regimes are identified to explain our

observations, namely: partitioned, weakly connected and strongly connected regimes.

Our results that the optimal transmit range in a stationary network is much larger

than the critical transmit range is contrary to the conclusion of some literature. In [24],

Gupta and Kumar contended that a critical range just enough for network to be con-

nected is near optimal in network capacity. The discrepancy is due to some simplifying

assumptions made in [24], where network traffic is assumed to be homogeneous and

is distributed evenly to all nodes. However, we show that when nodes operates at

the critical transmit range (weakly connected regime), network traffic is highly non-

homogeneous. Local congestion is dominant at some critical links. Since nodes have

finite buffers, many packets are dropped due to buffer overflow along the critical links,

leading to poor energy efficiency.

In the second part, we examine the effect of mobility on energy efficiency. The effect

of mobility on the optimal transmit range was examined in [78]. It was found that the

optimal transmit range is increasing with node mobility. In high mobility scenarios,

a larger transmit range leads to less frequent link failure. This suppresses packet loss

when a link failure occurs and the associated control overhead at route maintenance.

The decrease in frequency reuse is more than compensated by more robust wireless

links. In our simulations, we have used normal offered load instead of the network

saturation offered load in [78]. We show that at normal offered load, there does not
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exist a transmit range that optimizes network throughput. Nevertheless, an optimum

transmit range exists such that energy efficiency is maximized. The optimal range

turns out to be insensitive to node mobility, and is much larger than the critical range

as advocated in [23,24].

The rest of the chapter is organized as follows. We describe our simulation setup in

section 5.2, followed by the discussion of simulation results in sections 5.3, 5.4 and 5.5.

In 5.3, we identify three distinct network connectivity regimes for a stationary network

as the transmit range of nodes increases. We then consider stationary networks in 5.4.

The effect of system parameters on the optimum transmit range is discussed. In 5.5,

the effect of transmit range control on energy efficiency is studied when node mobility

is introduced. Finally, conclusions are drawn in section 5.6.

5.2 Simulation Setup

The transmit range of a mobile node depends on its transmitted power, Pt, and the

propagation loss. In our study, we focus on the effect of distance attenuation, which is

characterized by the path loss exponent β. Second-order effects such as shadowing and

multipath fading are ignored. To model the propagation loss, we adopt the following

free space model:

Pr(d) =
Pt(4π)2

λ2
dβ, (5.1)

where Pr(d) is the received power at distance d, and λ is the wavelength.

In mobile environments, β typically ranges from 2 to 4. In our simulation, we

consider the cases β = 2, 3 and 4. When β = 2 and 3, we apply the above model. When

β = 4, however, the attenuation according to the above equation becomes unrealistically

large. Therefore, for this case, we use the more realistic two-ray ground model:

Pr(d) =

⎧⎨
⎩ Ptλ

2/[(4π)2d2] d < 4πhthr/λ

Pth
2
th

2
r/d

4 d ≥ 4πhthr/λ.
(5.2)

In this model, when the communication distance increases beyond the crossover distance

(far field), the path loss exponent changes from β = 2 to β = 4. We note that in the
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far field, the free-space and the two-ray models have the same signal rolloff and differ

only in the constant factor preceding the function d.

To study energy efficiency, it is important to understand how energy is consumed.

Clearly, a mobile node consumes energy either it is transmitting, receiving, or staying

idle. For state of the art hardware technology, the idle power of a node is comparatively

small and is ignored in our study. On the other hand, the reception of a packet involves

meticulous signal processing techniques from synchronization to decoding to equaliza-

tion. The power consumption can be significant compared to the power of transmitting

a packet. Therefore, it is necessary to examine the energy expenditure on packet recep-

tion as well as packet transmission. In our study, we consider two energy dissipation

models. In model 1, a node consumes no energy when it receives a packet. In model 2,

a node consumes the same amount of energy whether it transmits or receives a packet.

In either case, the energy consumption of a packet transmission is given by the transmit

power times the packet duration. These models represent two extreme cases and allow

us to examine how energy consumption in packet reception affects energy efficiency of

the network.

The simulations are performed on ns-2 [1], with its wireless extensions developed

by the Monarch project [2]. We assume that there are 100 mobile nodes distributed

uniformly in a 1000m by 1000m area. For a given channel model with known β, we

simulate 16 power levels such that the transmit range corresponds to 75m to 450m at

a step of 25m.

The mobile nodes emulate 914 MHz Lucent WaveLAN DSSS radio interfaces. The

nominal bit rate is 2 Mbps. Omni-directional antennas with 0 dB gain are used, and

antennas are placed 1.5m above the ground. The receive threshold is 3.652e-10 W or

-64.37 dBm, which determines the minimum SIR required for successful decoding of a

received packet. The carrier sense threshold is 1.559e-11 W or -78.07 dBm. Any packet

with a SIR more than the threshold may interfere with reception of another packet.

Nodes move in the network under the random waypoint mobility model. Node

movements consist of alternate mobility and pause epochs. During a mobility epoch, a

node moves with constant speed in a particular direction. We assume that the speed
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is uniformly distributed between 0 and max speed. In the pause epoch, nodes stop at

the current position for a fixed duration of pause time. We characterize node mobility

using the parameter max speed and keep the pause time equal to 1 second in all mobility

scenarios. Four different values of max speed are investigated in our study, namely

v = 0, 5, 10, 20m/s. These values correspond to the stationary, fast pedestrian, slow

and fast vehicular scenarios.

The traffic is generated through a CBR application over UDP [8,12], which simulates

the performance of the best effort delivery paradigm. The offered load can be varied

by any of the three parameters, namely packet transmission rate, packet size and the

number of traffic flows in the network, where each flow denotes a predetermined source

destination pair that is randomly chosen. We simulate three offered loads regimes, as

shown in Table 5.1. The traffic types 1 to 3 correspond to a network operating in the

light, normal and saturation load regimes respectively. Packet sizes are chosen such

that fragmentation occurs on neither the network nor the MAC layer.

In this chapter we use the dynamic source routing (DSR) algorithm [33] in our simu-

lations, since DSR shares many of the salient characteristics typical to reactive routing

algorithms. The DSR runs on top of the 802.11b standard with a channel reservation

mechanism enabled by the use of request to send (RTS) and clear to send packets. In

general, packet loss can result from contention in wireless transmissions, unavailabil-

ity of route due to mobility, or buffer overflow due to congestion. Nevertheless, the

RTS/CTS mechanism in the 802.11b standard is efficient in combating the hidden ter-

minal problem. We note that in the first part of our simulations, we consider stationary

networks only. By factoring out mobility into our consideration, most packet loss that

occurs are due to congestion. This allows us to examine in detail the inter-relationship

between network connectivity, congestion and energy efficiency. Node mobility is in-

corporated in the second part of our simulations so that the relationship between node

mobility and energy efficiency can be studied.

To summarize, we have four system parameters in our simulation model, namely:

offered load (light, normal and saturation), path loss exponent (β = 2, 3, 4), energy dissi-

pation for receiving packets (Model 1 and 2), and node mobility (stationary, pedestrian,
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Traffic packet packet number of total
type rate size flows load
1 5/s 64Byte 20 51.2Kbps
2 10/s 64Byte 20 102.4Kbps
3 20/s 768Byte 20 2.458Mbps

Table 5.1: Traffic parameters adopted in the numerical studies

slow and fast vehicular). These four parameters together define a network scenario. For

each network scenario, ten topology realizations are simulated. Each simulation lasts

for 300 sec. Each flow starts at a staggered time that is uniformly distributed between

0 and 100 sec. Simulation data is logged during the interval between 100 sec. and 300

sec. to ensure the network has reached a steady state. In each topology realization, all

flows are monitored.

We focus on two performance metrics in this chapter. The goodput, G, denotes the

fraction of packets that is correctly received. It is essentially proportional to throughput

and is between 0 and 1. We evaluate the energy efficiency in terms of energy per packet

Ep. This represents the ratio of the total dissipated energy of all nodes to the total

number of successfully received packets at the destinations. The performance metrics

of a particular network scenario are computed over all monitored flows and averaged

over all topology realizations of the network scenario.

5.3 Network Connectivity Regimes and Goodput

In this section and the next, we consider only the stationary scenario. As the nodes are

not moving, there are only two reasons for packet losses. If the traffic load is sufficiently

light, packets can be lost only if the destination is not reachable by the source. If the

traffic load is heavy, packets may be lost due to buffer overflow, which is a manifestation

of network congestion. These observations enable us to define the critical range and

the optimal range for a given stationary network scenario, as explained below.
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Figure 5.1: Goodput vs. Transmit Range. (a) Comparison of light and normal offered
load regimes when path loss exponent β = 2, (b) Comparison of different path loss
exponents β at normal offered load scenario.

5.3.1 Network Connectivity

In Figure 5.1(a), the goodput at light and normal offered load scenarios is plotted

for path loss exponent β = 2. In the case of light offered load, almost all packet

losses are due to network partitioning. At a transmit range of r = 75m, the network

is heavily partitioned. Packets generated at the source nodes are queued in the node

buffers waiting for transmission. If a source has no neighbor nodes in its communication

range, the DSR algorithm gives up finding a route upon several failed attempts at route

discovery. No data transmission is ever attempted. As new packets are continually

generated, buffer overflow ultimately occurs and the packets are dropped at the source

nodes.

As the transmit range increases, network partitioning is less extensive. Routes

can be established for some flows. The goodput increases with the transmit range

since an increasing fraction of all flows establishes routes successfully. At a range of

r = 175m, the network is almost connected under all topology realizations, with a

goodput G � 1. We define it as the critical range rc of the network scenarios. When
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nodes operate beyond the critical range, all nodes are reachable to each other, and the

network is connected. Similarly, when the transmit range is smaller than the critical

range (r < rc), the network is partitioned. We denote the network as operating in the

partitioned regime when r < rc.

Refer to Figure 5.1(a) again, at normal offered load the goodput increases more

gently. The goodput hits the maximum of 1 when the transmit range is close to r =

275m. In our light and normal offered load simulations, the same topology realizations

are used. Thus packet losses in the range 175m < r < 275m at normal offered load is

not due to network partitioning. In particular, when r = 175m the goodput at normal

offered load is barely above 0.6. Operating at the vicinity of this transmit range is

referred as the weakly connected regime (r � rc). We infer that packet losses are mainly

due to congestion in this regime.

When the transmit range is increased further, the network evolves from weakly

connected to strongly connected (r � rc). At the strongly connected regime, multiple

routes exist for each flow. The network traffic is more evenly distributed to all nodes and

links. This reduces the occurrences of traffic hot spots, leading to an improved goodput.

At very large transmit power, all nodes have direct links to each other. The network

reduces to a broadcast network. Surprisingly, the network goodput does not suffer at

large transmit range at normal offered load. The decrease of frequency reuse with large

transmit range does not adversely affect the network goodput. In most reported ad hoc

network simulations [8, 12], the network is operated at normal offered load 100Kbps.

This is much smaller than the nominal bit rate of 2Mbps. The CSMA multiple access

mechanism in the 802.11 MAC efficiently schedules all packet transmissions even if

there is no frequency reuse. Thus the goodput is increasing with the transmit range.

5.3.2 Optimal Transmit Range

In [24], it was shown that under some ideal network assumptions, network capacity is

near optimal when nodes are operated at the critical range. Although an increase in the

transmit range reduces the number of hops to the destination node, it also decreases the

number of simultaneous transmissions in the network. Suppose the transmit range is



107

doubled, the number of hops to the destination is halved on the average. However, the

coverage area of a node is also quadrupled. In order to avoid a collision, all other nodes

in the range of a receive node should not transmit, reducing the number of concurrent

transmissions in the network by four times. It turns out that the tradeoff between the

number of hops and the number of simultaneous transmissions always favors nodes with

the smallest range such that the network is connected.

Our simulation results in Figure 5.1, however, indicate that a network is prone

to congestion when it is operated in the weakly connected regime (r � rc). This

discrepancy is due to the simplistic assumptions made at [24]. The derivation in [24]

rests on the assumption that the total offered load (including multihop forwarding)

equals the total one hop capacity, i.e. the maximum number of concurrent transmissions

times the bandwidth. Routes are hypothetical and defined by drawing a straight line

between the source and destination nodes. The number of hops is then proportional to

the distance between the end nodes.

We note that in the above model, there is an implicit assumption of traffic homo-

geneity, in which all packet transmissions are distributed evenly to all nodes. As long

as the total number of one hop transmissions at one snapshot can be accommodated to

all simultaneously transmitting nodes, it is assumed all transmissions can be received

successfully at the destination nodes. There is no consideration of congestion due to

the non-homogeneity of traffic over space. In reality, the spatial distribution of traffic is

not homogeneous. Congestion occurs at local hot spots and packets are dropped. For

example, in our simulation, there is no network partitioning at r = 175m. However,

the network remains weakly connected in the sense that some links are critical to net-

work connectivity. The network will be partitioned otherwise if the critical links are

removed. As a result, many flows route through the critical links as the intermediate

paths. Local congestion occurs along the critical links and significantly degrades the

throughput performance.

Our argument is graphically illustrated in Figure 5.2. Observe that the edge between

node A and node B is a critical link. All nodes on the left have to route through link

A − B to reach any node on the right. In this example, three flows are merging into
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Figure 5.2: Constraint on frequency reuse along a multihop route due to the heavy
merging traffic at node A preceding the critical link.

the critical link. Due to the incoming traffic, there are many transmissions in the

proximity of node A. The sum of interference for nodes several hops away from node

A can be very large. This suppresses node A from seizing the channel and proceed to

data transmission. Consequently, a backlog of incoming packets is built up at node A,

creating a traffic bottleneck. When the buffer is full finally, packets are dropped due

to congestion. Although the network is not partitioned, the proliferation of network

traffic preceding the critical links leads to congestion and packet dropping.

5.3.3 Effect of Path Loss Exponent

In Figure 5.1(b), the goodput at normal offered load is plotted when the value of path

loss exponent is varied. We observe that as β increases, the goodput also increases

correspondingly. In particular, when the network is weakly connected (r � rc), the

goodput is approximately 0.6,0.9,0.95 for β = 2, 3, 4 respectively. This indicates there

is few congestion for β = 3 and almost no congestion for β = 4.

In general, when the path loss rolloff β is steeper, frequency reuse is more efficient.

Consider a network of n nodes. Suppose the intended receiver is located at a distance

r from the transmitter. Due to the constraint of frequency reuse, a transmission is

not successful if there is another transmission within a distance (1 + ∆)r from the

intended receiver, where ∆ > 0 is a measure of frequency reuse distance. Let γmin

be the minimum signal interference ratio (SIR) at the receiver for successful reception.

It is straightforward to show that γmin = (1 + ∆)β , or ∆ = γ
1
β

min − 1. Thus, when
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path loss exponent β increases, ∆ decreases. The decrease of frequency reuse distance

with increasing β allows more simultaneous transmissions in the network, leading to an

increase in goodput. Our results are consistent to [41], where network throughput is

derived under simplified assumptions. It was shown that the average throughput ν per

node can be supported if

ν ≤ c

rn∆2

for some constant c. It is obvious that when β increases, ∆ decreases and ν increases.

Refer to Figure 5.2, the increase in goodput with large β can be understood as

follows. When β = 2, the frequency reuse distance is 1 + ∆(β) is large. If any of the

nodes 1 to 6 transmits, the interference at node A is large such that A refrains from

transmission. When β increases, the frequency reuse distance decreases correspondingly.

This effectively reduces the number of interferers that affect node A, and increases the

packet transmission probability. As a consequence, it is more unlikely for node A to

build up a backlog and drops the packets when buffer overflows.

5.4 Optimal Energy Per Packet Ep

In this section, we study the effect of transmit range on energy efficiency of an ad hoc

network. As a prelude, consider the simple scenario that there are a number of nodes

locating on a straight line. Suppose a node wants to transmit a packet to another node

that is not the closest neighbor of the source node. It is easy to show that relaying

the packet by intermediate nodes requires less energy than transmitting it direct to the

destination node. This phenomenon is due to the nonlinear path loss attenuation. This

simple observation suggests that it is energy efficient to choose a small transmit range.

However, things are not that simple. First of all, energy is spent not only on

transmission, but also on packet reception and decoding. We will study this effect by

means of the two energy dissipation models. Second, network congestion may occur if

the network operates at the weakly connected regime. This complicates the problem;

the simple observation may no longer be valid. We will discuss this issue in the next

subsection first. Afterwards, we present our results using two different dissipation
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models. Finally, we discuss the effect of path loss exponent.

5.4.1 General Trend at β = 2

In Figure 5.3(a),(b), energy per packet Ep is plotted versus transmit range for two

energy dissipation models. The Ep of light and normal offered load scenarios are plotted

on the same graph for comparison. Similarly, in Figure 5.3(c),(d) energy per packet Ep

is plotted versus transmit range for two energy dissipation models at network saturation.

These results are obtained with path loss exponent keeping constant at β = 2. With

the exception of light offered load scenario, the variation of Ep for other offered load

scenarios and different energy dissipation models follows a general trend as the transmit

range increases. Ep hits a local maximum as the transmit range increases. Further

off the local maximum, Ep dips into a local minimum before increasing again as the

transmit range is increased further.

To explain the general trend, we consider in the following the normal offered load

scenario under energy dissipation model 1, where there is no energy consumption for

packet reception. In the partitioned regime (r < rc), nodes have small transmit power.

Due to network partitioning, routes exist only between source-destination pairs that

are in close proximity. Since energy consumption per hop and the number of hops in a

route is small, all successful packet transmissions are energy efficient.

The majority of source nodes, however, fail to discover a valid route to the des-

tination nodes at DSR route discovery. The source nodes make a few attempts to

broadcast Route Request packets locally. If no Route Reply packets are received after

some timeout, route discovery is aborted. The source nodes perform route discovery

again after some timeout for a few more times before finally giving up discovering a

route. In a heavily partitioned network, few nodes receive the Route Request packets

and reply with the Route Reply packets in the first place. Thus energy dissipation due

to control messages can be ignored. Moreover, the size of a Route Request or Route

Reply packet is only a fraction of a data packet. Thus negligible energy is expended on

control packets during route discovery.

For the source nodes that give up route discovery after several attempts, incoming
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packets are queued at the source nodes due to the lack of routes. These packets are

dropped subsequently when node buffers are full. Since the data packets are never sent

to the air, there is no energy penalty in dropping those data packets. Thus no energy

is expended on the data packets that are eventually dropped. This explains the small

value of energy per packet Ep in the partitioned regime.

As the network evolves to the weakly connected regime (r � 175m) when transmit

range increases, Ep increases to a local maximum at r = 150m at normal offered load

scenario. As discussed in the previous section, when the network is weakly connected,

congestion occurs along the critical links and many packets are dropped. This is detri-

mental to energy efficiency, as well as network goodput. Recalled from Figure 5.1(a)

that at the critical range r = 175m, almost half of the packets are dropped. Some of

the dropped packets may have already been forwarded for a few hops. Since signifi-

cant energy is expended on the dropped packets, the overall energy per packet Ep is

artificially higher.

As the transmit range is increased further, there are more routes between any source

destination pair in the strongly connected regime. The network traffic is more evenly

distributed across the whole network. This reduces packet loss and drives down Ep to

a local minimum at r = 200m. After congestion is resolved, a further increase in the

transmit range is no longer beneficial. Since there is no gain in goodput by transmitting

at a larger power, Ep increases with further increase of transmit range.

In general, one would like to minimize the energy per packet as much as possible

without sacrificing network connectivity. This corresponds to the transmit range within

the weakly and strongly connected regime such that Ep is minimum. That is, the local

minimum on the Ep curve is the optimum point for network operation.

For comparison purpose, we also plot the behavior of Ep for light offered load sce-

narios on the same graph. It is obvious that Ep for the light and normal offered load

regime matches closely in the partitioned and strongly connected regimes. The Ep for

light offered load scenario, however, is slightly larger. This is because the number of

data packets is smaller at light offered load, whereas the amount of control overhead

remains the same. On the other hand, we observe discrepancies arise for the weakly
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connected regime (r � rc). Recall that the maximum and minimum in Ep at normal

offered load corresponds to the build up and resolution of congestion. Similar trends

cannot be observed at light offered load, where Ep is strictly increasing with the trans-

mit range. The absence of local extrema at light offered load is consistent to the fact

the congestion is absent at light offered load scenario.

Nevertheless, in practical ad hoc networks, offered load is non-negligible. Figure 5.3

shows that a minimum exists for both normal and heavy network offered loads and for

both energy dissipation models under consideration. This is an interesting observation

since for normal offered load, goodput (Figure 5.1(a)) is always increasing with the

transmit range. The determination of an optimal transmit range based on goodput is

quite arbitrary. Our results in Figure 5.3 shows that under different network load and

energy dissipation models, an optimum transmit range exists such that energy efficiency

is maximized for the case when β is small. Furthermore, this optimum range is larger

than the critical range.

5.4.2 Energy Dissipation Model

Figure 5.3(b) shows the result for energy model 2, where power consumption of packet

transmission and reception is the same. As the transmit range traverses the three

network connectivity regimes, we observe the same qualitative trend for Ep. The energy

per packet quickly rises to a local maximum due to congestion, falls again to a local

minimum, and rises again as a further increase in transmit power incurs no goodput

improvement. We observe that the energy dissipation is much larger for energy model

2. At the optimal range of r = 275m, the energy dissipation is approximately 12 mW ,

which is approximately 100 times the energy dissipation for model 1 at the same range.

The significant energy consumption for model 2 is due to unsolicited packet reception.

By default, nodes operate in promiscuous mode in DSR. A node listens to all packets

even if the packets are not addressed to itself. Whenever a node receives a packet,

it eavesdrops the packet header, extract any new routes and updates its route cache.

In particular, when the transmit range is large, each node has many neighbors. This

leads to a lot of unsolicited packet reception. A large fraction of energy is thus spent
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to packet reception rather than packet transmission.

As an illustration, consider two transmit ranges r = 75m and r = 175m. When

r = 75m, the expected number of neighbors of a node is µπr2 = 100
10002 π(75)2 = 1.761,

where µ is the node density. Similarly, when r = 175m, the expected number of

neighbors of a node is µπr2 = 100
10002π(175)2 = 9.619. We observe as the transmit range

increases from r = 75m to 175m, Ep is increased by 3.5 times for energy dissipation

model 1 in Figure 5.3(a). The corresponding increase for Ep for energy dissipation

model 2 is 28 times in Figure 5.3(b). It is evident that the steeper increase in energy

expenditure with range for model 2 is due to the increase in unsolicited packet reception

at large transmit range.

We also observe the optimal transmit range for energy dissipation model 1 and 2

is r = 200m, and r = 275m respectively. When a node expends energy to receive a

packet, multihop routing is less attractive. Our results show that when it is expensive

to receive packets, the optimal transmit range is larger such that the average number of

hops in a route is reduced. This minimizes the energy lost along a route due to packet

reception.

In Figure 5.3(c)(d), Ep is plotted for both energy dissipation models at network

saturation. At a range of r = 250m, Ep in energy model 1 and 2 are respectively 0.8mW

and 70 mW . Similar to the normal offered load scenario, the energy consumption for

model 2 is two orders of magnitude more than that of model 1. Again, this observation

can be explained by the unsolicited packet reception argument. We note that at a range

of r = 250m, Ep of the energy dissipation models at normal offered load is 0.15 mW and

13 mW . Thus, the energy consumption at network saturation is approximately 5.33

times larger than the normal offered load scenarios for both energy dissipation models.

At network saturation, congestion is a network-wide phenomenon. Since packet loss

due to congestion is common, Ep is much larger than that in the normal offered load

scenarios.

We observe that when the network offered load is large, energy per packet Ep is

sensitive to the choice of transmit range. In particular, the ratio of maximum and

minimum in Ep for the network saturation scenario under energy dissipation model 1
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is 1.66, compared with 1.17 in the normal offered load scenario. Similarly, the ratio

of maximum and minimum in Ep for the network saturation scenario under energy

dissipation model 2 is 1.25, compared with 1.07 in the normal offered load scenario. At

network saturation, the network is more prone to congestion at the weakly connected

regime. The extra stress in offered load leads to severe packet loss along the critical links

connecting the network. This implies that when the network is operated in some more

stressful scenarios, it is imperative that an optimum transmit range should be used. If

a critical range is used for stationary networks, such as a deployment of sensors, the

improper setting of the network topology will lead to poor energy efficiency and the

premature depletion of battery energy in sensors.

5.4.3 Path Loss Exponent

The effect of the path loss exponent β on energy efficiency is also examined. In Fig-

ure 5.4(a)(b), the Ep at normal offered load is plotted against the transmit range for

different β. In both cases, we use energy dissipation model 2. We observe that an

optimal Ep does not exist when β = 3, 4. Recall the discussion on three network con-

nectivity regimes, When β = 2, congestion is severe at the weakly connected regime.

This leads to a local maximum in Ep, where many packets are dropped. The subse-

quent increase in transmit range decreases the energy per packet since packet loss due

to congestion is resolved. In contrast, there is few congestion when β = 3 and almost

no congestion for β = 4 at the weakly connected regime. Since an increase in transmit

range beyond the critical range does not reduce packet loss, it is not energy efficient for

nodes to transmit beyond the critical range.

For the cases β = 3, 4, we also observe that both goodput G and energy per packet

Ep are increasing with the transmit range. In general, a network should be operated at a

transmit range that is the most energy efficient without sacrificing network connectivity.

With this rationale in mind, operating the network at critical range rc is a good choice.

At this range, minimum energy is expended per packet while network connectivity is

almost guaranteed by allowing a goodput of 0.95 and 0.99 respectively when β = 3, 4.

In typical wireless environments, a path loss exponent of β = 3, 4 is common. The
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assertion of [24] on the optimality of the critical range is valid in many cases since

congestion is mostly absent in the weakly connected regime when β = 3, 4. However,

in some application environments such as airborne platforms where free space path loss

dictates, or in short range communication networks where there is a direct line of sight

between the communicating nodes, β = 2 holds and the optimal transmit range is very

different from the critical range due to congestion.

5.5 Effect of Mobility

Finally, the effect of mobility on the optimum transmit range is also studied. Similar

study was reported in [78], in which the transmit range that maximizes throughput

is determined. It was found that at network saturation, the optimum transmit range

increases with node mobility. Although a larger transmit power reduces the number

of simultaneous transmissions over space, the decrease in frequency reuse is more than

compensated by a more robust topology. Link failures are less frequent when the

transmit range is large. This impacts the network throughput favorably due to less

packet loss during link failure, and the reduction of the associated control overhead in

route maintenance.

We have performed similar simulations to find the optimum transmit range such

that energy per packet is minimized in different mobility scenarios. Instead of studying

network saturation, we consider normal offered load scenarios in our simulations, which

models the approximate traffic load we expect in a real ad hoc network. Four mobility

scenarios are considered, namely: stationary, fast pedestrian, slow and fast vehicular

scenarios. In each case, we use energy dissipation model 2 and assume β = 2.

As shown in Figure 5.5, the energy per packet is plotted versus transmit range

for different mobility scenarios. The optimum range is r = 275m in stationary and

pedestrian scenarios. For slow and fast vehicular scenarios, the optimum transmit

range is r = 300m and r = 325m respectively. Thus, the optimum transmit range

also increases slightly with node mobility when energy per packet is used as the metric.

Nevertheless mobility has little effect (±8.33%) on the optimum transmit range, with
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r = 300m± 25m. Note that the optimal range is much larger than the critical distance

rc = 175m in our simulations.

We argued earlier that it is energy inefficient to operate a network in the weakly

connected regime owing to congestion. In the presence of node mobility, the energy

inefficiency of operating a network at a small transmit range is more apparent. From

Figure 5.5, the ratio of the local maximum and local minimum in Ep is 1.1241 for

the stationary scenario. The ratio increases slightly to 1.7202 for the fast pedestrian

scenario and hits 2.7674 and 3.8903 respectively for the slow and fast vehicular scenarios.

We note that in all mobility scenarios, the local maximum occurs at a transmit range

close to the critical range. Thus it is highly inefficient for the network to operate at the

critical range, especially in high mobility scenarios.

It is intuitively obvious that an increase in node mobility leads to more packet loss,

and thus, decreases energy efficiency. Thus the energy per packet Ep for each value of

the transmit range is larger than the corresponding values of a more sedentary mobility

scenario. The increase in the ratio of the local maximum to local minimum, on the

other hand, indicates that node mobility is more detrimental to energy efficiency of the

network in the weakly connected regime (where the local maximum occurs). When the

network is weakly connected, the network is prone to link failure due to node mobility.

The increased occurrence of link failures induces more packet loss along a route and

demotes energy efficiency. A large transmit range effectively solves the problem of link

failure, at the expense of reduced spatial concurrency. This, however, does not impact

energy efficiency nor the throughput adversely. At normal load, the system bandwidth

is large enough such that no congestion occurs even if nodes have infinite power. The

decrease of spatial concurrency does not trigger any congestion that leads to packet loss

at normal offered load.

Figure 5.6 depicts the corresponding goodput versus transmit range for the same

mobility scenarios. We observe that at normal load, goodput is increasing with trans-

mit range under all mobility scenarios. It is ambiguous to define an optimum transmit

range based on goodput. On the other hand, when energy efficiency is used as the opti-

mization metric, we show that an optimum transmit range always exists for all mobility
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scenarios. Moreover, in contrast to [78], our optimum transmit range is not sensitive to

mobility. The optimum transmit range is about r = 300m under all mobility scenarios

we considered. It is, however, very different from the critical range as advocated in [24].

The insensitivity of the optimal transmit range to mobility can be attributed to the

sharp increase of goodput for all mobility in Figure 5.6. The goodput approaches 1

around r = 300m under all mobility scenarios. Although a decrease in transmit power

reduces the expended power in each packet transmission, significant energy is wasted

on the large fraction of packets that are dropped in the network, which contributes to

a higher overall energy per packet Ep.

5.6 Conclusion

In this chapter, we address the effect of transmit range control on the energy efficiency

of both stationary and mobile ad hoc networks. We show that with an optimal choice

of transmit range, significant energy savings can be obtained in some scenarios. In the

first part of the chapter, we consider stationary network. The dependence of energy per

packet on several system parameters in a stationary network is examined. This includes

path loss exponent of the channel, energy dissipation model, and the offered load. In

particular, we show that when the path loss exponent is small, a critical transmit range

is suboptimal in throughput and energy efficiency. An optimal transmit range exists

that maximizes energy efficiency, which is much larger than the critical transmit range.

Congestion plays an important role that underlines our observations and is intimately

connected to network connectivity. Three network connectivity regimes are identified as

the transmit range of all nodes increases. In the second part, we also examine the effect

of mobility on energy efficiency. Our results show that at normal offered load, there does

not exist a transmit range that optimizes the network throughput. Nevertheless, an

optimum transmit range exists such that energy efficiency is maximized. The optimal

range turns out to be invariant to node mobility, and is much larger than the critical

range as advocated in some literature.
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Figure 5.3: Energy per Packet vs. Transmit Range. (a) Normal offered load, energy
model 1, (b) Normal offered load, energy model 2, (c) Network saturation, energy model
1, (d) Network saturation, energy model 2.
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Figure 5.4: Energy per Packet vs. Transmit Range. (a) Normal offered load, energy
model 2, path loss exponent β = 3. (b) Normal offered load, energy model 2, path loss
exponent β = 4.
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Figure 5.5: Energy per Packet vs. Transmit Range. Normal offered load, energy
model 2, β = 2. (a) stationary scenario (speed=0m/s), (b) fast pedestrian scenario
(speed=5m/s), (c) slow vehicular scenario (speed=10m/s), (d) fast vehicular scenario
(speed=20m/s).
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Figure 5.6: Goodput vs. Transmit Range. Normal offered load, energy model 2, β = 2.
(a) stationary scenario (speed=0m/s), (b) fast pedestrian scenario (speed=5m/s), (c)
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Chapter 6

Inter-relationships of Performance Metrics and System

Parameters in Mobile Ad Hoc Networks

In the previous chapter, we have studied the effect of transmit range on energy efficiency

of multihop ad hoc networks. It is somewhat surprising that the critical range of Gupta

and Kumar does not yields optimal throughput in the stationary scenario. In this

chapter, we will look into the network behavior of multihop ad hoc networks. By

using an alternate graphical representation of simulation results, we observe interesting

inter-relationships between the performance metrics and the system parameters of the

network. This sheds light to the mechanisms that underline the network behavior. Our

result confirms that the conjecture that throughput improvement in node mobility is

due to load balancing is errorneous, another interesting result.

6.1 Introduction

A mobile ad hoc network consists of mobile nodes which communicate with each other

through multihop routing. Due to the dynamically changing topology, network routing

is an important issue. Numerous routing algorithms [13, 22, 25, 30, 33, 47, 50, 54, 60, 62,

63, 73, 79, 84, 93, 94] have been proposed to facilitate efficient packet delivery in mobile

environments. The focus is on the relative performance of routing algorithms, which

are often characterized by a few performance metrics such as packet goodput, delay and

path length. On the other hand, the network behavior for mobile ad hoc networks is not

well understood. There are no systematic studies on the correlations between various

performance metrics and system parameters such as node mobility and offered load.

We show in this paper by interpreting the simulation results in an alternate graphical

representation, interesting relationships are revealed.
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Our graphical interpretation of simulation results is similar to that used by [26]. The

performance metrics of individual flows (source destination pair) are plotted. Whereas

[26] use this graphical representation to compare metrics on individual flows, we extend

the use of these graphs to investigate the correlations between various metrics and

system parameters. This has led to some new observations not reported before, yielding

insight to the inter-relationships between the goodput, path length and node mobility

and offered load. For example, by studying the relationships of path length and goodput

to speed simultaneously, we resolve a conjecture that goodput improvement under high

mobility is due to the load balancing effect. Furthermore, we have introduced the

concept of fraction of congested flows as a new performance metric. This and some other

metrics such as fairness could be easily visualized from our graphs and are important

in characterizing network performance.

Our data interpretation described in this paper is general. Many inter-relationships

between performance metrics and system parameters could be obtained. In this paper,

however, we focus on the inter-relationships between goodput, path length and the sys-

tem parameters only. The goodput (packet delivery ratio) G denotes the fraction of

packets that is correctly received. The path length L denotes the number of hops a

packet travels along a route. Inter-relationships on packet delay is not discussed. The

rest of the paper is organized as follows. In section 2, we discuss the inadequacies of

using ensemble averaging in obtaining the performance metrics. A graphical represen-

tation similar to that used by [26] is described. Section 3 describes our simulation setup

and our main observations are discussed in section 4.

6.2 Ensemble Averaging in Performance Metrics

In the routing literature [8, 12], the performance metrics of a network are obtained

using ensemble averaging. For a given node mobility, a number of mobility scenarios

are created. A number of flows in each scenario is monitored for some duration. We

obtain the performance metrics by averaging over all the monitored flows. The metrics

are usually plotted against system parameters such as mobility [8,12] or offered load [12].
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Although an average performance metric is useful in ranking the performance of dif-

ferent routing algorithms, it tells little about the performance metric of individual flows

in each scenario. In different mobility realizations of the network, node placement and

the traffic patterns are different. The aggregate network performance in each scenario

varies. Even within a mobility scenario, individual flows also exhibit heterogeneous

performance characteristics due to different path lengths and the non-uniform spatial

distribution of the offered load in the network. Thus when the ensemble average of a

performance metric is plotted, the variation of individual flows within the network is

not captured.

In [8, 12], the performance metrics are plotted against mobility. Each point on a

graph indicates the average performance metric for a specific value of node mobility.

Adjacent points are obtained from mobility scenarios with different node mobility. Since

these metrics are averaged over flows that have very different characteristics, the graphs

in [8,12] show zigzag patterns. The large variations in performance over different flows

undermine the validity of the average metric. The trends of the performance metrics

with system parameters are not obvious. This hinders our objective to find the inter-

relationships between the performance metrics and system parameters.

An average performance metric sometimes yields a misleading conclusion too. A

classical example is when the average packet delay is plotted. In a typical ensemble

of monitored flows, some flows may have lousy routes and many packets are dropped.

Since these flows have higher packet delay in general, the average packet delay will be

artificially smaller since few packets from these flows reach the destination node. In

the comparison of two routing algorithms, if one algorithm drops a lot of packets from

lousy routes, the average delay is then artificially smaller, rendering the comparison

between two algorithms meaningless.

In this paper, we advocate an alternate graphical representation of simulation results

that is similar to the approach of [26]. In [26], the throughput for each of 50 mobility

patterns for the 20m/s and 30m/s mean speeds used in the simulations are plotted.

The patterns are sorted in the order of throughputs at 20m/s. It is demonstrated that

for some mobility patterns the goodput improves with mobility. We use similar graphs
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in our data interpretation with some modifications. We assign a pattern number to each

monitored flow. The pattern numbers are assigned such that the flows are ordered in

the order of increasing goodput, path length, or delay. We plot the performance metric

of each monitored flow versus the pattern number. Under the above assumptions,

the throughput plot for each of the 50 mobility patterns for the 30m/s mean speed is

different. The same pattern number no longer refers to the same flow in each of the two

mean speeds. Since the throughput plot for each mean speed is an increasing function,

it is obvious to observe the inter-relationship of throughput versus mobility.

6.3 Simulation Setup

The simulations are performed on ns-2 [1], with its wireless extensions developed by the

Monarch project [2]. The simulations consist of 50 mobile nodes that are distributed

uniformly in a 1500m by 300m area. The propagation model consists of a simple path

loss model with attenuation due to distance only. The path loss exponent is chosen to

be β = 4. The default parameters of the wireless radios are used, such that each node

has a transmit range of 250m.

The mobile nodes emulate 914MHz Lucent WaveLAN DSSS radio interfaces. The

transmission bandwidth is 11 MHz, and the nominal bit rate is 2 Mbps. Omni-

directional antennas with 0dB gain are used, and antennas are placed 1.5m above

the ground. The receive threshold is -64.37 3Bm, which determines the minimum SIR

required for successful decoding of a received packet. The carrier sense threshold is

-78.07 dBm. Any packet with a SIR more than the threshold may interfere with recep-

tion of another packet.

Nodes move in the network under the random waypoint mobility model. We char-

acterize the mobility using the parameter max speed and keep the pause time equal to 1

second in all mobility scenarios. Each node has a velocity that is uniformly distributed

between 0 and max speed. Four different values of max speed are investigated in this

numerical study, namely v = 0, 2, 10, 20 m/s. These values correspond to the stationary,

pedestrian, slow and fast vehicular scenarios.
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The traffic is generated through a CBR application over UDP [8,12]. This simulates

the routing performance of the best effort delivery paradigm. The offered load could

be varied by any of the three parameters, namely packet transmission rate, packet size

and the number of traffic flows in the network. We simulate four offered load regimes,

as shown in Table 6.1. The traffic types 1 to 4 correspond to the network operating

in the light, normal, heavy, and saturation load regimes respectively. Packet sizes are

chosen such that fragmentation occurs on neither the network nor the MAC layer. The

number of flows are kept constant for each traffic type. A fixed fraction of flows from

each scenario are taken for measurement. This allows uniform sampling among all

mobility scenarios without bias for a particular scenario realization.

In this paper we use the dynamic source routing (DSR) routing algorithm [33] in

our simulations, since DSR shares many of the salient characteristics typical to reac-

tive routing algorithms. The DSR runs on top of the 802.11b standard with a channel

reservation mechanism enabled by the use of request-to-send (RTS) and clear-to-send

packets. In general, packet loss can result from contention in wireless transmissions,

unavailability of route due to mobility, or buffer overflow due to congestion. Never-

theless, the RTS/CTS mechanism in the 802.11b standard is efficient in combating the

hidden terminal problem. Thus, most packet loss are due to mobility or congestion. In

the light traffic regime, we factor out the congestion effect of all routing protocols. The

performance sensitivity of routing protocols to mobility is investigated. In normal traf-

fic regime, realistic traffic scenarios of practical interest are simulated. The simulation

results give us performance estimates to realistic network scenarios. In heavy traffic

load and network saturation regime, delay is unbounded. Although it is undesirable

to operate a network in these regimes, saturation throughput determines the capacity

of the network. Thus it is instructive to perform experiments under all four traffic

scenarios.

We have selected the network size such that network partitioning does not occur in

any mobility scenario. Nevertheless, the DSR routing algorithm may fail to discover a

route in heavy traffic regimes or high mobility scenarios. By convention, if there is no

connection for a flow for the whole simulation, we define the goodput to be 0, and the
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Traffic packet packet number of total
type rate size flows load
1 5 64Byte 20 51.2Kbps
2 10 64Byte 20 102.4Kbps
3 10 512Byte 20 819.2Kbps
4 20 768Byte 20 2.458Mbps

Table 6.1: Traffic parameters adopted in the numerical studies

delay and path length to be infinity.

Altogether we have four mobility scenarios and four offered load regimes. For each of

the sixteen network scenarios, ten topology realizations are simulated. Each simulation

lasts for 300s. Each flow starts at a staggered time that is uniformly distributed between

0 and 100s. Simulation data is logged during the interval between 100s and 300s to

ensure the network has reached to a steady state. In each topology realization, 5 out of

the 20 flows are monitored. Thus, for each network scenario, we have logged the data

of 50 monitored flows.

6.4 Simulation Results

6.4.1 Dependence of Path Length L on Speed

The time averaged path length L of each flow of each offered load regime is plotted

in Figure 6.1. In each subgraph, the path length in each mobility scenario is plotted.

The average path length of a flow is obtained by averaging the number of hops each

packet traverses in the flow during the experiment. In the heavy traffic regimes of

Figure 6.1(c)(d), we consistently observe that the path length decreases as mobility

increases for each pattern number. The path length difference is as large as 4 hops for

some pattern numbers. This explains the prevalence of short routes in high mobility

scenarios of the heavy traffic regimes. A similar trend is observed in the non heavy

traffic regimes of Figure 6.1(a)(b). The relative difference in path length in different

mobility scenarios is smaller. In particular, for short path lengths (1-2 hops) the trend

is reversed and mobility increases the path length slightly.
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In the DSR protocol, each node continuously snoops into every packet it receives.

The length of an existing route may be shortened or lengthened as time evolves due to

mobility. Whenever a node along a route detects there is a shorter path to the destina-

tion node, a route change is triggered. Thus under higher mobility, route optimization

is triggered more often, leading to shorter routes. However, for flows with a short path

length of 1 or 2 hops, mobility usually lengthens a route. This explains that pattern 1 to

23 in Figure 6.1(a)(b) have longer routes in high mobility. In general, the path length of

long routes (path length L ≥ 3) decreases in mobility, whereas the path length of short

routes increases in mobility. The variations of path length in high mobility scenarios is

thus smaller.

In the heavy traffic regimes, there is a larger disparity of path length in different

mobility scenarios. In particular we observe from Figure 6.1(c)(d) that the path length

of 80% of the monitored flows is less than 3 hops at speed 20m/s. When the network

is under the stress of heavy traffic and high mobility, only short routes (1 to 2 hops)

are discovered during route discovery. In these regimes, the packet delay incurred at

each hop is in the order of 10 seconds. In route discovery, if a route request (RREQ)

packet traverses along a long route, the round trip delay is sufficiently long such that

route discovery is aborted. Thus, in high mobility scenarios, the source and destination

nodes are intermittently connected. When the nodes are in proximity, route discovery is

successful; otherwise, route discovery fails. This explains the prevalence of short routes

in high mobility scenarios of the heavy traffic regimes.

Incidentally, in the stationary scenario of the light offered regime of Figure 6.1(a), we

observe that the time averaged path length of each flow is an integer. In general, route

changes are due to mobility or congestion. Since there is no mobility and congestion in

the stationary scenario of Figure 6.1(a), there are no route changes over the duration of

simulation. Thus the time averaged path length of individual flow must be an integer.

A staircase pattern is also observed in the stationary scenario of the normal offered load

regime. In Figure 6.1(b), we observe that for pattern 1 to 35, the path length follows

a staircase pattern. This shows that there are few route changes when the path length

are short. For patterns 36 onwards, the staircase pattern disappears. This indicates
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that route changes due to congestion are common for these flows. We observe that

these flows have path lengths of more than 4 hops. Thus we could also infer that flows

with longer path lengths are more susceptible to route changes due to congestion.

6.4.2 Dependence of Path Length L on Node Distribution

Referring to Figure 6.1(a) the stationary scenario of the light offered load regime, there

are 14 flows with a path length of 1 hop. As the path length L increases, the number

of flows with path length L decreases. In this scenario, there is neither congestion nor

route changes due to mobility. The proliferation of routes with short path length is

therefore not related to congestion nor node mobility. Consider a scenario in which

nodes are uniformly distributed on a line of length 1. Denote X and Y as the location

of two arbitrary nodes, such that X ∈ [0, 1], Y ∈ [0, 1]. We define the distance between

the two nodes as Z = |X − Y |, where again we have Z ∈ [0, 1]. To compute the

probability distribution of Z, we have

Pr[Z ≤ z] (6.1)

= Pr[|X − Y | ≤ z] (6.2)

= Pr[Y − z ≤ X ≤ Y + z] (6.3)

Since X and Y are independent, the event Pr[Z ≤ z] corresponds to the shaded area

in Figure 6.2, implying

Pr[Z ≤ z] (6.4)

= 1 − 2(1/2)(1 − z2) (6.5)

= 2z − z2 0 ≤ z ≤ 1 (6.6)

and the corresponding PDF is

fZ(z) =

⎧⎨
⎩ 2(1 − z) 0 ≤ z ≤ 1

0 o.w.
(6.7)

(6.7) indicates that the prevalence of short routes is a direct consequence of uniform

node distributions in the network. Since path length is roughly proportional to route
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distance, a route with short path length is more probable. The same trend of path

length is also observed in other mobility scenarios and offered load regimes since all the

path length curves L in Figure 6.1 are concave upwards.

The mean path length E[Z] could be derived from Equation (6.7) to be 1/3, which

is one third of the network dimension. In our simulation, we have used a scenario size of

1500m × 300m. Since each node has a nominal range of 250m, the scenario resembles a

one dimensional network. The mean route length is thus 500m. Consider the stationary

scenario in the light offered load regime. The mean path length of all 50 flows is found

to be 2.95 hops. This agrees with our computations for a one dimension network. Most

routes require a minimum path length of 3 hops to traverse a distance of 500m.

6.4.3 Improved Goodput G due to Load Balancing

In Figure 6.3, the goodput G of each offered load regime is plotted. In each subgraph,

the goodput in all mobility scenarios is plotted versus pattern number. In the light

offered load regime of Figure 6.3(a), we observe that mobility leads to a slight deteri-

oration of goodput. Due to the light offered load, few packets in transit are lost due

to buffer overflow in the node preceding a broken link. Most packets are queued in the

node buffers during route maintenance. Although goodput degrades with mobility, the

discrepancy is small because packet loss is uncommon.

Similarly, the goodput also deteriorates in the vehicular scenarios of the normal

offered load regime of Figure 6.3(b). At normal load, packet loss is due to both mobility

and congestion. During route failure, most packets in transit are lost due to buffer

overflow. Thus, goodput is very sensitive to mobility. However, the goodput in the

pedestrian scenario is higher than that in the stationary scenario. When nodes are

stationary, packet loss is due to local congestion along some flows. For convenience, we

define a flow as congested if the goodput of the flow is smaller than 0.8. Thus there

are 9 congested flows in the stationary scenario, compared with 5 for the pedestrian

scenario. This is consistent with observations in literature [8, 12], in which goodput is

shown to improve with speed. It is conjectured that the improved goodput in mobility

is due to the load balancing effect. Some flows that pass through the congestion hot
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spots achieve improved goodput through rerouting brought about by node mobility.

6.4.4 Improved Goodput G due to Reduced Effective Load

The load balancing effect could correctly explain the goodput improvement with speed

when localized congestion occurs. When we consider the heavy traffic regimes, the load

balancing argument is inapplicable since network-wide congestion is experienced at all

nodes. However, the goodput improvement with speed is still observed, albeit for a

different network mechanism.

In the heavy traffic regimes of Figure 6.3(c)(d), we observe that many flows have

better goodput in higher mobility. This is remarkably different from other traffic regimes

of Figure 6.3(a)(b), where mobility degrades the goodput performance.

In heavy traffic, congestion is a network-wide phenomenon. All nodes are back-

logged with packets. Rerouting due to mobility should not bring about any goodput

improvement at all. We claim that the improved goodput in mobility is due to the

decreased effective network load. As discussed earlier, most flows have shorter routes

in high mobility. The total number of transmissions to forward a packet to the destina-

tion node is dramatically reduced. This effectively decreases the total network traffic,

enabling a higher goodput for all flows. To see this, we consider the network saturation

regime. We compare the total number of transmissions to deliver one packet for each

monitored flow in each mobility scenario. Refer to Figure 6.1(d), by computing the area

under the path length paths in Figure 6.1(d), we find the total number of transmissions

to deliver 1 packet for each of the 50 flows is 171.9184 hops in the stationary scenario.

The average path length for each flow is then 3.4384 hops. In the fast vehicular sce-

nario, the total number transmission for 50 flows is 93.3077 hops. Thus the average

path length for each flow is 1.8662 hops. Compared the normalized path length of each

flow, the effective network load in the fast vehicular scenario is only 54.27% of that in

the stationary scenario.

The corresponding number of delivered packets in a fixed duration is proportional

to the sum of the areas under the goodput graphs in Figure 6.3(d) weighed by the

packet rate. Suppose Tintarr is the mean packet interarrival time. In the stationary
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scenario, the expected number of delivered packets for 50 flows is 6.0541 packets. The

normalized number of delivered packets for a flow in a time Tintarr is thus 0.1211. In

the network saturation scenario, the expected number of delivered packets for 50 flows

is 8.6093 packets. The normalized number of delivered packets for a flow in a time

Tintarr is thus 0.1722. This amounts to a 42.21% increase in goodput.

Similarly, we also compare the total number of transmissions to deliver one packet

for each monitored flow in the heavy offered load regime. Refer to Figure 6.1(c), the

average number of transmissions is 3.6 hops per flow in the stationary scenario, and

2.0986 hops per flow in the fast vehicular scenario. The effective load in the fast

vehicular scenario is only 58.29% of that in the stationary scenario. From the goodput

graph in Figure 6.3(c), the expected number of delivered packets for a flow in a time

Tintarr is 0.2880 in the stationary scenario. compared with 0.3277 in the fast vehicular

scenario. This amounts to a modest 13.79% increase in goodput. In general, in high

mobility scenarios, the reduction of effective network load has a more prominent effect

to packet loss due to mobility. Thus we expect to obtain even better network goodput

in higher mobility scenarios.

6.4.5 Determination of the Fraction of Congested Flows

In Figure 6.4, the goodput G of all mobility scenarios is plotted. In each subgraph, the

goodput in all offered load regimes are plotted against the pattern number. We note

that Figure 6.4 and Figure 6.3 are plotted from the same results. Whereas the goodput

in different mobility scenarios are compared in Figure 6.3, goodput in different offered

load regimes are compared here in Figure 6.4.

Consider the stationary scenario in Figure 6.4(a). Recall that we defined a flow as

congested if the goodput was less than 0.8. Thus, in the normal offered load regime,

roughly 20% of all flows experience congestion. In the heavy offered load and the

network saturation regimes, the fraction of congested flows is respectively 80% and

100%. Nevertheless, the above definition is arbitrary. We show below that it is possible

to classify the flows into the congested or uncongested regimes independent of a specific

threshold.
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Consider the light offered load regime of Figure 6.4. In this regime, packet loss is

due to mobility in every flow. It is clear that the goodput curves for all patterns could

be fitted by a straight line as a function of pattern number. Thus the variations of

goodput could be modeled by an uniform distribution with some mean and variance.

As mobility increases from stationary to pedestrian to vehicular scenarios, the mean

goodput drops slightly and the variance increases.

More generally, packet loss is due to a combination of mobility and congestion.

Consider the normal offered load regime in the following. In the slow vehicular scenario

of Figure 6.4(c), the goodput curve could be fitted into a piecewise linear function.

From patterns 1 to 12, the goodput variations with pattern number have a steeper

slope. For other patterns, the goodput variations follow a more gentle slope. The

observation of two regimes could be explained by the cause of packet loss. For patterns

11 to 50, packet loss is dominated by mobility. Similar to the light offered load regime,

the goodput variations of each flow could be modeled by an uniform distribution. For

patterns 1 to 10, congestion dominates over mobility. Congestion is more detrimental

to goodput than mobility. Also, there are more variations in goodput depending on the

extent of congestion. The goodput for the congested flows is thus modeled by an uniform

distribution with a smaller mean and larger variance. Similarly, the goodput variations

in the fast vehicular scenario of Figure 6.4(d) could also be fitted by a piecewise linear

function. By observing the intersection of the fitted lines, we infer that patterns 1 to

11 is in the regime where congestion is the main reason for packet loss.

In the heavy offered load and the network saturation regimes, the goodput could

not be fitted nicely by a piecewise linear function. In these regimes, congestion is a

network-wide phenomenon. Thus there are flows in which goodput deterioration due

to mobility and congestion is both prominent.

In our simulations, the delay in uncongested flows typically does not exceed 1 sec-

ond. The corresponding delay in congested flows is in the order of 10 seconds. Most

applications in ad hoc network today have tight delay constraints. It is highly unde-

sirable to deliver packets over some flows that experience congestion. The fraction of

congested flows that is therefore an important performance metric to consider.
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6.4.6 Dependence of Fairness on Offered Load, Speed and Path Length

In homogeneous ad hoc networks, all nodes are peers and they cooperate to forward

packets for each other. Applications in military and rescue operations fall into this

context. In these networks, it is desirable for each flow to attain the same goodput

independent of the offered load, mobility and path length.

Referring to Figure 6.4, we observe that fairness deteriorates quickly with the offered

load in each mobility scenario. When the offered load is light, all flows have a goodput

close to 1 irrespective of mobility. In the normal offered load regime, local congestion

occurs for some flows. We discussed earlier that the variable goodput could be modeled

by a uniform distribution with some mean and variance depending on the cause of packet

loss. If packet loss is dominated by congestion, the goodput exhibits randomness with a

larger variance. Thus, in general, fairness is very sensitive to the presence of congestion.

In particular, when congestion dominates in the heavy traffic regimes, there is a high

asymmetry in the goodput of the monitored flows.

We also observe the sensitivity of fairness to offered load decreases in higher mobility.

This is easily visualized by comparing the stationary and the fast vehicular scenarios

in Figure 6.4(a)(d). At high mobility the goodput curves of different load regimes are

more closely spaced. Heavy load regimes have improved goodput due to the decreased

effective network load while light load regimes suffer from packet loss due to mobility.

Whereas fairness is sensitive to the offered load, it is insensitive to mobility. Refer

to Figure 6.3(a), all flows have a goodput close to 1 in all mobility scenarios. The

goodput is insensitive to mobility in the light offered load regime. Similarly, in the

normal offered load regime of Figure 6.3(b), packet loss due to mobility leads to a slight

deterioration of goodput. In the heavy traffic regimes, the reduction of effective network

load in high mobility scenarios leads to a slight improvement in goodput. Thus, for

each offered load regime, the disparity of goodput among all flows in different mobility

scenarios is small. This is intuitively plausible since fairness depends on the resource

allocation of each flow in the network. Although mobility impacts the efficiency of route

discovery, the resource allocation of each flow does not depend on mobility once a route
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is found. Thus, in all node mobility of interest in this study, mobility does not impact

the fairness. In extremely high mobility, however, route discovery is inefficient. The

flow will be intermittently connected, leading to poor goodput performance.

We have argued that fairness is intimately connected to the resource allocation in

each flow. Since the path length of a route determines the amount of forwarding and

thus the resource requirement of a flow, it is instructive to investigate the dependence of

fairness to path length L. Refer to Figure 6.5, the goodput G for each mobility scenario

is plotted. In each subgraph, the goodput of all patterns in all offered load regimes are

plotted ordered in increasing path length. This allows us to inspect the effect of path

length L on fairness in each offered load regime and mobility scenario.

As shown in the figure for all mobility scenarios, we observe some correlation between

the path length L and goodput G. When the path length is long, the goodput is likely

to be smaller. Consider the light offered load regime. Although routes with long path

lengths have lower goodput, fairness is not a problem in this regime since the goodput of

the worst flow in each mobility scenario is close to 1. Consider the normal offered load

regime. In the stationary and pedestrian scenarios of Figure 6.5(a)(b), only the flows

with long path lengths have small goodput. In these scenarios, packet loss is dominated

by congestion. We could infer that long routes are more susceptible to congestion. This

is intuitively reasonable since it is more likely to route through some local congestion

hot spots if the path length is long. In the slow and fast vehicular scenarios, we also

observe that goodput is likely to be smaller for longer path lengths. However, not all

flows with long path lengths have small goodput. This could be explained by load

balancing due to path rerouting for these flows.

Consider the heavy offered load and network saturation regimes. In these regimes,

long routes are shut down completely. With reference to Figure 6.5(a)(b), 40% of

all flows with the longest path length have a goodput close to 0. In the slow and

fast vehicular scenarios the fraction of flows that are shut down decreases to 20% and

12% respectively due to the decreased effective network offered load. In general, flows

with long path length are shut down completely in heavy traffic regimes. Only local

communication is possible. We conclude that fairness is sensitive to the path length
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when the offered load is large.

6.4.7 Dependence of Path Length L on Offered Load

In Figure 6.6, the path length L of all mobility scenarios is plotted. In each subgraph,

the path length of all patterns in all offered load regimes are plotted. These are the

same results of Figure 6.1. Path length in different offered load regimes are compared

here, whereas path length in different mobility scenarios are compared in Figure 6.1.

Consider the stationary and pedestrian scenarios of Figure 6.6(a)(b). We observe

that L generally increases when the offered load increases. This phenomenon implies

that at high traffic intensity, either routes with long range could not be used, or suc-

cessful transmissions are limited to small ranges only. The latter argument is flawed

since the RTS/CTS channel reservation mechanism in 802.11 is effective in resolving

contention, even if the network is under the stress of excessive traffic. The paradox

could be explained as follows. The RTS/CTS mechanism in 802.11 effectively prevents

collisions of data packets. Route request (RREQ) packets however, can’t use the RTS

and CTS mechanisms since they are broadcast packets. If heavy congestion occurs,

collisions between RREQ packets are likely. Since collisions are more likely to occur for

longer hops, RREQ packets may never reach the destination node if a route consists of

hops with large distance progress. Only routes with large number of hops and small per

hop distance progress are discovered in route discovery. In general, as the offered load

increases, congestion is prominent and may impede the transmissions of the broadcast

RTS and CTS packets. Thus path lengths are longer due to congestion.

Consider the slow and fast vehicular scenarios of Figure 6.6(c)(d). At high mobility,

the trend of our observations is reversed. We observe as offered load increases, the path

length decreases. In high mobility scenarios, mobility has a more significant impact

compared to congestion. Recall in our discussion for path length L vs. speed. At

high mobility, the path length will decrease more drastically for heavy load regimes. In

general, congestion and mobility have opposite effects on path length. At high mobility,

the effect of mobility dominates. Therefore, path length is smaller for higher offered

load.
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Figure 6.1: Path length vs. pattern number in all mobility scenarios. (a)light offered
load regime, (b)normal offered load regime, (c)heavy offered load regime, (d)network
saturation regime.
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Figure 6.3: Goodput vs. pattern number in all mobility scenarios. (a)light offered
load regime, (b)normal offered load regime, (c) heavy offered load regime, (d)network
saturation regime.
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Figure 6.4: Goodput vs. pattern number in all offered load regimes. (a)stationary
scenario, (b)pedestrian scenario, (c)slow vehicular scenario, (d)fast vehicular scenario.
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Figure 6.5: Goodput vs. pattern number in all offered load regimes. (a)stationary
scenario, (b)pedestrian scenario, (c)slow vehicular scenario, (d)fast vehicular scenario.



142

0 10 20 30 40 50
1

2

3

4

5

6

7

8

9

10

p
a

th
 l
e

n
g

th
 L

 (
n

u
m

b
e

r 
o

f 
h

o
p

s
)

pattern number ordered in increasing G

Stationary scenario

light load
normal load
heavy load
saturation

0 10 20 30 40 50
0

2

4

6

8

10

12

p
a

th
 l
e

n
g

th
 L

 (
n

u
m

b
e

r 
o

f 
h

o
p

s
)

pattern number ordered in increasing G

Pedestrian scenario

light load
normal load
heavy load
saturation

(a) (b)

0 10 20 30 40 50
1

2

3

4

5

6

7

8

p
a

th
 le

n
g

th
 L

 (
n

u
m

b
e

r 
o

f 
h

o
p

s)

pattern number ordered in increasing G

Slow Vehicular scenario

light load
normal load
heavy load
saturation

0 10 20 30 40 50
1

2

3

4

5

6

7

8

p
a

th
 le

n
g

th
 L

 (
n

u
m

b
e

r 
o

f 
h

o
p

s)

pattern number ordered in increasing G

Fast Vehicular scenario

light load
normal load
heavy load
saturation

(c) (d)

Figure 6.6: Path length vs. pattern number in all traffic regimes. (a)stationary scenario,
(b)pedestrian scenario, (c)slow vehicular scenario, (d)fast vehicular scenario.
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Chapter 7

Optimal Price Decremental Strategy for Dutch Auctions

7.1 Introduction

In the previous chapters, we have examined various issues that affect network behavior.

A thorough understanding of these issues is important so that the mobile ad hoc network

could be operated at the optimal regimes. Nevertheless, the success of a networking

paradigm eventually lies in the pervasiveness and the importance of the applications

running on top of the network stack. In this chapter, we look into the example of an

online wireless Dutch auction application for 3G/4G mobile cellular networks. We focus

on mobile cellular networks rather than mobile ad hoc networks, since the former is a

mature technology with a wide subsriber base. There is a lot of commercial interest on

finding a killer application that generates extra revenues for the network operator.

In a Dutch auction, the price of an item decrements from the starting price at regular

intervals. A bidder may buy the item at any time and stop the auction at the current

price. This chapter presents an optimal price decrement strategy in a Dutch auction,

such that the expected revenue of the auction host is maximized. Properties of the

optimal solution and a simple iterative solution methodology are discussed. Numerical

studies show that significant gain could be obtained compared with a simple reference

strategy.

7.2 Online Dutch Auction

With recent advances in wireless standards, such as the IMT2000 for cellular networks as

well as the HIPERLAN and the IEEE802.11 standards for wireless local area networks,
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there has been great expectation that wireless data applications will soon become pop-

ular just like wireless telephony. In anticipation of this development, there have been

many attempts in testing pilot applications on various wireless platforms. The Informa-

tion Engineering Department at the Chinese University of Hong Kong has established

a site, jawap.net, based on the Wireless Application Protocol(WAP) to provide a host

of wireless applications, including an implementation of an Dutch Auction System.

The Dutch auction is said to originate in the Netherlands and uses a descending-

price format unlike the so-called ”English Auction”. In the Dutch scheme, when an

object is presented to interested buyers for bidding the price will start at a high value

and progressively decreases downward until a buyer bids for the object by making a

declaration. If multiple declarations are made, any common resolution scheme can be

invoked to break the tie. It is possible to extend this scheme for the auctioning of

multiple units of an object. Successful bidders bidding at the same price will each

receive their unit at the bid price. If the number of units is not sufficient to cover all

the bids, a tie-breaking rule is invoked. If sufficient units of the object are still available,

the auction will continue until all the units are sold or a reserved price level is reached.

The Dutch auction is one of the four major auctioning schemes ( [3] or the survey

article [46],) that also include the English auction1, first price sealed bid auction2, and

second price sealed bid auction (also known as the Vickrey auction)3. The seminal work

of Vickrey [95] analyzed and compared these four common kinds of auction rules. Since

the process of an auction is very complicated involving the auctioneer, the seller, and

multiple bidders, it is common to make certain simplifying assumptions about these

players in order to make the analytical model tractable. A key concept concerns the

idea of the value of the object under auction. The value can be private, that is, a person

buys an item for his/her own consumption without an objective to resell, or common, in

1In the English auction, bidders compete with each other by offering progressively higher bids until
one bidder remains, who is committed to buy at last price of the last bid.

2In a sealed bid auction, all the buyers submit a bid at the same time. The buyer offering the highest
bid is committed to buy the object the bid price.

3In such an auction, the buyer making the highest bid is committed to buy the object, but at a price
equal to the second highest bid.
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which case the buyer bids with the intention of resell and has to estimate the valuation

offered by prospective buyers. In the latter case, the competitors are clearly a helpful

source to obtain such a valuation estimate. A bidder is said to be risk neutral if he/she

bids exactly accordingly to his/her evaluation of the object. A bidder who is likely to

bid above his/her evaluation to increase the chance of winning is called a risk averse

bidder.

Vickrey’s paper [95] assumes that each bidder is risk-neutral and knows the value of

the object to himself/herself but not the value to other bidders. Moreover, the model

is assumed to consist of symmetric bidders, that is, individual valuation of the object is

i.i.d. Since then, there has been a steady output of follow-up work on optimal auction

design. One important piece of work was due to Myerson [55]. He extended the work

of Vickrey in two directions. Firstly, the case of asymmetric bidders is considered, in

which individual valuations are independent but not necessarily identically distributed.

Secondly, different viable ways of selling the object was considered rather than just a

prespecified set of auction rules. Under this framework, the optimal auction design

problem to maximize the expected revenue of the auction host is solved. There have

been many more additional works on the design of optimal auction rules. The well

known auction rules are compared under various relaxations of the stated assumptions

[52], [74], [57].

With the advent of the World Wide Web, online auctions have become increasingly

popular. Moreover, the arrival of 3G and high speed wireless local area networks have

made the idea of hosting auctions to serve mobile users via wireless communication

devices, such as enhanced cellular phones or personal digital assistants, practical in

the near future. Coupled with the concept of micropayment, one can envision the

possibility of auctioning all sorts of items which may have only small monetary value

or are time-critical, such as tickets for an upcoming concert or seats on air flights.

For these applications, the expected time for completing an auction and the amount

of signaling messages needed to conduct an auction are important consideration factors.

These two elements are not considered in classical auctioning models. For Internet based

auctions, in particular those available on wireless accesses, the issue of communication
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cost cannot be ignored. From this perspective, the Dutch auctioning scheme intuitively

has an advantage over the English auctioning scheme. For the former scheme, no bidder

is required to bid more than once, whereas for the latter scheme bidders may have to

bid several times whether they are successful at the bidding or not. Moreover, although

the possibility of multiple bids at the same value occurs in both cases, it can happen at

most once in the auctioning process for an item in a Dutch scheme and multiple times

for the English scheme.

Another motivation of our work comes from the observation that in the literature,

a common assumption is that the bidding offers take values from a continuum. This is

an idealization of an actual bidding process. In practice, bid increments in an English

auction or bid decrements in a Dutch auction is a discontinuous process. While a small

discontinuous price decrement would minimize inaccuracies due to discrete optimiza-

tion, it would also prolong the auctioning process. For auctions conducted over the

Internet, the value of a discontinuous decrement could have significant implications on

the communication cost. In particular, for a Dutch auction, the optimal strategy for

price decrement is an interesting issue.

In this chapter, we present an analysis of an Internet based Dutch auctioning system.

In any auction, there are three player roles that one can consider, the buyer, the seller,

and the auction host. Traditional analyses on auctioning tend to focus on the roles

played by the buyer or the seller. The role of the auction host is defined in terms of the

type of auctioning system used. For auctions conducted on Internet, the auction host

is bestowed with a new set of controlling mechanisms and faces a new set of objectives.

Assuming the revenue of the auction host comes from commission based on the realized

bid revenue and the varying part of an auctioning cost is proportional to the duration of

the bidding process, one can formulate an objective function based on these two factors.

In a Dutch auction, an important controlling mechanism available to an auction host

is through price decrement strategy. The structure of the optimal price decrement

strategy in an Internet based Dutch auctioning system is analyzed here via the Karush-

Kuhn-Tucker condition. Moreover, we also established a numerically efficient algorithm

to determine the optimal strategy. Numerical studies were carried out and we showed
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that under certain conditions, the simple uniform decrement strategy can be close to the

optimal strategy. These results form a small, first step to generalize the earlier works

in the literature on auction in the new context of the Internet based environment.

The rest of the chapter is organized as follows. In section 3, we describe the system

and optimization model. We maximize the expected revenue to the auction host by

dynamically varying price decrement at each iteration. Knowledge on the number of

bidders and the probability distributions of their valuations are exploited. In section 4,

properties of the optimal solution are presented. We also show how the original problem

can be reduced to a one dimensional numerical search problem. In section 5, we present

numerical examples to illustrate the properties of the optimal solution. Performance

comparison between the optimal strategy and a simple uniform decrement strategy is

also given. Section 6 offers some concluding remarks.

7.3 System and Optimization Model

7.3.1 System Model

In an auction, there are three distinct player roles, namely the buyer, seller and auction

host. In an Internet based auction, the auction host usually acts as the application

server and provides the necessary information to implement the auction. It disseminates

current price information to all bidders (logon users) regularly, and ends the auction

when it receives a buying request from the users or the auction timeout is reached.

We assume only one item is sold in the auction. Initially, the auction starts at a

given price c0. A price is kept constant for a fixed interval until the next iteration. At

iteration k, the price falls to ck, under the constraint cmin ≤ ck ≤ ck−1. The auction

will last for M + 1 iterations, where M is predetermined.

Denote Xi as the valuation of bidder i. Let n be the number of bidders. Since the

auction host is also the application server it knows the value of n. In this work, we as-

sume n is constant for the duration of the auction. We also assume the valuations of the

ith bidder, Xi, for all i ∈ [1, n] are i.i.d. random variables drawn from a known distribu-

tion FX(.). In literature this is known as the case of symmetric bidders. However, our
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solution methodology also works for asymmetric bidders. This is the case where bidder

valuations are drawn from independent but not necessarily identical distributions.

Also denote Y = max(X1, ...,Xn) as the maximum valuations of the bidders. It

is straightforward to compute the cumulative distribution function cdf and probability

density function pdf of Y for the cases of symmetric or asymmetric bidders. We denote

them by the notation F (Y ) and f(Y ) respectively. For simplicity, we assume that f(Y )

is a continuous positive function in the range cmin, c0. Subsequently we will work with

Y directly since the sold price depends on the random variable Y . If the current selling

price ck is lower than Y , at least one user will immediately make a bid and end the

auction. If cM > Y , the item will not be sold at the auction.

7.3.2 Optimization model

Suppose the item is sold at iteration k. ck is the selling price at iteration k, and T

is a non-negative time discounting increment at each iteration. Thus, the revenue is

Rk = ck − kT if the item is sold at iteration k, k ∈ {0, ...,M}. If the item is not sold at

the end of auction (i.e. cM > Y ), we define the corresponding revenue as RM+1 = 0.

The expected revenue upon selling the item is

p(c) = Ek∈{0,...,M+1}[Rk] (7.1)

= Ek∈{0,...,M}[ck − kT ] (7.2)

= c0(1 − F (c0)) +
M∑

k=1

(ck − kT )(F (ck−1) − F (ck)). (7.3)

In our optimization model, we incorporated a time discounting factor T . The mean-

ing of T can be interpreted in two different scenarios. First of all, T can represent the

cost of using server resources in a wireless Dutch auction. Typically, the auction period

spans only for minutes or hours. The auction server may update the price on a per

minute or second basis. At each iteration, the application server has to broadcast a

message to update the current price to all the clients (bidders). This generates a lot

of data traffic and uses up bandwidth resources. Moreover, the amount of processing

and bandwidth overhead can be regarded as being constant at each iteration. Thus,

the resource usage is adequately modeled by a constant parameter T .
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Alternatively, this model can also apply to online auction web sites where auction

period spans over longer periods of time, such as days or weeks. It is common in these

cases that the price of an item is dropped gradually on a daily basis. In this scenario, the

amount of network traffic generated is insignificant. Rather, there is a time discounting

factor on the value of the good to account for storage and maintenance cost incurred

on the auction host.

The present problem belongs to a class of general nonlinear optimization problems

with inequality constraints. The problem is to

max
(c1,c2,...,cM)

p(c) = max
(c1,c2,...,cM)

c0(1 − F (c0)) +
M∑

k=1

(ck − kT )
(
F (ck−1) − F (ck)

)

subject to the constraints

g1(c) = c1 − c0 ≤ 0,

g2(c) = c2 − c1 ≤ 0,
...

gM (c) = cM − cM−1 ≤ 0,

gM+1(c) = cmin − cM ≤ 0.

We note that many alternative formulations such as dynamic programming [7] are

possible. Our nonlinear programming formulation is desirable for practical implemen-

tation because, as we will show in the next section, the multivariable optimization

problem of determining the selling price M -tuple ck, k = 1, 2, ...,M can be reduced to

a one dimensional numerical search problem. Since an auction host typically has hun-

dreds or thousands of items for sale, the reduction of computation complexity in price

setting is desirable for running a large auction hosting site.

7.4 Properties of the optimal solution

In the literature, optimization of nonlinear functions subject to inequality constraints

is well studied. The Karush-Kuhn-Tucker (KKT) Theorem is one of the powerful tools

commonly employed.
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Let c be any point in the feasible set. Denote J(c) = {j : gj(c) = 0}. If ∇gj(c)

are mutually linearly independent for all j ∈ J(c), then c is a regular point. The well

known theorem due to Karush,Kuhn and Tucker [10] provides a necessary condition for

a point to be a local maximizer, commonly known as the Karush-Kuhn-Tucker (KKT)

condition, presented as follows.

Let c∗ be a regular point and local maximizer for the problem of maximizing p sub-

ject to g(c) ≤ 0. Then there exists a vector u∗ ∈ M+1 such that

u∗ ≥ 0 (7.4)

∇p(c∗) = ∇g(c∗)u∗ (7.5)

u∗T g(c∗) = 0 (7.6)

where

u∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u∗1

u∗2
...

u∗M+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

g(c∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g1(c∗)

g2(c∗)
...

gM+1(c∗)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (7.7)

and ∇g(c∗) is the M ×M + 1 matrix whose i-th column is ∇gi(c∗).

We refer to the vector u∗ as the Karush-Kuhn-Tucker (KKT) multiplier vector. In

the literature, a point satisfying the KKT condition (equation 7.4-7.6) is called a critical

point. It follows from the KKT Theorem that a local maximizer is a critical point but

not necessarily vice versa. We also define the global maximum in the feasible set as

c∗∗. Thus, if c∗∗ is regular, it is also within the set of all critical points.

For the stated optimization problem, the constraint stated by equation 7.4 can be

rewritten as:

g(c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 − c0

c2 − c1
...

cmin − cM

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (7.8)
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Therefore,

∇g(c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 0 0

0 1 −1 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 0 0

0 0 0 · · · 1 −1 0

0 0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.9)

It is obvious that any selection of M column vectors from ∇g are mutually linearly

independent. Hence any point, c, in the feasible set with the cardinality of J(c) less

than M + 1 is a regular point. The case where J(c) = {1, 2, ...,M + 1} corresponds to

c0 = c1 = ... = cM = cmin, does not belong to the feasible set since c0 �= cmin. Thus,

every point in the feasible set is regular. It follows from KKT Theorem that all local

maxima are regular and should satisfy the KKT equations. As a result, c∗∗ can be

found by searching over the set of all critical points. Hereafter, we denote a critical

point by c∗.

On substitution of g(c∗) and ∇g(c∗) into equation 7.5, one obtains

∇p(c∗) =
(

∂p
∂c1

(c∗), ∂p
∂c2

(c∗), . . . , ∂p
∂cM

(c∗)
)

=
(
u∗1 − u∗2, u∗2 − u∗3, . . . , u∗M − u∗M+1

)
. (7.10)

The last KKT condition in equation 7.6 leads to the conclusion

u∗kgk(c∗) = u∗k(c
∗
k − c∗k−1) = 0, for k = 1, 2, ...,M + 1. (7.11)

since c∗k − c∗k−1’s are non-positive for all k.

There are standard algorithmic approaches to solve the class of convex programming

problems in which the objective function is concave and the feasible set is convex.

However, we show in the appendix that our objective function is not concave in general.

As a result, local search technique is applied to identify local maxima. The search

procedure is repeated with different initial points to discover as many distinct local

maxima as possible. The best of these local maxima is chosen as the solution. Numerical
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computations for this heuristic approach over the feasible set for local maxima can be

quite extensive. This is an important consideration when the number of iterations is

large. In this case an optimization problem in M variables needs to be considered.

However, it turns out that by exploiting our knowledge of the structure of the critical

points, we could determine the global optimum c∗∗ by reducing the problem to a one

dimensional search problem. This is the main result provided by theorem 3. In the

following, we present some basic properties of the optimal solution and describe an

iterative solution methodology for finding the global maximum c∗∗.

Suppose one implements an auction following the optimal price vector c∗∗. At

iteration j, the current price is c∗∗j . Define the subproblem starting at iteration j as one

in which there are M− j remaining iterations, starting from the price c∗∗j . The problem

of finding the optimal price vector for this problem is equivalent to solving the problem,

max
(cj+1,...,cM)

Ek∈{j+1,...,M+1}[Rk|Y < c∗∗j ] (7.12)

= max
(cj+1,...,cM)

Ek∈{j+1,...,M}[ck − kT |Y < c∗∗j ]. (7.13)

Proposition 1 For any j, j ∈ {1, ...,M − 1}, (c∗∗j+1, c
∗∗
j+2, . . . , c

∗∗
M ) is the optimal price

vector to subproblem starting at iteration j.

Proof:

max
(cj+1,cj+2,...,cM)

Ek∈{j+1,...,M}[ck − kT |Y < c∗∗j ] (7.14)

= max
(cj+1,cj+2,...,cM)

M∑
k=j+1

(ck − kT )
(F (ck−1) − F (ck))

F (c∗∗j )
(7.15)

=
1

F (c∗∗j )
max

(cj+1,cj+2,...,cM)

M∑
k=j+1

(ck − kT )(F (ck−1) − F (ck)). (7.16)

It is obvious that the above expression is optimized when ck = c∗∗k for k = j + 1, ...,M .

�
The previous result states that if the number of bidders n is constant throughout

the auction period, then we need to compute c∗∗ only once at the start of the auction.

In practice, n may change from time to time as bidders may join or leave during an
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auction. In that case, one needs to get an update on the value of nj at iteration j and

computes the new optimal price vector.

When the number of iterations M is large, numerical optimization becomes more

complicated due to the number of variables involved. In theorem 1 and 3, we show that

the multivariable optimization problem can be reduced to a one dimensional search

problem.

Theorem 1 Suppose c∗ is a critical point and there exists an integer i such that c∗i =

c∗i+1, where i = {0, 1, ...,M − 1}. Then for all j > i, j ∈ {i+ 1, ...,M}, c∗i = c∗j .

Proof:

Any feasible point must satisfy the condition:

c0 ≥ c∗1 ≥ ... ≥ c∗k ≥ c∗k+1 ≥ ... ≥ c∗M ≥ cmin. (7.17)

We claim that there does not exist an integer i, 0 ≤ i ≤M − 2, and a j, i < j ≤M − 1,

such that:

c0 > c∗1 > ... > c∗i = c∗i+1 = ... = c∗j > c∗j+1 ≥ ... ≥ cM ≥ cmin. (7.18)

We prove this statement by contradiction. By the Karush-Kuhn-Tucker Theorem

we have to find u∗ ≥ 0 so that equations 7.4-7.6 are satisfied. For convenience, we

define the functions h and hM as

h(ck−1, ck, ck+1) =
∂p

∂ck
(7.19)

= F (ck−1) − F (ck) + f(ck)(ck+1 − ck − T ) k ∈ {1, . . . ,M − 1}(7.20)

hM (cM−1, cM ) =
∂p

∂cM
(7.21)

= F (cM−1) − F (cM ) + (cM −MT )(−f(cM )). (7.22)

Since gk(c∗) < 0 for k ∈ {1, ..., i}, by equation 7.11,

u∗k = 0 k ∈ {1, ..., i}. (7.23)
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At the point c∗, by equation 7.10 the following equations hold:

∂p
∂ck

(c∗) = h(c∗k−1, c
∗
k, c

∗
k+1) = u∗k − u∗k+1 = 0, k ∈ {1, ..., i − 1},

∂p
∂ci

(c∗) = h(c∗i−1, c
∗
i , c

∗
i+1) = −u∗i+1,

∂p
∂ci+1

(c∗) = h(c∗i , c
∗
i+1, c

∗
i+2) = u∗i+1 − u∗i+2,

...

∂p
∂cj−1

(c∗) = h(c∗j−2, c
∗
j−1, c

∗
j ), = u∗j−1 − u∗j ,

∂p
∂cj

(c∗) = h(c∗j−1, c
∗
j , c

∗
j+1) = u∗j − u∗j+1.

(7.24)

Since

gj+1(c∗) = c∗j+1 − c∗j < 0, (7.25)

equation 7.11 implies that u∗j+1 = 0.

∂p

∂cj
(c∗) = u∗j − u∗j+1 = u∗j (7.26)

= h(c∗j−1, c
∗
j , c

∗
j+1) (7.27)

= F (c∗j−1) − F (c∗j ) + f(c∗j)(c
∗
j+1 − c∗j − T ) (7.28)

= f(c∗j)(c
∗
j+1 − c∗j − T ) (7.29)

< 0. (7.30)

That is u∗j < 0, hence the non-negativity condition on u∗ is not satisfied. By contra-

diction we show that the scenario stated in equation 7.18 cannot hold. �

Corollary 1 Suppose c∗ is a critical point and

c0 > c∗1 > ... > c∗i = c∗i+1 = ... = c∗M ≥ cmin. (7.31)

for some 0 ≤ i < M . Then

∂p
∂cj

(c∗) = 0 j ∈ {1, ..., i − 1},
∂p
∂cj

(c∗) ≤ 0 j ∈ {i, ...,M − 1}.
(7.32)
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Proof:

The proof of theorem 1 shows that

∂p

∂ci
(c∗) = −u∗i+1 ≤ 0. (7.33)

Since c∗i = c∗i+1 = ... = c∗M , we observe that

∂p

∂ci+1
(c∗) =

∂p

∂ci+2
(c∗) = ... =

∂p

∂cM−1
(c∗) (7.34)

= h(c∗i , c
∗
i+1, c

∗
i+2) (7.35)

= F (c∗i ) − F (c∗i+1) + f(c∗i+1)(c
∗
i+2 − c∗i+1 − T ) (7.36)

= −Tf(c∗i+1) (7.37)

≤ 0. � (7.38)

We now introduce the notation of a sequence-valued function

ĉ(s) = (ĉ0, ĉ1, ĉ2, ..., ĉM ) = (c0, s, ĉ2, ..., ĉM ). (7.39)

The domain for s is defined in the range cmin ≤ s ≤ c0. The elements of ĉ are defined

recursively in the following way:

Assume that elements up to ĉk have been defined. Let t be the solution to:

h(ĉk−1, ĉk, t) = 0. (7.40)

(Note that by our assumption of the pdf and the definition of h, t always exists and

is unique.) If cmin ≤ t ≤ ĉk and t − (k + 1)T > 0, then ĉk+1 = t. Otherwise, define

ĉk+1 = ĉk.

Note that ĉ(s) defines a 1-parameter family of critical points satisfying the KKT

conditions. However, not all critical points can be represented by ĉ(s) for some s.

Suppose c∗ is a critical point and

c0 > c∗1 > ... > c∗i = c∗i+1 = ... = c∗M ≥ cmin (7.41)

for some 0 ≤ i < M . If c∗1 = ĉ1, then it follows directly from equation 7.24 and the

definition of ĉ that

c∗k = ĉk k ∈ {1, ..., i − 1}. (7.42)
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However, c∗k and ĉk, for k ≥ i, may not be equal. In general,

c∗k ≥ ĉk k ∈ {i, ...,M − 1}. (7.43)

To show that an optimal solution can be obtained by searching the family of critical

points defined by ĉ(s), we need the following observation:

Theorem 2 Define Rj = c∗∗j − jT , for j ∈ {1, . . . ,M}. If Rj ≤ 0, then c∗∗k = c∗∗k−1 for

k ∈ [j,M ]. If Rj > 0, then c∗∗j < c∗∗j−1 if c∗∗j−1 > cmin.

Proof:

Suppose Rj < 0. We have RM ≤ RM−1 ≤ ... ≤ Rj+1 ≤ Rj < 0.

p(c) =
M∑

k=1

Rk(F (ck−1) − F (ck)) (7.44)

=
j−1∑
k=1

Rk(F (ck−1) − F (ck)) +
M∑

k=j

Rk(F (ck−1) − F (ck)). (7.45)

If c∗∗k < c∗∗k−1 for any k ∈ [j,M ], p can be increased by setting c∗∗k = c∗∗k−1 for k ∈ [j,M ].

A contradiction.

Suppose Rj = 0 and c∗∗j < c∗∗j−1. p can be increased by changing c∗∗j to any value in

the interval (c∗∗j , c
∗∗
j−1), and setting c∗∗k = c∗∗k−1 for k ∈ [j+1,M ]. Again a contradiction.

On the other hand, suppose Rj > 0. If c∗∗j = c∗∗j−1 then all c∗∗k ’s must be equal for

k ≥ j according to theorem 1. Therefore, p(c) can be increased by setting c∗∗j to a value

in the interval (cmin, c
∗∗
j−1) while keeping Rj > 0. A contradiction. Hence, c∗∗j < c∗∗j−1.

�
Now we are ready to prove our main result:

Theorem 3 If c∗∗ is an optimal solution, then ĉ(s) = c∗∗ when s = c∗∗1 .

Proof:

Suppose c∗∗ = (c∗∗0 , c
∗∗
1 , . . . , c

∗∗
M ) is an optimal solution. Set s = c∗∗1 .
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Define Rj = c∗∗j − jT . Suppose Rj > 0 for all j ∈ {2, . . . ,M}, then it follows from

corollary 1 and theorem 2 that c∗∗j−1 > c∗∗j and h(cj−2, cj−1, cj) = 0 unless c∗∗j−1 = cmin.

It follows from the definition of ĉ(s) that

ĉk = c∗∗k (7.46)

for all k.

Suppose Rj ≤ 0 for some j ∈ {2, . . . ,M}. If j < M , notice that c∗∗M = c∗∗M−1 = . . . =

c∗∗j since Rk < 0 for k > j. Hence, it follows from the definition of ĉ(s) that

ĉk = c∗∗k (7.47)

for all k. �
According to this theorem, by doing a one-dimensional numerical search for ĉ(s)

within the feasible set, one can obtain an optimal solution to the problem. We now

describe two more observations on the structure of the optimal solution. First of all,

the following theorem shows that depending on whether F (.) is convex or concave, the

sequence of price difference of the optimal strategy, c∗∗k − c∗∗k+1, satisfies the following

inequalities.

Theorem 4 Given c∗∗ makes the form c0 > c∗∗1 > ... > c∗∗i = c∗∗i+1 = ... = c∗∗M ≥ cmin.

If F (.) is convex, then

c∗∗k−1 − c∗∗k < c∗∗k − c∗∗k+1 + T k ∈ {1, ..., i − 1}. (7.48)

If F (.) is concave, then

c∗∗k−1 − c∗∗k > c∗∗k − c∗∗k+1 + T k ∈ {1, ..., i − 1}. (7.49)

Proof:

By Corollary 1,
∂p

∂ck
(c∗∗) = 0 k ∈ {1, ..., i − 1}

. That is,

F (c∗∗k−1) − F (c∗∗k ) + f(c∗∗k )(c∗∗k+1 − c∗∗k − T ) = 0. (7.50)
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Consider the case when F (.) is convex.

F (c∗∗k−1) − F (c∗∗k )
c∗∗k−1 − c∗∗k

> f(c∗∗k ) (7.51)

or

F (c∗∗k−1) − F (c∗∗k ) + f(c∗∗k )(c∗∗k − c∗∗k−1) > 0. (7.52)

Subtracting equation 7.50 from equation 7.52, we have

f(c∗∗k )
[
(c∗∗k − c∗∗k−1) − (c∗∗k+1 − c∗∗k − T )

]
> 0 (7.53)

or

c∗∗k−1 − c∗∗k < c∗∗k − c∗∗k+1 + T. (7.54)

The case when F (.) is concave can be proven in the same way. �
When X is uniformly distributed as U(a, b), the pdf of Y is convex. In the special

case T = 0, we note that the price difference c∗∗k − c∗∗k+1 is increasing with time, whereas

the probability F (c∗∗k ) − F (c∗∗k+1) is decreasing. This conforms to our intuition that

price levels should be closely packed at intervals where pdf of Y is large, such that the

item could be sold at a price ck close to Y .

When X is normal distributed as N(µ, σ2),

F (y) = Q

(
µ− y

σ

)n

, (7.55)

f(y) = nQ

(
µ− y

σ

)n−1 1√
2πσ

exp(
−(µ− y)2

2σ2
). (7.56)

It could be shown that F (y) is convex when y ≤ ψ and concave otherwise, where ψ is

solution to the equation

(n− 1) exp(
−x2

2
) +

√
2πxQ(x) = 0, x =

(µ− ψ)
σ

. (7.57)

Since the pdf of Y is largest at ψ, the price difference is decreasing at first and starts

increasing again as c∗∗k passes through ψ. That is, price levels are more closely packed

around Y = ψ.
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A uniform price decrement strategy is used as a reference in the numerical studies.

The price vector starts at c0 and falls to cmin in M equally spaced steps. We hereafter

refer this strategy as the uniform price decrement strategy. It turns out that this

strategy is optimal in the trivial case as shown in the following theorem.

Theorem 5 Uniform decrement strategy is optimal when

(1)X ∼ U(a, b) c0 ≤ b and a ≤ cmin

(2) n = 1

(3) T = 0
The optimal price levels are given by

c∗∗k =
(

M−k
M

)
c0 −

(
k
M

)
cmin, cmin ≥ c0

M + 1
, (7.58)

c∗∗k =
(

M+1−k
M+1

)
c0, cmin ≤ c0

M + 1
. (7.59)

Proof:

We will show that c∗ defined in equation 7.58 and equation 7.59 satisfies the KKT

conditions. Then we prove that p is concave in the feasible set. Since p is concave, the

optimality of c∗ is proved.

F (y) =

⎧⎨
⎩

y−a
b−a a ≤ y ≤ b

0 otherwise
f(y) =

1
b− a

a ≤ y ≤ b

Substitute to equation 7.3 we have

p =
1

b− a

M∑
k=1

ck(ck−1 − ck) (7.60)

Taking partial derivatives w.r.t. ck

∂p

∂ck
=

1
b− a

[(ck−1 − ck) − (ck − ck+1)] k ∈ {1, ...,M − 1} (7.61)

∂p

∂cM
=

1
b− a

(cM−1 − 2cM ) (7.62)

Consider the case cmin ≥ c0
M+1 . Substitute the price vector c∗∗ equation 7.58 to
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equation 7.61, we have

∂p

∂ck
(c∗∗) = 0 k ∈ {1, ...,M − 1} (7.63)

∂p

∂cM
(c∗∗) =

1
b− a

[
−cmin +

(
c0 − cmin

M

)]
(7.64)

=
1

b− a

[
M − 1
M

(
c0

M + 1
− cmin)

]
(7.65)

≤ 0. (7.66)

gk(c∗∗) < 0 ∀k ∈ {1, ...,M}. By construction u∗k = 0, k ∈ {1, ...,M}, so that

equation 7.11 is satisfied. Moreover, u∗∗M+1 ≥ 0. Thus we have

∂p

∂ck
(c∗∗) = u∗∗k − u∗∗k+1 = 0 k ∈ {1,M − 1} (7.67)

∂p

∂cM
(c∗∗) = u∗∗M − u∗∗M+1 (7.68)

= −u∗∗M+1 ≤ 0. (7.69)

Thus the KKT condition 2 is also satisfied. Therefore there exists a non-negative u∗

that satisfies all the KKT conditions.

Consider the case cmin ≤ c0
M+1 . We substitute the price vector c∗∗ equation 7.59 to

equation 7.61, yielding

∂p

∂ck
(c∗∗) = 0 k ∈ {1, ...,M − 1} (7.70)

∂p

∂cM
(c∗∗) =

1
b− a

(c∗∗M−1 − 2c∗∗M ) (7.71)

= 0 (7.72)

on simplification. Since gk(c∗∗) < 0 for k ∈ {1, ...,M +1}, by equation 7.11 u∗∗k = 0, k ∈
{1, ...,M + 1} . Thus we have u∗∗k − u∗∗k+1 = 0. All the KKT conditions are satisfied

again for this c∗∗.

To show that c∗∗ is a global maximizer, we proceed to prove the Hessian matrix H



161

for the objective function p is negative semi-definite. It is trivial to show that

H =
1

b− a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
. . . . . . . . . 0

0 · · · 1 −2 1 0

0 · · · 0 1 −2 1

0 · · · · · · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Apply the Gerschgorin’s theorem on each row of H, we show that max(λ) ≤ 0. Thus,

H is negative semi-definite and p is concave. �
So far Theorem 3 is the most important observation. Suppose an auction host knows

the statistics of the individual valuation F . The auction host only needs to search for

different values of s for the optimal value c∗∗1 . The nature of the optimization problem

stipulates that if s = c∗∗1 , then c∗∗ = ĉ(s) is the optimum solution to the optimization

problem. Given s, ĉ(s) can be determined easily by recursively solving simple algebraic

equations (7.40) M − 1 times. Thus, an exhaustive search of s leads to the solution for

the optimal price settings.

7.5 Numerical Studies

In this section, we firstly present several numerical examples to illustrate the properties

of c∗∗. Then, the optimal strategy is compared to the uniform price decrement strategy

in the following subsection.

7.5.1 Illustration of properties of optimal solution

In figure 7.1, X is uniformly distributed as U(700, 1000). There is no discounting

factor, i.e. T = 0. The optimal price c∗∗k at iteration k is plotted for n = 1, 5, 10, 20, 50

respectively. When n = 1, we observe that the uniform decrement strategy is optimal.

Since cmin ≥ c0
M+1 , c∗∗ is given by equation 7.58. As n increases, the pdf of Y shifts

to the right. Thus the price decrement rate is more gradual. When n = 20, cM is
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approximately equal to 870. When n = 50, cM is approximately equal to 930. In both

cases, we note that the probability Pr[Y ≤ cM ] is very small. We also observe that

the cost difference c∗∗k − c∗∗k−1 is increasing with k. The observation is in agreement to

equation 7.48 since FY (y) is convex.

0 2 4 6 8 10 12 14 16 18 20

800

820

840

860

880

900

920

940

960

980

1000

Number of iterations i

P
ric

e 
C

(i)

X~U(700,1000), (Cmin,C0)=(800,1000), n=1,5,10,20,50, T=0, M=20

n=50 

 n=20

n=10 

n=5 

n=1 

Figure 7.1: Example 1: X uniformly distributed, T = 0

In the following examples, we assume the valuation of a bidder X is normal dis-

tributed with mean 850 and variance 502. The pdf of maximum valuation Y for different

n is shown on figure 7.2. Note that the pdf becomes more peaked and shifts to the right

as n increases. Figure 7.3 shows the case when T = 0 and X is normal distributed as

N(850, 502). For all values of n, the price difference is decreasing at first and increasing

towards the end. This agrees with our results for normal distributed X’s, since F (Y )

changes from convex to concave as Y increases. When n = 1, the pdf is maximum

around µ = 850. Thus, the initial drop in price is fast. After that, the drop in price

is about the same in each iteration. On the other hand, when n = 50, the pdf is

maximum around 960 and tends to zero around 900. Thus, the drop in price is slowest

around 960 and becomes faster after it passes through the pdf maxima. Note that for
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Figure 7.2: pdf of Y for n = 1, 5, 10, 20, 50

n = 10, 20, 50, the iterations ends essentially at the point when the pdf is essentially

zero.

In figure 7.4, a discounting factor of T = 20 is introduced in each iteration. The price

c∗∗k at iteration k is plotted for the cases n = 1, 5, 10, 20, 50. We observe the inclusion of

a non-zero discounting factor T leads to faster price decrements. As one can read from

figure 7.3, the maxima of f(Y ) occur around 850, 900, 920, 940, 960 respectively when

n = 1, 5, 10, 20, 50. The optimal price decrement c∗∗1 lies in the vicinity of these pdf

maxima. We note that when n = 50, the simulation result is suboptimal. The auction

ends at iteration 15 at a price higher than cmin. Thus, the expected revenue can be

further increased by additional price decrements. The discrepancy is due to numerical

inaccuracies that occur at iterations when the pdf of Y at the selling price is extremely

small. In this case, the pdf of Y around c15 is less than 10−9. Despite the numerical

inaccuracies, the proposed method tends to yield solutions that are nearly optimal since

the difference in the expected revenue is small.

In figure 7.5, we change the discounting factor to T = 50. The optimal price
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Figure 7.3: Example 2: X normal distributed, T = 0
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Figure 7.4: Example 3: X normal distributed, T = 20
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Figure 7.5: Example 4: X normal distributed, T = 50

decrements for different n are shown. As predicted, the price decrement is even steeper

compared to the cases where T = 20 and T = 0. In the case n = 20 and n = 50,

the iterative solution fails to touch cmin when the auction ends due to the resolution

inaccuracy in the search. Again, a near optimal solution is obtained since the pdf when

the auction ends is very small (less than 10−10).

In figure 7.6, the price decrements are compared for different discounting factor

T = 0, 5, 10, 20, 50. The number of bidders is n = 10. As T increases, the price

decrement is steeper. Thus, if the resource usage is expensive, the auction host would

prefer a strategy with faster price decrements.

7.5.2 Comparison with the uniform decrement strategy

Comparison is done in terms of the expected revenue p. The ratio p(c∗∗)/p(cref ) is

shown in Table 7.1. We also compare the expected time to sell an item, as shown in Ta-

ble 7.2. Suppose a strategy c is used. Define the expected time to sell an item Ts, given

that it is actually sold when the auction ends as E[Ts|Y ≥ cM ]. It is straightforward to
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Figure 7.6: Example 5: X normal distributed, n = 10

show that

E[Ts|Y ≥ cM ] =
∑M

k=1 k(F (ck−1) − F (ck))
1 − F (cM )

(7.73)

=
∑M−1

k=0 F (ck) −MF (cM )
1 − F (cM )

. (7.74)

As illustrated in Table 7.1, the ratio of expected revenue for the optimal strategy

over the reference strategy is shown. When T = 0, the optimal strategy offers marginal

improvement over a uniform price decrement strategy. This is true in general irrespec-

tive of the distribution of X. In general, the successful bidder will pay a little less than

his valuation of the good under all price decrement strategies. The strategies are differ-

ent mainly in the expected time that the product is sold. Since there is no discounting

of revenue with time, the expected revenue of all strategies should appear the same.

Applying this result to the context of wireless Dutch auction, we infer that a uniform

decrement strategy is nearly optimal if the resource and processing overhead is low.

When the discounting factor is non-zero, the optimal strategy outperforms the al-

ternate strategy by a large margin. In our studies, the difference is more remarkable
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n 1 5 10 20 50
T = 0,X ∼ U(700, 1000) 1.0000 1.0012 1.0027 1.0042 1.0058
T = 0,X ∼ N(850, 502) 1.0009 1.0012 1.0018 1.0023 1.0028
T = 20,X ∼ N(850, 502) 1.3920 1.2033 1.1444 1.1000 1.0566
T = 50,X ∼ N(850, 502) 4.8749 1.9413 1.5764 1.3655 1.1948

Table 7.1: Revenue ratio of the optimal and the reference strategy when T and n are
varied.

n 1 5 10 20 50
T = 0,X ∼ U(700, 1000) 10.50/3.67 8.10/5.42 7.30/3.25 7.06/1.98 6.89/1.22
T = 0,X ∼ N(850, 502) 11.41/11.23 9.87/9.69 9.76/7.82 9.57/6.19 8.98/4.31
T = 20,X ∼ N(850, 502) 1.65/11.23 1.57/9.69 1.49/7.82 1/41/6.19 1.29/4.32
T = 50,X ∼ N(850, 502) 1.25/11.23 1.24/9.69 1.20/7.82 1.15/6.19 1.08/4.32

Table 7.2: Expected time to sell an item for the optimal and the reference strategy.

when n is small or T is large. When T is large, it is desirable to sell an item sooner to

reap more profits. Reading from Table 7.2, the expected time to sell the good is much

shorter for the optimal strategy. Thus, the optimal strategy is significantly better when

T is large. In a wireless Dutch auction, it is reasonable to assume the number of bidders

n = 5 or n = 10. For the case T = 50, the optimal strategy is superior to the uniform

strategy by 94% and 57% respectively as read from Table 7.1. Thus, in a wireless Dutch

auction, we should refrain from using the uniform strategy if communication resources

are expensive. Similarly, when the value of a good suffers from fast time discounting,

as in perishable goods such as Dutch tulips, the uniform strategy should not be used.

From figure 7.2 we observe that the pdf shifts to the low price region when n is

small. For the uniform decrement strategy, it takes many iterations until the item is

sold. Thus the revenue suffers from large time discounting. In the optimal strategy,

the initial price decrements are steep so that the maximum valuation is reached upon

several iterations. In practice, a Dutch auction is usually started at a very high initial

price c0 � Y > cmin. The maximum valuation Y is substantially below c0. The use

of the optimal strategy leads to significant gain over the uniform decrement strategy

by significantly shortening the auction time and the corresponding amount of time
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discounting.

We have demonstrated that when the time discounting factor T is large and when

the number of bidders n is small, the optimal strategy have the potential to outper-

form the uniform decrement strategy by a large margin. The underlying reason for

the performance difference is that the auction time is significantly shortened for the

optimal strategy as illustrated in Table 7.2. More generally, when parameters such as

cmin, σ and M are varied, the auction time may be adversely prolonged by using the

uniform decrement strategy. Thus under certain parameter settings, we also observe

a large performance margin between the optimal and the uniform decrement strategy.

Specifically, when the lower price limit cmin and individual valuations Xi are small

compared with the initial price c0, the auction time for the reference strategy is consid-

erably longer. Similarly, when the variance of the individual valuations σ is small, the

maximum valuation over all bidders Y is also smaller, thus prolonging the auction time

of the uniform decrement strategy. Finally, when the number of allowed iterations M

in an auction increases, the resultant price decrement interval of the uniform strategy

is finer. This also adversely affect the performance of the reference strategy relative to

the optimal strategy.

Parameters revenue ratio
T = 10, n = 10, cmin = 100,M = 20, σ = 50,X ∼ N(300, 502) 1.6168
T = 10, n = 10, cmin = 100,M = 20, σ = 100,X ∼ N(300, 502) 1.3256
T = 10, n = 10, cmin = 100,M = 20, σ = 25,X ∼ N(300, 502) 1.8736
T = 10, n = 10, cmin = 100,M = 10, σ = 25,X ∼ N(300, 502) 1.5414
T = 10, n = 10, cmin = 100,M = 30, σ = 25,X ∼ N(300, 502) 2.3685

Table 7.3: Revenue ratio of the optimal and the reference strategy when cmin, σ and
M are varied.

As a simple illustration we consider 5 more numerical examples with results shown

in Table 7.3. In all the five examples, the lower price limit is cmin = 100. Individual

valuations are modeled as i.i.d. Gaussian random variables with mean µ = 300 and

variance σ2 = 502. The revenue ratio of the optimal strategy relative to the uniform

decrement strategy is found to be more than 60%. This confirms our intuition that when
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c0 �> Y > cmin, the optimal strategy outperforms the reference strategy by a large

margin. In the second and third examples, the variance of the individual valuations

is varied as σ2 = 1002 and σ2 = 252 respectively. The corresponding revenue ratios

are 1.3256 and 1.8736. Our results show that as the variance σ2 increases, the revenue

ratio also increases. When the valuations of the bidders show smaller randomness, it

is unlikely that the maximum valuation is much higher than µ. This decreases the

efficiency of the uniform decrement strategy considerably. Finally, in the fourth and

fifth examples we vary the number of iterations to M = 10 and M = 30 respectively.

The corresponding revenue ratios are 1.5414 and 3.1962. This shows that when the

number of iterations is large, the optimal strategy may lead to an improvement that is

quite significant, as much as three times the revenue of the reference strategy.

7.6 Conclusion

In this chapter, we present the optimal price decrement strategy for Dutch auction.

It is shown in a system with inexpensive resources/low time discounting factor, the

uniform decrement strategy is nearly optimal irrespective of the distribution of X.

When resources are expensive/time discounting is high, the optimal strategy has steeper

price decrements and is more favorable to the uniform strategy. Finally when the initial

price is very high compared with the maximum valuation and the lower price limit, as in

a practical Dutch auction, the optimal strategy is significantly better than the uniform

strategy. We conclude that the optimal price decrement strategy is useful in a variety

of contexts such as the wireless Dutch auction or online auction houses.

Appendix

In this appendix an argument to show why the objective function p is not concave

in general is described.

In order to render p(c) concave, the Hessian matrix H = {hk,j} must be negative

semi-definite, where

hk,j =
∂2p

∂cj∂ck
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Recall that

p(c) =
M∑

k=1

(ck − kT )(F (ck−1) − F (ck)) + c0(1 − F (c0)).

Taking partial derivatives with respect to ck,

∂p

∂ck
= F (ck−1) − F (ck) + f(ck)(ck+1 − ck − T ) k ∈ {1, ...,M − 1}(7.75)

∂p

∂cM
= F (cM−1) − F (cM ) + (cM −MT )(−f(cM )). (7.76)

Differentiating w.r.t. cj again. For k ∈ {1, ...,M − 1}, we have

hk,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f(ck−1) j = k − 1

−2f(ck) + f ′(ck)(ck+1 − ck − T ) j = k

f(ck) j = k + 1

0 o.w.

Whereas, for k = M , we have

hM,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(cM−1) j = M − 1

−2f(cM ) + (−f ′(cM ))(cM −MT ) j = k

0 o.w.

We observe that H is tri-diagonal with negative entries along the diagonals and

positive entries adjacent to the diagonal entries. A sufficient condition to guarantee

that H is negative semi-definite is to ensure its row sums are smaller than or equal to

zero. However, this does not hold in general unless T is very large.

To give an example, we consider the case where M = 1, n = 1, and X is an

exponential random variable with mean equal to 1. In this case,

p = c0(1 − F (c0) + (c1 − T )(F (c0) − F (c1)).

Differentiating this function twice, we have

d2p

dc21
= (c1 − T − 2)e−c1 ≥ (cmin − T − 2)e−c1 .

If T < cmin − 2, then p is not concave.
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To estimate the range of T such that p is concave, or H is negative semi-definite,

one can use inclusion theorems on eigenvalues such as the Gerschgorin’s theorem [88].

Since H is symmetric, all the eigenvalues are real. Applying the Gerschgorin’s theorem

on H, each eigenvalue λi must satisfy

λi ≤ hi,i +
M∑

j=1,j �=i

|hi,j |

in the feasible set. Thus H is negative semi-definite if maxi hi,i +
∑M

j=1,j �=i |hi,j| ≤ 0.

On substitution, we have

−f(c1) + f ′(c1)(c2 − c1 − T ) ≤ 0 (7.77)

f(ck−1) − f(ck) + f ′(ck)(ck+1 − ck − T ) ≤ 0 (7.78)

f(cM−1) − 2f(cM ) − f ′(cM )(cM −MT ) ≤ 0. (7.79)

Note that equation 7.77 holds in the feasible set. If equation 7.78 is true, then

T ≥ f(ck−1) − f(ck)
f ′(ck)

+ (ck+1 − ck).

One can set ck = ck−1 = c0 and ck+1 = cmin for example. Then T ≥ c0 − cmin must be

satisfied to ensure p is concave.
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Chapter 8

Conclusions

8.1 Introduction

This thesis is a collection of research on the fundamental network behaviors that pertain

to the subject of mobile ad hoc networks. A brief summary of our contributions is given

in section 8.2. We have shown a mobile infostation network is superior to multihop ad

hoc network when the network is operated under stress such as high node density or

high node mobility. These desirable properties may have important implications on

futuristic networking paradigms and change the way we design network protocols. We

highlight this with the example of a pervasive sensor network in section 8.3. Finally,

in section 8.4 we outline other promising research directions that is sprung from this

research.

8.2 Thesis Summary

In the first part of the thesis, we focus on mobile infostation networks, a new kind of

mobile ad hoc network that exploits node mobility in packet transmission. In a mobile

infostation network, any two nodes communicate when they are in proximity. Under

this transmission constraint, any pair of nodes is intermittently connected as mobility

shuffles the node locations. We have addressed three important problems in this thesis,

namely the effect of node noncooperation, transmit range and node mobility on the

network performance, which are covered in depth in chapter 2,3 and 4.

Chapter 2 addresses the issue of node noncooperation in mobile infostation networks

in the context of a content distribution application. All nodes have common interest

to all files cached in the fixed infostations. In addition to downloading files from the
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fixed infostations, nodes act as mobile infostations and exchange files when they are in

proximity. We stipulate a social contract such that an exchange occurs only when each

node can obtain something it wants from the exchange. Our social contract enables

much higher system efficiency compared to downloading from fixed infostations only

while not requiring true cooperation among nodes. We show by analysis and simula-

tions that network performance depends on the node density, mobility and the number

of files that are being disseminated. Our results point to the existence of data diversity

for mobile infostation networks. The achievable throughput increases as the number of

files of interest to all users increases. We have also extended the common interest model

to the case where nodes have dissimilar interests. Our simulation results show that as

mobile nodes change from having identical interests to mutually exclusive interests, the

network performance degrades dramatically. We propose an alternative user strategy

when nodes have partially overlapping interests and show that the network capacity

can be significantly improved by exploiting multiuser diversity inherent in mobile in-

fostation networks. We conclude that data diversity and multiuser diversity exist in

noncooperative mobile infostation networks and can be exploited.

In chapter 3, we study the effect of transmit range on the capacity per unit area

for four transmission strategies. We show that a stipulated transmit range improves

the capacity compared to the rate adaptive Grossglauser-Tse strategy with an uncon-

strained transmit range by 25%, and outperforms the non-adaptive strategy by 68%.

This indicates an optimally operated network involves trading off spatial transmission

concurrency for more spectral efficiency on individual links. The capacity per unit area

is derived explicitly for four transmission strategies. Numerical results show that the

optimal number of neighbors is invariant to node density, and is between 0.6 to 1.2 in our

transmission strategies. This result is in contrast to a magic number of 6 to 8 neighbors

in multihop networks, where the expected forward progress per hop is maximized. This

reflects the different optimization criteria of mobile infostation and multihop ad hoc

networks. In addition, the capacity per unit area increases linearly with node density.

This is counter-intuitive but can be explained using a rescaling argument drawn from
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percolation theory. We also extend our results to practical systems with a specified sig-

nal to noise ratio (SIR) threshold. The invariance of the optimal number of neighbors

to node density also applies here, and the corresponding packet success rate per unit

area is also linearly increasing with node density. The optimal number of neighbors is

also weakly dependent on the SIR threshold. It decreases gradually from 2 to 0.5 as

the SIR threshold increases from 0 to 30dB.

In chapter 4, we address the effect of node mobility on highway mobile infostation

networks. Each node enters a highway segment at a Poisson rate with a random speed

drawn from a known but arbitrary distribution. Since nodes have different speed, a

node may overtake other nodes or be overtaken as time evolves. Using arguments from

renewal reward theory, the long run fraction of time an observer node is connected,

and the long run average data rate can be derived and are functions of the observer

node speed. We consider both forward traffic scenarios, in which two nodes moving in

the same direction have a transient connection when they are within range from each

other, and reverse traffic scenarios in which two nodes traveling in opposite directions

are connected transiently when they are in range. For node speed that is uniformly

distributed, we reveal that the expected fraction of connection time, or expected number

of connections in queuing terminology, is independent of the observer node speed in

reverse traffic. In forward traffic, on the other hand, the fraction of connection time

increases with observer speed. That is, the network performance improves with node

mobility, which is unique to the mobile infostation networking paradigm.

In the second part part of the thesis, we focus on generic mobile ad hoc networks,

otherwise known as packet radio networks or multihop ad hoc networks, in which mobile

nodes communicate in multihop routing. My focus is on the network layer of the

protocol stack, including work on power control and network behavior. These topics

are covered in chapter 5 and 6 of this thesis.

In mobile ad hoc networks, it is often more important to optimize for energy effi-

ciency than throughput. In chapter 5, we investigate the effect of transmit range on

energy efficiency of packet transmissions. We determine a common range for all nodes

such that the average energy expenditure per received packet is minimized. In the first
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part of this chapter, we consider stationary networks. We show that energy efficiency

depends on various system parameters that includes path loss exponent of the chan-

nel, energy dissipation model and network offered load. In particular, when the path

loss exponent is large, energy efficiency decreases when the transmit range increases.

Hence, the network should be operated at the critical range that just maintains network

connectivity. However, when the path loss exponent is small, operating at the critical

range yields inferior throughput and energy efficiency. Our results show that energy

efficiency is intimately connected to network connectivity. Three network connectivity

regimes are identified as the transmit range of all nodes increases. In the second part,

we examine the effect of node mobility on energy efficiency. We show that at normal

offered load, an optimal transmit range exists such that energy efficiency is maximized.

The optimal range turns out to be insensitive to node mobility, and is much larger than

the critical range. We show that the energy expenditure can be reduced by 15% to 73%

in different mobility scenarios, if the network is operated at the optimal range.

In chapter 6, we examine the network behavior of a routing algorithm for multihop

ad hoc networks. Extensive simulations are performed using ns-2 in a variety of mobility

scenarios and offered load regimes. In the literature, performance metrics (goodput,

delay and path length) are often obtained through ensemble averaging of many flows.

Here we advocate an alternate graphical interpretation of simulation results similar

to that used by Holland and Vaidya. Performance metrics of individual monitored

flows are plotted instead. By identifying the correlations between performance metrics

and system parameters, inter-relationships between them are revealed. For example,

we have shown that path length is dependent on system parameters such as mobility,

offered load and even the node distribution. These observations often give us insights

to the mechanisms that underlie the network behavior. In particular we have resolved a

conjecture that goodput improvement under high mobility is due to the load balancing

effect. We show that at high mobility, goodput improvement for heavy offered load

regimes is a consequence of the reduction of path length in the flows. Furthermore, we

have introduced the concept of fraction of congested flows as a new performance metric.

This and some other metrics such as fairness can be visualized from our graphs and are
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important in characterizing network performance.

In the final part of the thesis, we present a wireless application for a mobile cellular

network, an online Dutch auction price setting algorithm. In a Dutch auction, the

price of an item decreases incrementally from the starting price at regular intervals.

A bidder may buy the item at any time and stop the auction at the current price.

Chapter 7 presents an optimal price decrement strategy in a Dutch auction, such that

the expected revenue of the auction host is maximized. Properties of the optimal

solution and a simple iterative solution methodology are discussed. Numerical studies

show that significant gain could be obtained compared with a simple reference strategy.

8.3 Communications in Pervasive Sensor Networks

In future pervasive computing environments, our living environment will be filled with

sensor nodes. These sensor nodes will have a variety of functionalities to detect different

types of signal in our environment. They are connected together to form a pervasive

sensor network, monitoring our living environment and feeding important information

back to the communication sink for processing. The processed data are then fed to

software applications which take advantage of embedded contextual information such

as local microclimate, user location and activity to make intelligent decisions. While

there is much research on the development of context-aware applications for pervasive

computing, the full potential of these applications can only be realized when inexpensive

low-power miniature sensor nodes can be deployed. The Smart Dust project [4, 37] of

Berkeley, for instance, focuses on prototyping miniature sensor nodes called motes, and

explores the limits on their size and power consumption. Although the project has

a modest goal of fabricating millimeter scale sensor devices of a cubic volume, it is

envisioned that future sensor nodes will be small enough to be freely suspended in air

and buoyed by air currents.

The original proposal for Smart Dust [36] advocates the use of active/passive optical

communications or multihop wireless communications. The relative merits of optical

and wireless communications can be found in [98]. More recently, Kristofer Pister of
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UCB, who is the PI of the Smart Dust project, favored multihop wireless communica-

tions over optical communications [66, 67]. Multihop wireless transmissions are more

energy efficient than single hop transmissions to the communication sink. It can also be

implemented much more easily than an optical communication system which requires

the proper alignment of mobile transmitter and receiver nodes. To date, the Smart

Dust project is a proven concept with real hardware prototypes [5] and real network

applications.

As more network applications are being developed on Smart Dust networks, it is

expected that the volume of traffic will dramatically increase. Nevertheless, the capacity

of multihop networks is not scalable to network size. The results of Gupta and Kumar

[24] implies that the achievable throughput of a sensor node to the base station goes to

zero in a dense deployment of sensor nodes. To reduce the effective amount of traffic

in a sensor network, data fusion techniques have been proposed to aggregate correlated

data from proximate sensor nodes.

Our thesis is that by exploiting node mobility of the sensor nodes, we can signifi-

cantly increase the network capacity to accommodate future increase in traffic. Due to

the small size of the Smart Dust motes, sensor nodes exhibit inherent node mobility

as they are suspended in the air. The transportation effect of winds and currents on

sensor nodes can be used to physically carry the sensor data towards the base station.

More generally, mobility of external devices can be exploited. Rather than relying on

random mobility to toss the nodes in the right direction, external mobile nodes may

be deployed to collect the processed data from local sensor nodes and direct these in-

formation back to the base station. These external nodes are synthetic microrobots

with wireless communication circuits and sensors on board, and are being developed

today in research labs to aid research in sensor networks and ad hoc networks. In USC

the microrobots are called Robomotes [83] and in Berkeley they are called synthetic

insects [81]. In some more aggressive systems [71], the microrobots may even harvest

their own energy, recharge, and deliver energy to other energy depleted sensors.

Besides yielding much higher network capacity, the exploitation of node mobility

in sensor node communications also yields higher energy efficiency. Although multihop
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wireless communication compares favorably to single hop wireless communication in

energy efficiency, the power consumption of is still significant. In Smart Dust motes,

the reception of packets consumes energy comparable to that of a packet transmission.

In particular, [70] shows that the power consumption in receiving data can even be

greater than that of a packet transmission. This is because in a dense sensor network,

the transmit range is usually small. A small transmit power suffices in most scenarios

whereas a fixed power is expended in packet reception. Extensive multihop forwarding

in a dense sensor network leads to significant energy consumption in packet reception.

Although data fusion techniques can be used to minimize the amount of local data that

needs to be forwarded, it involves heavy signal processing, another major component in

the energy budget. On the other hand, in the mobile infostation paradigm, each packet

is only relayed via no more than two hops, thus saving precious energy in packet recep-

tion. Moreover, since a node transmits at a much lower power in a mobile infostation

network [106] than that in a multihop network, significant energy can be saved.

8.4 Other Research Directions

In traditional communication paradigms, node mobility is undesirable and contributes

to performance degradation to wireless networks. This is indeed the case for multihop

ad hoc networks [8, 12, 50]. As a result of node mobility, network topology changes

dynamically as time evolves. In proactive routing algorithms, frequent topology changes

induce a lot of update overhead of routing tables. In reactive routing algorithms,

similarly, route maintenance overhead also increases as a result of node mobility. It is

somewhat surprising that high node mobility improves the total proportion of time that

the node is connected, and thus the data rate [105,106]. That is, the mobile infostation

paradigm is robust to node mobility. In applications where users have high mobility,

communication using the mobile infostation paradigm is therefore an attractive solution.

Our results may have important implications for communications in highway vehicular

networks [53, 80].

On the other hand, our study on node noncooperative issues in a mobile infostation
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network may also find broader application in peer-to-peer computing networks. The suc-

cess of free file sharing networks has catapulted peer-to-peer networks to the limelight

in recent years. Nevertheless, the freeriding problem is an important issue. Since the

service is free, some peers take advantage of the network resources without contribut-

ing to it. The proliferation of freeriders in the network inadvertently creates a lot of

traffic and place heavy burden to those peers who actively contribute to the network.

This freeriding problem has some striking resemblances to the noncooperative content

distribution problem presented in chapter 2. Peers in the network are not incentivized

to cooperate since a node consumes its network resources (bandwidth) by sharing his

files to other peers in the network. In this aspect, the social contract defined in the

context of noncooperative mobile infostation networks may be useful to induce implicit

cooperation between peers in the network without the need of policing. It is desirable

to examine the network performance of a peer-to-peer network if all network nodes

observe a stipulated social contract.
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